Causal Effective Field Eqns from the Schwinger-Keldysh Formalism. Richard Woodard University of Florida

Size: px
Start display at page:

Download "Causal Effective Field Eqns from the Schwinger-Keldysh Formalism. Richard Woodard University of Florida"

Transcription

1 Causal Effective Field Eqns from the Schwinger-Keldysh Formalism Richard Woodard University of Florida

2 Two Common Questions 1. Aren t QFT effective field eqns nonlocal? Yes! 2. Doesn t this introduce acausality? Not unless gravity is dynamical In-out eqns are acausal, but from in-out BC In-in eqns are causal

3 Linearized Examples µ [(-g) ½ g µν ν ϕ(x)] - (-g) ½ [ξr+m 2 ] ϕ(x) - d 4 x M 2 (x;x ) ϕ(x ) = 0 (-g) ½ e µ aγ a [ µ -½A µbc J bc ] ψ(x) (-g) ½ m ψ(x) - d 4 x [Σ](x;x ) ψ(x ) = 0 ν [(-g) ½ g νρ g µσ F ρσ (x)] - d 4 x [ µ Π ν ](x;x ) A ν (x ) = 0

4 Eg. M 2 (x;x ) for λϕ 3 Best in position space M 2 (x;x ) = d 4 p/(2π) 4 Exp[ip (x-x )] M 2 (p) No integrals at 1 loop! [-i M 2 (x;x )] 1 loop = ½ (-iλ) 2 [i (x;x )] 2

5 Full Nonlinear Eqns For in-out (in-in similar) Γ[ϕ] = S[ϕ] - Ν=2 1/N! d 4 x 1 ϕ(x 1 ) d 4 x N ϕ(x N ) Γ N (x 1,...,x N ) Γ N (x 1,,x N ) N-point 1PI function δγ/δϕ(x) = δs/δϕ(x) - Ν=1 1/N! d 4 x 1 ϕ(x 1 )..... d 4 x N ϕ(x N ) Γ N+1 (x,x 1,,x N ) = 0

6 What Does It Mean? ϕ(x) = <Φ + φ(x) Φ > φ(x) Quantum field operator ϕ(x) C-number soln of eff. field eqn with Pos. freq. parts of ϕ and f + agree at time t + Neg. freq. parts of ϕ and f - agree at time t - Φ ± > State centered on f ± at time t ± For in-out t + + and t - - For in-in t + = t - and often finite

7 What s Wrong with In-Out? Great for scattering in flat space! Exp[iΓ[ϕ] ij ϕ] generates S-matrix Cf. on-shell finiteness But silly for cosmology or evolution Initial singularity can t have t - - Don t know state for t + + No formal S-matrix (but Fermilab still works!) In-out ϕ(x) depends on future and isn t real

8 Introductory QFT Teaches

9 Now Multiply by Conjugate

10 Now Sum over States at t = t 2 1. Ψ Ψ Ψ = I 2. Ψ Ψ [ϕ (t 2 )] Ψ[ϕ + (t 2 )] = δ[ϕ + (t 2 ) - ϕ (t 2 )]

11 Schwinger-Keldysh Formalism 1. 2 fields ϕ ± line endpts have ± polarity 2. Exp(iS[ϕ + ] S[ϕ ]) Ints all + or all + Interactions same as usual - Interactions conjugated 3. T(B[φ]) B[ϕ + ] T-ordered ext. lines + 4. Anti-time-ordered external lines are 5. 4 Propagators: i ±± (x;x ) 6. In-out N-point func. 2 N S-K N-points 7. Φ[ϕ ± (t 1 )] surface ints at t = t 1 if not free

12 Eg. im 2 (x;x ) for λϕ 3 1 Loop In-Out: ½ (-iλ) 2 [i (x;x )] 2 1 Loop Schwinger-Keldysh: -im 2 ++(x;x ) = ½ (-iλ) 2 [i ++ (x;x )] 2 -im 2 +-(x;x ) = ½ (-i λ) (+iλ) [i +- (x;x )] 2 -im 2 -+(x;x ) = ½ (+iλ) (-iλ) [i -+ (x;x )] 2 -im 2 --(x;x ) = ½ (+iλ) 2 [i -- (x;x )] 2

13 S-K Effective Field Eqns Γ[ϕ +,ϕ ] = S[ϕ + ] S[ϕ ] -½ d 4 x d 4 x ±± ϕ ± (x)m 2 ±±(x;x )ϕ ± (x ) + O(ϕ 3 ) 0 = δγ[ϕ +,ϕ ]/δϕ + (x) (then set ϕ ± =ϕ) = δs[ϕ]/δϕ(x) - d 4 x [M 2 ++(x;x ) + M 2 +-(x;x )] ϕ(x ) + O(ϕ 2 ) NB: M 2 -+(x;y) = M 2 +-(y;x)

14 Get Props with Canonical Relation F. F. Int. ϕ + (x)ϕ + (x ) = <Ω 0 T[φ(x)φ(x )] Ω 0 > i ++ (x;x ) = i (x;x ) F. F. Int. ϕ + (x)ϕ (x ) = <Ω 0 φ(x )φ(x) Ω 0 > i +- (x;x ) = θ(t-t ) [i (x;x )] * + θ(t -t) i (x;x ) F. F. Int. ϕ (x)ϕ(x ) = <Ω 0 φ(x)φ(x ) Ω 0 > i -+ (x;x ) = θ(t-t ) i (x;x ) + θ(t -t) [i (x;x )] * F. F. Int. ϕ (x)ϕ (x ) = <Ω 0 A[φ(x)φ(x )] Ω 0 > i -- (x;x ) = [i (x;x )] *

15 Properties of [M 2 ++(x;x ) + M 2 +-(x;x )] 1 Loop λϕ 3 : [M M2 +- ] = -iλ 2 /2 {[i ++ (x;x )] 2 - [i + (x;x )] 2 } Fact 1: i ++ (x;x ) = θ(t-t ) i -+ (x;x ) + θ(t -t) i +-(x;x (x;x ) [M M 2 +-] = 0 for t > t Fact 2: i -+(x;x ) = [i +-(x;x )] * [M M 2 +-] = -λ 2 θ(t-t ) Im{[i +- (x;x )] 2 ]} Manifestly real (unlike in-out!)

16 Causality of [M 2 ++(x;x ) + M 2 +-(x;x )] [M M2 +-] = -λ 2 θ(t-t ) Im{[i +- (x;x )] 2 } Fact 3: i +- (x;x ) = <Ω 0 φ(x )φ(x) Ω 0 > = ½ <Ω 0 {φ(x ),φ(x)} Ω 0 > + ½ <Ω 0 [φ(x ),φ(x)] Ω 0 > Fact 4: [φ(x ),φ(x)] = 0 for spacelike sep. [M M 2 +-] contributes only for x µ on or within past light-cone of x µ Not even superluminal w/o derivative ints

17 Blurring the Light-cone The Physics: Metric operator g µν = ĝ µν + h µν sets light-cone h µν allows propagation not possible in ĝ µν The Math: Derivative ints (h h h) push inf. off light-cone Typical c/c G 2 R ρσµν R ρσµν Cf. Larry Ford s work

18 Conclusions 1. S-K field eqns nonlocal, but good initial value problem 2. No violation of causality without quantizing gravity 3. No superluminal propagation without derivative interactions 4. Quantum gravity blurs the light-cone

Graviton Corrections to Maxwell s Equations. arxiv: (to appear PRD) Katie E. Leonard and R. P. Woodard (U. of Florida)

Graviton Corrections to Maxwell s Equations. arxiv: (to appear PRD) Katie E. Leonard and R. P. Woodard (U. of Florida) Graviton Corrections to Maxwell s Equations arxiv:1202.5800 (to appear PRD) Katie E. Leonard and R. P. Woodard (U. of Florida) Classical Maxwell s Equations ν [ -g g νρ g µσ F ρσ ] = J µ 1. Photons (J

More information

Free Gravitons Break de Sitter Invariance (arxiv: , ) S. P. Miao (Utrecht) N. C. Tsamis (Crete) R. P.

Free Gravitons Break de Sitter Invariance (arxiv: , ) S. P. Miao (Utrecht) N. C. Tsamis (Crete) R. P. Free Gravitons Break de Sitter Invariance (arxiv:0907.4930, 1002.4037) S. P. Miao (Utrecht) N. C. Tsamis (Crete) R. P. Woodard (Florida) Spacetime Exp. Strengthens QFT Why? Loops classical physics of virtuals

More information

de Sitter Inv. & Quantum Gravity (arxiv: , , , ) S. P. Miao (Utrecht) N. C. Tsamis (Crete) R. P.

de Sitter Inv. & Quantum Gravity (arxiv: , , , ) S. P. Miao (Utrecht) N. C. Tsamis (Crete) R. P. de Sitter Inv. & Quantum Gravity (arxiv:0907.4930, 1002.4037, 1106.0925, 1107.4733) S. P. Miao (Utrecht) N. C. Tsamis (Crete) R. P. Woodard (Florida) Primordial Inflation was nearly de Sitter with small

More information

Schwinger-Dyson Equation(s)

Schwinger-Dyson Equation(s) Mobolaji Williams mwilliams@physics.harvard.edu x First Version: uly 8, 016 Schwinger-Dyson Equations In these notes we derive the Schwinger-Dyson equation, a functional differential equation whose solution

More information

Might EPR particles communicate through a wormhole?

Might EPR particles communicate through a wormhole? epl draft Might EP particles communicate through a wormhole? 1,2 (a) E. Sergio Santini arxiv:quant-ph/0701106v2 24 Mar 2007 1 Instituto de Cosmologia, elatividade e Astrofísica ICA-B Centro Brasileiro

More information

Hawking radiation and universal horizons

Hawking radiation and universal horizons LPT Orsay, France June 23, 2015 Florent Michel and Renaud Parentani. Black hole radiation in the presence of a universal horizon. In: Phys. Rev. D 91 (12 2015), p. 124049 Hawking radiation in Lorentz-invariant

More information

Quantization of Scalar Field

Quantization of Scalar Field Quantization of Scalar Field Wei Wang 2017.10.12 Wei Wang(SJTU) Lectures on QFT 2017.10.12 1 / 41 Contents 1 From classical theory to quantum theory 2 Quantization of real scalar field 3 Quantization of

More information

Applications of Bohmian mechanics in quantum gravity

Applications of Bohmian mechanics in quantum gravity Applications of Bohmian mechanics in quantum gravity Ward Struyve LMU, Munich, Germany Outline: Why do we need a quantum theory for gravity? What is the quantum theory for gravity? Problems with quantum

More information

QFT PS7: Interacting Quantum Field Theory: λφ 4 (30/11/17) The full propagator in λφ 4 theory. Consider a theory of a real scalar field φ

QFT PS7: Interacting Quantum Field Theory: λφ 4 (30/11/17) The full propagator in λφ 4 theory. Consider a theory of a real scalar field φ QFT PS7: Interacting Quantum Field Theory: λφ 4 (30/11/17) 1 Problem Sheet 7: Interacting Quantum Field Theory: λφ 4 Comments on these questions are always welcome. For instance if you spot any typos or

More information

A Non-Technical (Honest!) Explanation of the Problem of Quantum Gravity. Richard Woodard University of Florida

A Non-Technical (Honest!) Explanation of the Problem of Quantum Gravity. Richard Woodard University of Florida A Non-Technical (Honest!) Explanation of the Problem of Quantum Gravity Richard Woodard University of Florida Sketch of General Relativity 1. Gravitational Field: g µν (t,x) ds 2 = g µν dx µ dx ν 2. g

More information

ADVANCED TOPICS IN THEORETICAL PHYSICS II Tutorial problem set 2, (20 points in total) Problems are due at Monday,

ADVANCED TOPICS IN THEORETICAL PHYSICS II Tutorial problem set 2, (20 points in total) Problems are due at Monday, ADVANCED TOPICS IN THEORETICAL PHYSICS II Tutorial problem set, 15.09.014. (0 points in total) Problems are due at Monday,.09.014. PROBLEM 4 Entropy of coupled oscillators. Consider two coupled simple

More information

Request for Comments Conceptual Explanation of Quantum Free-Field Theory

Request for Comments Conceptual Explanation of Quantum Free-Field Theory Request for Comments Conceptual Explanation of Quantum Free-Field Theory Andrew Forrester January 28, 2009 Contents 1 Questions and Ideas 1 2 Possible Approaches in Developing QFT 2 3 Developing QFFT 4

More information

arxiv: v2 [gr-qc] 11 May 2008

arxiv: v2 [gr-qc] 11 May 2008 SPIN-07/1, ITP-UU-07/31 CRETE-06-13 UFIFT-QG-06-05 arxiv:0707.0847v [gr-qc] 11 May 008 STOCHASTIC INFLATIONARY SCALAR ELECTRODYNAMICS T. Prokopec Institute for Theoretical Physics & Spinoza Institute,

More information

Quantum Electrodynamics Test

Quantum Electrodynamics Test MSc in Quantum Fields and Fundamental Forces Quantum Electrodynamics Test Monday, 11th January 2010 Please answer all three questions. All questions are worth 20 marks. Use a separate booklet for each

More information

Topological insulator part I: Phenomena

Topological insulator part I: Phenomena Phys60.nb 5 Topological insulator part I: Phenomena (Part II and Part III discusses how to understand a topological insluator based band-structure theory and gauge theory) (Part IV discusses more complicated

More information

PAPER 51 ADVANCED QUANTUM FIELD THEORY

PAPER 51 ADVANCED QUANTUM FIELD THEORY MATHEMATICAL TRIPOS Part III Tuesday 5 June 2007 9.00 to 2.00 PAPER 5 ADVANCED QUANTUM FIELD THEORY Attempt THREE questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY

More information

The Dirac Field. Physics , Quantum Field Theory. October Michael Dine Department of Physics University of California, Santa Cruz

The Dirac Field. Physics , Quantum Field Theory. October Michael Dine Department of Physics University of California, Santa Cruz Michael Dine Department of Physics University of California, Santa Cruz October 2013 Lorentz Transformation Properties of the Dirac Field First, rotations. In ordinary quantum mechanics, ψ σ i ψ (1) is

More information

arxiv:gr-qc/ v1 23 Jun 1998

arxiv:gr-qc/ v1 23 Jun 1998 Superluminal travel requires negative energies Ken D. Olum Institute of Cosmology Department of Physics and Astronomy Tufts University Medford, MA 02155 (June 1998) arxiv:gr-qc/9806091v1 23 Jun 1998 Abstract

More information

Path integration in relativistic quantum mechanics

Path integration in relativistic quantum mechanics Path integration in relativistic quantum mechanics Ian H. Redmount and Wai-Mo Suen McDonnell Center for the Space Sciences Washington University, Department of Physics St. Louis, Missouri 63130 4899 USA

More information

Applications of AdS/CFT correspondence to cold atom physics

Applications of AdS/CFT correspondence to cold atom physics Applications of AdS/CFT correspondence to cold atom physics Sergej Moroz in collaboration with Carlos Fuertes ITP, Heidelberg Outline Basics of AdS/CFT correspondence Schrödinger group and correlation

More information

Massive gravity and Caustics: A definitive covariant constraint analysis

Massive gravity and Caustics: A definitive covariant constraint analysis Massive gravity and Caustics: A definitive covariant constraint analysis Cosmo 2014 - Chicago George Zahariade UC Davis August 29, 2014 1 / 18 Goals Motivation and goals de Rham-Gabadadze-Tolley massive

More information

Gravity and scalar fields. Thomas P. Sotiriou SISSA - International School for Advanced Studies, Trieste (...soon at the University of Nottingham)

Gravity and scalar fields. Thomas P. Sotiriou SISSA - International School for Advanced Studies, Trieste (...soon at the University of Nottingham) Gravity and scalar fields Thomas P. Sotiriou SISSA - International School for Advanced Studies, Trieste (...soon at the University of Nottingham) µm 1AU 15Mpc Quantum Gravity General Relativity plus unknown

More information

Generally Covariant Quantum Theory: Examples.

Generally Covariant Quantum Theory: Examples. Generally Covariant Quantum Theory: Examples. Johan Noldus April 6, 2016 Abstract In a previous paper of this author [1], I introduced a novel way of looking at and extending flat quantum field theory

More information

Universal behaviour of four-boson systems from a functional renormalisation group

Universal behaviour of four-boson systems from a functional renormalisation group Universal behaviour of four-boson systems from a functional renormalisation group Michael C Birse The University of Manchester Results from: Jaramillo Avila and Birse, arxiv:1304.5454 Schmidt and Moroz,

More information

Electrodynamics at the classical electron radius and the Abraham-Lorentz force 1

Electrodynamics at the classical electron radius and the Abraham-Lorentz force 1 Electrodynamics at the classical electron radius and the Abraham-Lorentz force. Subclassical island in the quantum domain: Abraham-Lorentz force as a saddle point effect of QED 2. Divergence and instability

More information

Quantum Scalar Corrections to the Gravitational Potentials November on de Sitter 13, 2015 Background: 1 / 34

Quantum Scalar Corrections to the Gravitational Potentials November on de Sitter 13, 2015 Background: 1 / 34 Quantum Scalar Corrections to the Gravitational Potentials on de Sitter Background: Sohyun Park Korea Astronomy and Space Science Institute (KASI) APCTP FRP Gravitation and Numerical Relativity Quantum

More information

Quantum Field Theory Notes. Ryan D. Reece

Quantum Field Theory Notes. Ryan D. Reece Quantum Field Theory Notes Ryan D. Reece November 27, 2007 Chapter 1 Preliminaries 1.1 Overview of Special Relativity 1.1.1 Lorentz Boosts Searches in the later part 19th century for the coordinate transformation

More information

Self-consistent Conserving Approximations and Renormalization in Quantum Field Theory at Finite Temperature

Self-consistent Conserving Approximations and Renormalization in Quantum Field Theory at Finite Temperature Self-consistent Conserving Approximations and Renormalization in Quantum Field Theory at Finite Temperature Hendrik van Hees in collaboration with Jörn Knoll Contents Schwinger-Keldysh real-time formalism

More information

where P a is a projector to the eigenspace of A corresponding to a. 4. Time evolution of states is governed by the Schrödinger equation

where P a is a projector to the eigenspace of A corresponding to a. 4. Time evolution of states is governed by the Schrödinger equation 1 Content of the course Quantum Field Theory by M. Srednicki, Part 1. Combining QM and relativity We are going to keep all axioms of QM: 1. states are vectors (or rather rays) in Hilbert space.. observables

More information

Solitons and point particles

Solitons and point particles Solitons and point particles Martin Speight University of Leeds July 28, 2009 What are topological solitons? Smooth, spatially localized solutions of nonlinear relativistic classical field theories Stable;

More information

What is a particle? Carlo Rovelli. Daniele Colosi and C.R., Class. and Quantum Grav. 2009, gr-qc/

What is a particle? Carlo Rovelli. Daniele Colosi and C.R., Class. and Quantum Grav. 2009, gr-qc/ What is a particle? Carlo Rovelli Daniele Colosi and C.R., Class. and Quantum Grav. 2009, gr-qc/0409054 Happy birthday Abhay!! It is a very exciting time for Loop Quantum Gravity Applications Loop Quantum

More information

Physics 444: Quantum Field Theory 2. Homework 2.

Physics 444: Quantum Field Theory 2. Homework 2. Physics 444: Quantum Field Theory Homework. 1. Compute the differential cross section, dσ/d cos θ, for unpolarized Bhabha scattering e + e e + e. Express your results in s, t and u variables. Compute the

More information

Classical field theory 2012 (NS-364B) Feynman propagator

Classical field theory 2012 (NS-364B) Feynman propagator Classical field theory 212 (NS-364B Feynman propagator 1. Introduction States in quantum mechanics in Schrödinger picture evolve as ( Ψt = Û(t,t Ψt, Û(t,t = T exp ı t dt Ĥ(t, (1 t where Û(t,t denotes the

More information

Beyond the unitarity bound in AdS/CFT

Beyond the unitarity bound in AdS/CFT Beyond the unitarity bound in AdS/CFT Tomás Andrade in collaboration with T. Faulkner, J. Jottar, R. Leigh, D. Marolf, C. Uhlemann October 5th, 2011 Introduction 1 AdS/CFT relates the dynamics of fields

More information

Cosmic Bubble Collisions

Cosmic Bubble Collisions Outline Background Expanding Universe: Einstein s Eqn with FRW metric Inflationary Cosmology: model with scalar field QFTà Bubble nucleationà Bubble collisions Bubble Collisions in Single Field Theory

More information

Quantum Field Theory II

Quantum Field Theory II Quantum Field Theory II T. Nguyen PHY 391 Independent Study Term Paper Prof. S.G. Rajeev University of Rochester April 2, 218 1 Introduction The purpose of this independent study is to familiarize ourselves

More information

Why we need quantum gravity and why we don t have it

Why we need quantum gravity and why we don t have it Why we need quantum gravity and why we don t have it Steve Carlip UC Davis Quantum Gravity: Physics and Philosophy IHES, Bures-sur-Yvette October 2017 The first appearance of quantum gravity Einstein 1916:

More information

Hydrodynamics of the superfluid CFL phase and r-mode instabilities

Hydrodynamics of the superfluid CFL phase and r-mode instabilities Hydrodynamics of the superfluid CFL phase and r-mode instabilities Cristina Manuel Instituto de Ciencias del Espacio (IEEC-CSIC) Barcelona Hirschegg 2009 Outline Introduction Superfluid hydrodynamics Hydrodynamics

More information

arxiv: v2 [hep-th] 21 Oct 2013

arxiv: v2 [hep-th] 21 Oct 2013 Perturbative quantum damping of cosmological expansion Bogusław Broda arxiv:131.438v2 [hep-th] 21 Oct 213 Department of Theoretical Physics, Faculty of Physics and Applied Informatics, University of Łódź,

More information

Models with fundamental length 1 and the finite-dimensional simulations of Big Bang

Models with fundamental length 1 and the finite-dimensional simulations of Big Bang Models with fundamental length 1 and the finite-dimensional simulations of Big Bang Miloslav Znojil Nuclear Physics Institute ASCR, 250 68 Řež, Czech Republic 1 talk in Dresden (June 22, 2011, 10.50-11.35

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk FY3464 Quantum Field Theory II Final exam 0..0 NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory II Contact: Kåre Olaussen, tel. 735 9365/4543770 Allowed tools: mathematical

More information

Attempts at relativistic QM

Attempts at relativistic QM Attempts at relativistic QM based on S-1 A proper description of particle physics should incorporate both quantum mechanics and special relativity. However historically combining quantum mechanics and

More information

Classical Field Theory

Classical Field Theory Classical Field Theory Asaf Pe er 1 January 12, 2016 We begin by discussing various aspects of classical fields. We will cover only the bare minimum ground necessary before turning to the quantum theory,

More information

Quantum gravity, probabilities and general boundaries

Quantum gravity, probabilities and general boundaries Quantum gravity, probabilities and general boundaries Robert Oeckl Instituto de Matemáticas UNAM, Morelia International Loop Quantum Gravity Seminar 17 October 2006 Outline 1 Interpretational problems

More information

Might EPR particles communicate through a wormhole?

Might EPR particles communicate through a wormhole? Might EP particles communicate through a wormhole? E. Sergio Santini 1, 1 Instituto de Cosmologia, elatividade e Astrofísica ICA-B Centro Brasileiro de Pesquisas Físicas ua Dr. Xavier Sigaud 150, Urca

More information

Introduction to Instantons. T. Daniel Brennan. Quantum Mechanics. Quantum Field Theory. Effects of Instanton- Matter Interactions.

Introduction to Instantons. T. Daniel Brennan. Quantum Mechanics. Quantum Field Theory. Effects of Instanton- Matter Interactions. February 18, 2015 1 2 3 Instantons in Path Integral Formulation of mechanics is based around the propagator: x f e iht / x i In path integral formulation of quantum mechanics we relate the propagator to

More information

Numerical Methods in Quantum Field Theories

Numerical Methods in Quantum Field Theories Numerical Methods in Quantum Field Theories Christopher Bell 2011 NSF/REU Program Physics Department, University of Notre Dame Advisors: Antonio Delgado, Christopher Kolda 1 Abstract In this paper, preliminary

More information

STOCHASTIC QUANTIZATION AND HOLOGRAPHY

STOCHASTIC QUANTIZATION AND HOLOGRAPHY STOCHASTIC QUANTIZATION AND HOLOGRAPHY WORK WITH D.MANSI & A. MAURI: TO APPEAR TASSOS PETKOU UNIVERSITY OF CRETE OUTLINE CONFORMAL HOLOGRAPHY STOCHASTIC QUANTIZATION STOCHASTIC QUANTIZATION VS HOLOGRAPHY

More information

Scale without conformal invariance

Scale without conformal invariance Scale without conformal invariance Andy Stergiou Department of Physics, UCSD based on arxiv:1106.2540, 1107.3840, 1110.1634, 1202.4757 with Jean-François Fortin and Benjamín Grinstein Outline The physics:

More information

First order string theory and the Kodaira-Spencer equations. Integrable Systems in Quantum Theory Lorentz Center, Leiden, December 2008

First order string theory and the Kodaira-Spencer equations. Integrable Systems in Quantum Theory Lorentz Center, Leiden, December 2008 First order string theory and the Kodaira-Spencer equations Losev, Zeitlin, A.M.; Phys.Lett. B633 (2006) 375-381; hep-th/0510065 Gamayun, Losev, A.M.; 2008 Integrable Systems in Quantum Theory Lorentz

More information

Bohmian Trajectories as the Foundation of Quantum Mechanics and Quantum Field Theory

Bohmian Trajectories as the Foundation of Quantum Mechanics and Quantum Field Theory as the Foundation of Quantum Mechanics and Quantum Field Theory Eberhard Karls University, Tübingen (Germany) EmQM 17 London, 26 October 2017 Happy 100-th birthday, David Bohm! In 1952, David Bohm solved

More information

Quantum Geometry and Space-time Singularities

Quantum Geometry and Space-time Singularities p. Quantum Geometry and Space-time Singularities Abhay Ashtekar Newton Institute, October 27th, 2005 General Relativity: A beautiful encoding of gravity in geometry. But, as a consequence, space-time itself

More information

Analytic continuation of functional renormalization group equations

Analytic continuation of functional renormalization group equations Analytic continuation of functional renormalization group equations Stefan Flörchinger (CERN) Aachen, 07.03.2012 Short outline Quantum effective action and its analytic continuation Functional renormalization

More information

arxiv:hep-th/ v2 15 Oct 2002

arxiv:hep-th/ v2 15 Oct 2002 The general-covariant and gauge-invariant theory of quantum particles in classical backgrounds arxiv:hep-th/0202204v2 15 Oct 2002 Hrvoje Nikolić Theoretical Physics Division, Rudjer Bošković Institute,

More information

PHY 396 K. Problem set #3. Due September 29, 2011.

PHY 396 K. Problem set #3. Due September 29, 2011. PHY 396 K. Problem set #3. Due September 29, 2011. 1. Quantum mechanics of a fixed number of relativistic particles may be a useful approximation for some systems, but it s inconsistent as a complete theory.

More information

Renormalization of Conserving Selfconsistent Dyson equations

Renormalization of Conserving Selfconsistent Dyson equations Renormalization of Conserving Selfconsistent Dyson equations Hendrik van Hees Darmstadt Motivation Thermodynamics of strongly interacting systems Conservation laws, detailed balance, thermodynamical consistency

More information

Quantum Field Theory on NC Curved Spacetimes

Quantum Field Theory on NC Curved Spacetimes Quantum Field Theory on NC Curved Spacetimes Alexander Schenkel (work in part with Thorsten Ohl) Institute for Theoretical Physics and Astrophysics, University of Wu rzburg Workshop on Noncommutative Field

More information

3P1a Quantum Field Theory: Example Sheet 1 Michaelmas 2016

3P1a Quantum Field Theory: Example Sheet 1 Michaelmas 2016 3P1a Quantum Field Theory: Example Sheet 1 Michaelmas 016 Corrections and suggestions should be emailed to B.C.Allanach@damtp.cam.ac.uk. Starred questions may be handed in to your supervisor for feedback

More information

Exact Solutions of the Einstein Equations

Exact Solutions of the Einstein Equations Notes from phz 6607, Special and General Relativity University of Florida, Fall 2004, Detweiler Exact Solutions of the Einstein Equations These notes are not a substitute in any manner for class lectures.

More information

Connections and geodesics in the space of metrics The exponential parametrization from a geometric perspective

Connections and geodesics in the space of metrics The exponential parametrization from a geometric perspective Connections and geodesics in the space of metrics The exponential parametrization from a geometric perspective Andreas Nink Institute of Physics University of Mainz September 21, 2015 Based on: M. Demmel

More information

QUANTUM EINSTEIN S EQUATIONS AND CONSTRAINTS ALGEBRA

QUANTUM EINSTEIN S EQUATIONS AND CONSTRAINTS ALGEBRA QUANTUM EINSTEIN S EQUATIONS AND CONSTRAINTS ALGEBRA FATIMAH SHOJAI Physics Department, Iran University of Science and Technology, P.O.Box 16765 163, Narmak, Tehran, IRAN and Institute for Studies in Theoretical

More information

Non-locality in QFT due to Quantum Effects in Gravity

Non-locality in QFT due to Quantum Effects in Gravity Non-locality in QFT due to Quantum Effects in Gravity Xavier Calmet Physics & Astronomy University of Sussex 1 Effective action for GR How can we describe general relativity quantum mechanically? Well

More information

A short Introduction to Feynman Diagrams

A short Introduction to Feynman Diagrams A short Introduction to Feynman Diagrams J. Bijnens, November 2008 This assumes knowledge at the level of Chapter two in G. Kane, Modern Elementary Particle Physics. This note is more advanced than needed

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory I Contact: Michael Kachelrieß, tel. 998971 Allowed tools: mathematical tables 1. Spin zero. Consider a real, scalar field

More information

PAPER 44 ADVANCED QUANTUM FIELD THEORY

PAPER 44 ADVANCED QUANTUM FIELD THEORY MATHEMATICAL TRIPOS Part III Friday, 3 May, 203 9:00 am to 2:00 pm PAPER 44 ADVANCED QUANTUM FIELD THEORY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal

More information

QFT Dimensional Analysis

QFT Dimensional Analysis QFT Dimensional Analysis In h = c = 1 units, all quantities are measured in units of energy to some power. For example m = p µ = E +1 while x µ = E 1 where m stands for the dimensionality of the mass rather

More information

On two dimensional black holes. and matrix models

On two dimensional black holes. and matrix models On two dimensional black holes and matrix models Based on: On Black Hole Thermodynamics of 2-D Type 0A, JHEP 0403 (04) 007, hep-th/0402152 with J. L. Davis and D. Vaman Madison April, 2004 Motivation:

More information

Concistency of Massive Gravity LAVINIA HEISENBERG

Concistency of Massive Gravity LAVINIA HEISENBERG Universite de Gene ve, Gene ve Case Western Reserve University, Cleveland September 28th, University of Chicago in collaboration with C.de Rham, G.Gabadadze, D.Pirtskhalava What is Dark Energy? 3 options?

More information

arxiv:quant-ph/ v1 16 Jan 2007

arxiv:quant-ph/ v1 16 Jan 2007 Might EPR particles communicate through a wormhole? 1, 2, E. Sergio Santini 1 Comissão Nacional de Energia Nuclear Rua General Severiano 90, Botafogo 22290-901 Rio de Janeiro, RJ Brasil 2 Centro Brasileiro

More information

Quantum Field Theory on a Causal Set

Quantum Field Theory on a Causal Set Quantum Field Theory on a Causal Set Fay Dowker Imperial College, London York April 2017 QFT in curved spacetime I A stepping stone to quantum gravity I Furnishes us with a quantum gravity result: the

More information

Properties of the boundary rg flow

Properties of the boundary rg flow Properties of the boundary rg flow Daniel Friedan Department of Physics & Astronomy Rutgers the State University of New Jersey, USA Natural Science Institute University of Iceland 82ème rencontre entre

More information

Fractional charge in the fractional quantum hall system

Fractional charge in the fractional quantum hall system Fractional charge in the fractional quantum hall system Ting-Pong Choy 1, 1 Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green St., Urbana, IL 61801-3080, USA (Dated: May

More information

General Relativity in a Nutshell

General Relativity in a Nutshell General Relativity in a Nutshell (And Beyond) Federico Faldino Dipartimento di Matematica Università degli Studi di Genova 27/04/2016 1 Gravity and General Relativity 2 Quantum Mechanics, Quantum Field

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.81 String Theory Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.81 F008 Lecture 1: Boundary of AdS;

More information

Time evolution of particle number asymmetry in an expanding universe

Time evolution of particle number asymmetry in an expanding universe Time evolution of particle number asymmetry in an expanding universe Apriadi Salim Adam In collaboration with: Takuya Morozumi, Keiko Nagao, Hiroyuki Takata Graduate School of Science, Hiroshima University

More information

BRST renormalization

BRST renormalization BRST renormalization Peter Lavrov Tomsk State Pedagogical University Dubna, SQS 11, 23 July 2011 Based on PL, I. Shapiro, Phys. Rev. D81, 2010 P.M. Lavrov (Tomsk) BRST renormalization Dubna 2011 1 / 27

More information

Holographic self-tuning of the cosmological constant

Holographic self-tuning of the cosmological constant Holographic self-tuning of the cosmological constant Francesco Nitti Laboratoire APC, U. Paris Diderot IX Aegean Summer School Sifnos, 19-09-2017 work with Elias Kiritsis and Christos Charmousis, 1704.05075

More information

Nonrenormalizability of nonequilibrium quantum field theory in the classical approximation

Nonrenormalizability of nonequilibrium quantum field theory in the classical approximation Nonrenormalizability of nonequilibrium quantum field theory in the classical approximation Bin Wu IPhT, CEA/Saclay RPP 2015, Institut Henri Poincare Jan 16, 2015 T. Epelbaum, F. Gelis and B. Wu, Phys.

More information

The Uses of Ricci Flow. Matthew Headrick Stanford University

The Uses of Ricci Flow. Matthew Headrick Stanford University The Uses of Ricci Flow Matthew Headrick Stanford University String theory enjoys a rich interplay between 2-dimensional quantum field theory gravity and geometry The most direct connection is through two-dimensional

More information

Effective Field Theory in Cosmology

Effective Field Theory in Cosmology C.P. Burgess Effective Field Theory in Cosmology Clues for cosmology from fundamental physics Outline Motivation and Overview Effective field theories throughout physics Decoupling and naturalness issues

More information

QFT Dimensional Analysis

QFT Dimensional Analysis QFT Dimensional Analysis In the h = c = 1 units, all quantities are measured in units of energy to some power. For example m = p µ = E +1 while x µ = E 1 where m stands for the dimensionality of the mass

More information

Holographic self-tuning of the cosmological constant

Holographic self-tuning of the cosmological constant Holographic self-tuning of the cosmological constant Francesco Nitti Laboratoire APC, U. Paris Diderot IX Crete Regional Meeting in String Theory Kolymbari, 10-07-2017 work with Elias Kiritsis and Christos

More information

Thermal Quantum Field Theory in Real and Imaginary Time. Daniele Teresi

Thermal Quantum Field Theory in Real and Imaginary Time. Daniele Teresi Thermal Quantum Field Theory in Real and Imaginary Time daniele.teresi@hep.manchester.ac.uk University of Manchester 42nd BUSSTEPP - Durham University WHAT IS THERMAL QFT? ORDINARY VACUUM QFT few in and

More information

(Quantum) Fields on Causal Sets

(Quantum) Fields on Causal Sets (Quantum) Fields on Causal Sets Michel Buck Imperial College London July 31, 2013 1 / 32 Outline 1. Causal Sets: discrete gravity 2. Continuum-Discrete correspondence: sprinklings 3. Relativistic fields

More information

QFT Perturbation Theory

QFT Perturbation Theory QFT Perturbation Theory Ling-Fong Li (Institute) Slide_04 1 / 43 Interaction Theory As an illustration, take electromagnetic interaction. Lagrangian density is The combination L = ψ (x ) γ µ ( i µ ea µ

More information

Holographic Entanglement Entropy

Holographic Entanglement Entropy Motivation Time-dependent Multi-region Summary Holographic entanglement entropy for time dependent states and disconnected regions Durham University INT08: From Strings to Things, April 3, 2008 VH, M.

More information

Dilaton: Saving Conformal Symmetry

Dilaton: Saving Conformal Symmetry Dilaton: Saving Conformal Symmetry Alexander Monin Ecole Polytechnique Fédérale de Lausanne December 2, 2013 lexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry

More information

Bimetric Theory (The notion of spacetime in Bimetric Gravity)

Bimetric Theory (The notion of spacetime in Bimetric Gravity) Bimetric Theory (The notion of spacetime in Bimetric Gravity) Fawad Hassan Stockholm University, Sweden 9th Aegean Summer School on Einstein s Theory of Gravity and its Modifications Sept 18-23, 2017,

More information

Trapped ghost wormholes and regular black holes. The stability problem

Trapped ghost wormholes and regular black holes. The stability problem Trapped ghost wormholes and regular black holes. The stability problem Kirill Bronnikov in collab. with Sergei Bolokhov, Arislan Makhmudov, Milena Skvortsova (VNIIMS, Moscow; RUDN University, Moscow; MEPhI,

More information

Approaches to Quantum Gravity A conceptual overview

Approaches to Quantum Gravity A conceptual overview Approaches to Quantum Gravity A conceptual overview Robert Oeckl Instituto de Matemáticas UNAM, Morelia Centro de Radioastronomía y Astrofísica UNAM, Morelia 14 February 2008 Outline 1 Introduction 2 Different

More information

HIGHER SPIN PROBLEM IN FIELD THEORY

HIGHER SPIN PROBLEM IN FIELD THEORY HIGHER SPIN PROBLEM IN FIELD THEORY I.L. Buchbinder Tomsk I.L. Buchbinder (Tomsk) HIGHER SPIN PROBLEM IN FIELD THEORY Wroclaw, April, 2011 1 / 27 Aims Brief non-expert non-technical review of some old

More information

LECTURE 1: What is wrong with the standard formulation of quantum theory?

LECTURE 1: What is wrong with the standard formulation of quantum theory? LECTURE 1: What is wrong with the standard formulation of quantum theory? Robert Oeckl IQG-FAU & CCM-UNAM IQG FAU Erlangen-Nürnberg 31 October 2013 Outline 1 Classical physics Reality in classical physics

More information

Research Article Krein Space Quantization of Casimir Effect for a Spherical Shell

Research Article Krein Space Quantization of Casimir Effect for a Spherical Shell International Scholarly Research Network ISRN High Energy Physics Volume 202, Article ID 74823, 8 pages doi:0.5402/202/74823 Research Article Krein Space Quantization of Casimir Effect for a Spherical

More information

Singularity Resolution Inside Radiating 2-D Black Holes Rikkyo University, June 2013

Singularity Resolution Inside Radiating 2-D Black Holes Rikkyo University, June 2013 Singularity Resolution Inside Radiating 2-D Black Holes Rikkyo University, June 2013 Gabor Kunstatter University of Winnipeg Based on PRD85, 024025 12 (arxive 1111.2795) J. Gegenberg UNB, T. Taves UManitoba,

More information

1 Canonical quantization conformal gauge

1 Canonical quantization conformal gauge Contents 1 Canonical quantization conformal gauge 1.1 Free field space of states............................... 1. Constraints..................................... 3 1..1 VIRASORO ALGEBRA...........................

More information

0 T (L int (x 1 )...L int (x n )) = i

0 T (L int (x 1 )...L int (x n )) = i LORENTZ INVARIANT RENORMALIZATION IN CAUSAL PERTURBATION THEORY K. BRESSER, G. PINTER AND D. PRANGE II. Institut für Theoretische Physik Universität Hamburg Luruper Chaussee 149 22761 Hamburg Germany e-mail:

More information

1 Intro to perturbation theory

1 Intro to perturbation theory 1 Intro to perturbation theory We re now ready to start considering perturbations to the FRW universe. This is needed in order to understand many of the cosmological tests, including: CMB anisotropies.

More information

Schwinger s formula and the axial Ward identity for chirality production

Schwinger s formula and the axial Ward identity for chirality production Schwinger s formula and the axial Ward identity for chirality production Patrick Copinger, Kenji Fukushima, and Shi Pu New Frontiers in QCD 2018 June 18, 2018 Outline 1 Background Motivation: Chiral Magnetic

More information

New Model of massive spin-2 particle

New Model of massive spin-2 particle New Model of massive spin-2 particle Based on Phys.Rev. D90 (2014) 043006, Y.O, S. Akagi, S. Nojiri Phys.Rev. D90 (2014) 123013, S. Akagi, Y.O, S. Nojiri Yuichi Ohara QG lab. Nagoya univ. Introduction

More information