PAPER 44 ADVANCED QUANTUM FIELD THEORY

Size: px
Start display at page:

Download "PAPER 44 ADVANCED QUANTUM FIELD THEORY"

Transcription

1 MATHEMATICAL TRIPOS Part III Friday, 3 May, 203 9:00 am to 2:00 pm PAPER 44 ADVANCED QUANTUM FIELD THEORY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper SPECIAL REQUIREMENTS None You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

2 2 The action for a complex z(t), defined over time interval 0 t T, is S[z] = T 0 dt(ż ż ω 2 z z), ż(t) = d dt z(t). Show how to evaluate the functional integral over z(t) K(z f,z i ;T) = d[z] e is[z], z(0) = z i, z(t) = z f, by expanding z(t) about the classical solution z c (t), for which S[z] is stationary at z = z c under independent variations of z and z, requiring z c (0) = z i, z(t) = z f, to obtain K(z f,z i ;T) = e is[zc], ω = d det ω dt 2 ω2, S[z c ] = ω ) (( z f 2 + z i 2 )cosωt z f z i z i z f. sinωt Assume d[z] is defined so that det 0 = πit and show that then det ω = πi sinωt/ω. Show that d 2 z K(±z,z; it) = e ωt ( e ωt ) 2 = n= (±) n ne nωt. What is the interpretation of this result? [You may assume for integration over complex z d 2 z e iλz z = π λ real, λ > 0, d 2 z = dxdy for z = x+iy. ] iλ

3 3 2 For the Lagrangian, in d-dimensions, L F = 2 µ φ µ φ 2 m2 φ 2 ψ(γ µ µ +M)ψ, where φ is a real scalar field and ψ a Dirac spinor field, define the two point correlation functions φ(x)φ(0) and ψ(x) ψ(0) intermsof afunctionalintegral. Derive theequations ( 2 +m 2 ) φ(x)φ(0) = iδ d (x), (γ µ µ +M) ψ(x) ψ(0) = iδ d (x), and hence obtain the momentum space propagators for φ, ψ, i p 2 +m 2 iǫ, i iγµ p µ +M p 2 +M 2 iǫ. Let ˆτ n (p,...,p n ), i p i = 0, be the amplitude corresponding to connected one particle irreducible graphs with n external φ lines after factoring off i(2π) d δ d ( i p i). For L F, ˆτ 2 (p, p) = p 2 m 2. What is ˆτ n for n > 2? For an interaction L I = y ψψφ, show that there is a one loop contribution to ˆτ 2 of the form ˆτ 2 (p, p) () = 4y2 (2π) d d d M 2 k (k p) k i (k 2 +M 2 iǫ)((k p) 2 +M 2 iǫ). Using k (k p) = 2 (k2 +M 2 )+ 2 ((k p)2 +M 2 ) 2 p2 M 2 show that ˆτ 2 (p, p) () has a pole as ε = 4 d 0 of the form ˆτ 2 (p, p) () ε y 2 6π 2(ap2 +bm 2 ), and determine a, b. Show how this divergence may be cancelled by adding counterterms L c.t. = 2 A µ φ µ φ 2 Bφ2 with A a,b b. Show that in the bare Lagrangian φ φ 0 = Z φ 2φ and m 2 m 2 0 where Z φ = 4 ε y 2 6π 2. Sketch the one loop graph which gives rise to a contribution to ˆτ 4 () and show, without any detailed calculation, that the resulting integral is divergent in 4 dimensions. Assume ˆτ 4 () 8 ε y 4 6π 2. How must L = L F +L I be modified if the one loop divergences are to be all cancelled by letting φ φ 0 and also by suitable redefinitions of the couplings in L? [The gamma matrices are assumed to satisfy {γ µ,γ ν } = 2η µν and also tr(γ µ γ ν ) = 4η µν, tr(γ µ ) = 0. The metric is η µν = diag(,,,). You may also use (2π) d d d k i k 2 +m 2 iǫ 2 m 2 ε 6π 2. ] [TURN OVER

4 4 3 Consider a renormalisable quantum field theory which has a single dimensionless coupling g and no mass parameters. Let φ(x )...φ(x n ) be the finite n-point correlation function for scalar fields φ determined by perturbation expansion of the quantum field theory as a series in g. Explain how the perturbative result for φ(x )...φ(x n ) depends on a mass scale µ and obtain, with suitable assumptions, the RG equation ( µ µ +β(g) ) g +nγ(g) φ(x )...φ(x n ) = 0. ( ) Assume the function C is defined by and obtain the solution of ( ) in the form d 4 xe ip x φ(x)φ(0) = i C(p2 /µ 2,g) p 2, C(e 2t p 2 /µ 2,g) = f(t)c(p 2 /µ 2,g(t)), ( ) for suitable g(t) and f(t). How does this equation imply that µ is essentially arbitrary. What is the behaviour of C(p 2 /µ 2,g) for large p 2 if (i) β(g) > 0, 0 < g < g, β(g ) = 0, (ii) for small g, β(g) = bg 3, γ(g) = cg 2, b > 0? In this case show that f(t) t c/b for large t. Suppose that the theory depends on a mass m and ( ) is modified to ( µ µ +β(g) g +δ(g)m ) m +nγ(g) φ(x )...φ(x n ) = 0. Assuming now C(p 2 /µ 2,m/µ,g) show that ( ) becomes C(e 2t p 2 /µ 2,m/µ,g) = f(t)c(p 2 /µ 2,e t m(t)/µ,g(t)), for suitable m(t). If C(p 2 /µ 2,m/µ,g) has a well defined limit as m 0 why does this imply that masses can be neglected at large energies if δ(g) is not too large?

5 5 4 For a theory with fields φ which has a continuous symmetry such that the action is invariant, δ ǫ S[φ] = 0, subject to a transformation δ ǫ φ = ǫ a t a φ for ǫ a infinitesimal show how, by letting ǫ a ǫ a (x), to define an associated conserved current j µ a. How can j µ a be used to construct a conserved charge Q a? If for any X(φ) and X(φ) = d[φ] X(φ)e is[φ], =, show how to obtain, with appropriate assumptions, the Ward identity i d d x ǫ a (x) x µ jµ a(x)x = δ ǫ X. What is i x µ j µ a(x)φ(x )...φ(x n )? For a non abelian gauge theory with gauge field A µa (x) (a is a group index), anti-commuting ghost fields c a, c a and an auxiliary scalar field b a the quantum action is determined by the Lagrangian L q = 4 Fµν F µν + µ b A µ + 2 ξb b µ c D µ c, where F µνa = µ A νa ν A µa +f abc A µb A νc, (D µ c) a = µ c a +f abc A µb c c, X Y = X a Y a and f abc is antisymmetric. Show that L q has a symmetry, with suitable assumptions, under δ θ (c a, c a ) = θ(c a, c a ), δ ǫ (A µa,c a, c a,b a ) = ǫ((d µ c) a, 2 f abcc b c c,b a,0), for infinitesimal θ and anti-commuting ǫ. Verify that δ ǫ δ ǫ (A µa,c a, c a,b a ) = 0. [You need to use δ ǫ F µνa = ǫf abc F µνb c c, δ ǫ D µ c = 0 but you also need to show why these results are true.] What are the corresponding conserved currents j µ G and jµ B? In the quantum field theory there are associated conserved charges Q G and Q B where Q B 2 = 0. Outline how Q B can be used to construct the space of physical states of the theory. Why do we expect the physical states to be annihilated by Q G? END OF PAPER

PAPER 51 ADVANCED QUANTUM FIELD THEORY

PAPER 51 ADVANCED QUANTUM FIELD THEORY MATHEMATICAL TRIPOS Part III Tuesday 5 June 2007 9.00 to 2.00 PAPER 5 ADVANCED QUANTUM FIELD THEORY Attempt THREE questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY

More information

PAPER 45 THE STANDARD MODEL

PAPER 45 THE STANDARD MODEL MATHEMATICAL TRIPOS Part III Friday, 6 June, 014 1:0 pm to 4:0 pm PAPER 45 THE STANDARD MODEL Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

More information

Quantum Electrodynamics Test

Quantum Electrodynamics Test MSc in Quantum Fields and Fundamental Forces Quantum Electrodynamics Test Monday, 11th January 2010 Please answer all three questions. All questions are worth 20 marks. Use a separate booklet for each

More information

PAPER 305 THE STANDARD MODEL

PAPER 305 THE STANDARD MODEL MATHEMATICAL TRIPOS Part III Tuesday, 6 June, 017 9:00 am to 1:00 pm PAPER 305 THE STANDARD MODEL Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

More information

QFT Dimensional Analysis

QFT Dimensional Analysis QFT Dimensional Analysis In the h = c = 1 units, all quantities are measured in units of energy to some power. For example m = p µ = E +1 while x µ = E 1 where m stands for the dimensionality of the mass

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory I Contact: Michael Kachelrieß, tel. 998971 Allowed tools: mathematical tables 1. Spin zero. Consider a real, scalar field

More information

Advanced Quantum Field Theory Example Sheet 1

Advanced Quantum Field Theory Example Sheet 1 Part III Maths Lent Term 2017 David Skinner d.b.skinner@damtp.cam.ac.uk Advanced Quantum Field Theory Example Sheet 1 Please email me with any comments about these problems, particularly if you spot an

More information

MATHEMATICAL TRIPOS Part III PAPER 53 COSMOLOGY

MATHEMATICAL TRIPOS Part III PAPER 53 COSMOLOGY MATHEMATICAL TRIPOS Part III Wednesday, 8 June, 2011 9:00 am to 12:00 pm PAPER 53 COSMOLOGY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY

More information

PAPER 43 SYMMETRY AND PARTICLE PHYSICS

PAPER 43 SYMMETRY AND PARTICLE PHYSICS MATHEMATICAL TRIPOS Part III Monday, 31 May, 2010 1:30 pm to 4:30 pm PAPER 43 SYMMETRY AND PARTICLE PHYSICS Attempt no more than THREE questions. There are FOUR questions in total. The questions carry

More information

ADVANCED QUANTUM FIELD THEORY. Exercises. Adel Bilal

ADVANCED QUANTUM FIELD THEORY. Exercises. Adel Bilal ADVANCED QUANTUM FIELD THEORY Exercises October 17 Adel Bilal Laboratoire de Physique Théorique, École Normale Supérieure - CNRS 4 rue Lhomond, 7531 Paris Cedex 5, France Unité mixte du CNRS et de l Ecole

More information

MSci EXAMINATION. Date: XX th May, Time: 14:30-17:00

MSci EXAMINATION. Date: XX th May, Time: 14:30-17:00 MSci EXAMINATION PHY-415 (MSci 4242 Relativistic Waves and Quantum Fields Time Allowed: 2 hours 30 minutes Date: XX th May, 2010 Time: 14:30-17:00 Instructions: Answer THREE QUESTIONS only. Each question

More information

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 6: Lectures 11, 12

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 6: Lectures 11, 12 As usual, these notes are intended for use by class participants only, and are not for circulation Week 6: Lectures, The Dirac equation and algebra March 5, 0 The Lagrange density for the Dirac equation

More information

Relativistic Waves and Quantum Fields

Relativistic Waves and Quantum Fields Relativistic Waves and Quantum Fields (SPA7018U & SPA7018P) Gabriele Travaglini December 10, 2014 1 Lorentz group Lectures 1 3. Galileo s principle of Relativity. Einstein s principle. Events. Invariant

More information

ADVANCED QUANTUM FIELD THEORY

ADVANCED QUANTUM FIELD THEORY Imperial College London MSc EXAMINATION May 2016 This paper is also taken for the relevant Examination for the Associateship ADVANCED QUANTUM FIELD THEORY For Students in Quantum Fields and Fundamental

More information

PAPER 84 QUANTUM FLUIDS

PAPER 84 QUANTUM FLUIDS MATHEMATICAL TRIPOS Part III Wednesday 6 June 2007 9.00 to 11.00 PAPER 84 QUANTUM FLUIDS Attempt TWO questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY REQUIREMENTS

More information

3P1a Quantum Field Theory: Example Sheet 1 Michaelmas 2016

3P1a Quantum Field Theory: Example Sheet 1 Michaelmas 2016 3P1a Quantum Field Theory: Example Sheet 1 Michaelmas 016 Corrections and suggestions should be emailed to B.C.Allanach@damtp.cam.ac.uk. Starred questions may be handed in to your supervisor for feedback

More information

Geometry and Physics. Amer Iqbal. March 4, 2010

Geometry and Physics. Amer Iqbal. March 4, 2010 March 4, 2010 Many uses of Mathematics in Physics The language of the physical world is mathematics. Quantitative understanding of the world around us requires the precise language of mathematics. Symmetries

More information

Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books

Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books Burgess-Moore, Chapter Weiberg, Chapter 5 Donoghue, Golowich, Holstein Chapter 1, 1 Free field Lagrangians

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Tuesday 5 June 21 1.3 to 4.3 PAPER 63 THE STANDARD MODEL Attempt THREE questions. The questions are of equal weight. You may not start to read the questions printed on the

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Monday 7 June, 004 1.30 to 4.30 PAPER 48 THE STANDARD MODEL Attempt THREE questions. There are four questions in total. The questions carry equal weight. You may not start

More information

The Dirac Field. Physics , Quantum Field Theory. October Michael Dine Department of Physics University of California, Santa Cruz

The Dirac Field. Physics , Quantum Field Theory. October Michael Dine Department of Physics University of California, Santa Cruz Michael Dine Department of Physics University of California, Santa Cruz October 2013 Lorentz Transformation Properties of the Dirac Field First, rotations. In ordinary quantum mechanics, ψ σ i ψ (1) is

More information

PAPER 309 GENERAL RELATIVITY

PAPER 309 GENERAL RELATIVITY MATHEMATICAL TRIPOS Part III Monday, 30 May, 2016 9:00 am to 12:00 pm PAPER 309 GENERAL RELATIVITY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

More information

CHAPTER II: The QCD Lagrangian

CHAPTER II: The QCD Lagrangian CHAPTER II: The QCD Lagrangian.. Preparation: Gauge invariance for QED - 8 - Ã µ UA µ U i µ U U e U A µ i.5 e U µ U U Consider electrons represented by Dirac field ψx. Gauge transformation: Gauge field

More information

PAPER 311 BLACK HOLES

PAPER 311 BLACK HOLES MATHEMATICAL TRIPOS Part III Friday, 8 June, 018 9:00 am to 1:00 pm PAPER 311 BLACK HOLES Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY

More information

6.1 Quadratic Casimir Invariants

6.1 Quadratic Casimir Invariants 7 Version of May 6, 5 CHAPTER 6. QUANTUM CHROMODYNAMICS Mesons, then are described by a wavefunction and baryons by Φ = q a q a, (6.3) Ψ = ǫ abc q a q b q c. (6.4) This resolves the old paradox that ground

More information

Dr Victoria Martin, Spring Semester 2013

Dr Victoria Martin, Spring Semester 2013 Particle Physics Dr Victoria Martin, Spring Semester 2013 Lecture 3: Feynman Diagrams, Decays and Scattering Feynman Diagrams continued Decays, Scattering and Fermi s Golden Rule Anti-matter? 1 Notation

More information

Ultraviolet Divergences

Ultraviolet Divergences Ultraviolet Divergences In higher-order perturbation theory we encounter Feynman graphs with closed loops, associated with unconstrained momenta. For every such momentum k µ, we have to integrate over

More information

Physics 582, Problem Set 1 Solutions

Physics 582, Problem Set 1 Solutions Physics 582, Problem Set 1 Solutions TAs: Hart Goldman and Ramanjit Sohal Fall 2018 1. THE DIRAC EQUATION [20 PTS] Consider a four-component fermion Ψ(x) in 3+1D, L[ Ψ, Ψ] = Ψ(i/ m)ψ, (1.1) where we use

More information

QFT Dimensional Analysis

QFT Dimensional Analysis QFT Dimensional Analysis In h = c = 1 units, all quantities are measured in units of energy to some power. For example m = p µ = E +1 while x µ = E 1 where m stands for the dimensionality of the mass rather

More information

Chapter 13. Local Symmetry

Chapter 13. Local Symmetry Chapter 13 Local Symmetry So far, we have discussed symmetries of the quantum mechanical states. A state is a global (non-local) object describing an amplitude everywhere in space. In relativistic physics,

More information

Quantization of Scalar Field

Quantization of Scalar Field Quantization of Scalar Field Wei Wang 2017.10.12 Wei Wang(SJTU) Lectures on QFT 2017.10.12 1 / 41 Contents 1 From classical theory to quantum theory 2 Quantization of real scalar field 3 Quantization of

More information

Ginsparg-Wilson Fermions and the Chiral Gross-Neveu Model

Ginsparg-Wilson Fermions and the Chiral Gross-Neveu Model Ginsparg-Wilson Fermions and the DESY Zeuthen 14th September 2004 Ginsparg-Wilson Fermions and the QCD predictions Perturbative QCD only applicable at high energy ( 1 GeV) At low energies (100 MeV - 1

More information

Classical field theory 2012 (NS-364B) Feynman propagator

Classical field theory 2012 (NS-364B) Feynman propagator Classical field theory 212 (NS-364B Feynman propagator 1. Introduction States in quantum mechanics in Schrödinger picture evolve as ( Ψt = Û(t,t Ψt, Û(t,t = T exp ı t dt Ĥ(t, (1 t where Û(t,t denotes the

More information

Renormalization of the Yukawa Theory Physics 230A (Spring 2007), Hitoshi Murayama

Renormalization of the Yukawa Theory Physics 230A (Spring 2007), Hitoshi Murayama Renormalization of the Yukawa Theory Physics 23A (Spring 27), Hitoshi Murayama We solve Problem.2 in Peskin Schroeder. The Lagrangian density is L 2 ( µφ) 2 2 m2 φ 2 + ψ(i M)ψ ig ψγ 5 ψφ. () The action

More information

PAPER 345 ENVIRONMENTAL FLUID DYNAMICS

PAPER 345 ENVIRONMENTAL FLUID DYNAMICS MATHEMATICAL TRIPOS Part III Monday, 11 June, 2018 9:00 am to 12:00 pm PAPER 345 ENVIRONMENTAL FLUID DYNAMICS Attempt no more than THREE questions. There are FOUR questions in total. The questions carry

More information

Attempts at relativistic QM

Attempts at relativistic QM Attempts at relativistic QM based on S-1 A proper description of particle physics should incorporate both quantum mechanics and special relativity. However historically combining quantum mechanics and

More information

Before you begin read these instructions carefully:

Before you begin read these instructions carefully: NATURAL SCIENCES TRIPOS Part IB & II (General) Friday, 27 May, 2016 9:00 am to 12:00 pm MATHEMATICS (2) Before you begin read these instructions carefully: You may submit answers to no more than six questions.

More information

Goldstone Bosons and Chiral Symmetry Breaking in QCD

Goldstone Bosons and Chiral Symmetry Breaking in QCD Goldstone Bosons and Chiral Symmetry Breaking in QCD Michael Dine Department of Physics University of California, Santa Cruz May 2011 Before reading this handout, carefully read Peskin and Schroeder s

More information

Lecture notes for FYS610 Many particle Quantum Mechanics

Lecture notes for FYS610 Many particle Quantum Mechanics UNIVERSITETET I STAVANGER Institutt for matematikk og naturvitenskap Lecture notes for FYS610 Many particle Quantum Mechanics Note 20, 19.4 2017 Additions and comments to Quantum Field Theory and the Standard

More information

PHY 396 K. Problem set #11, the last set this semester! Due December 1, 2016.

PHY 396 K. Problem set #11, the last set this semester! Due December 1, 2016. PHY 396 K. Problem set #11, the last set this semester! Due December 1, 2016. In my notations, the A µ and their components A a µ are the canonically normalized vector fields, while the A µ = ga µ and

More information

Mandl and Shaw reading assignments

Mandl and Shaw reading assignments Mandl and Shaw reading assignments Chapter 2 Lagrangian Field Theory 2.1 Relativistic notation 2.2 Classical Lagrangian field theory 2.3 Quantized Lagrangian field theory 2.4 Symmetries and conservation

More information

Phys624 Formalism for interactions Homework 6. Homework 6 Solutions Restriction on interaction Lagrangian. 6.1.

Phys624 Formalism for interactions Homework 6. Homework 6 Solutions Restriction on interaction Lagrangian. 6.1. Homework 6 Solutions 6. - Restriction on interaction Lagrangian 6.. - Hermiticity 6.. - Lorentz invariance We borrow the following results from homework 4. Under a Lorentz transformation, the bilinears

More information

3.3 Lagrangian and symmetries for a spin- 1 2 field

3.3 Lagrangian and symmetries for a spin- 1 2 field 3.3 Lagrangian and symmetries for a spin- 1 2 field The Lagrangian for the free spin- 1 2 field is The corresponding Hamiltonian density is L = ψ(i/ µ m)ψ. (3.31) H = ψ( γ p + m)ψ. (3.32) The Lagrangian

More information

752 Final. April 16, Fadeev Popov Ghosts and Non-Abelian Gauge Fields. Tim Wendler BYU Physics and Astronomy. The standard model Lagrangian

752 Final. April 16, Fadeev Popov Ghosts and Non-Abelian Gauge Fields. Tim Wendler BYU Physics and Astronomy. The standard model Lagrangian 752 Final April 16, 2010 Tim Wendler BYU Physics and Astronomy Fadeev Popov Ghosts and Non-Abelian Gauge Fields The standard model Lagrangian L SM = L Y M + L W D + L Y u + L H The rst term, the Yang Mills

More information

A short Introduction to Feynman Diagrams

A short Introduction to Feynman Diagrams A short Introduction to Feynman Diagrams J. Bijnens, November 2008 This assumes knowledge at the level of Chapter two in G. Kane, Modern Elementary Particle Physics. This note is more advanced than needed

More information

Chiral Anomaly. Kathryn Polejaeva. Seminar on Theoretical Particle Physics. Springterm 2006 Bonn University

Chiral Anomaly. Kathryn Polejaeva. Seminar on Theoretical Particle Physics. Springterm 2006 Bonn University Chiral Anomaly Kathryn Polejaeva Seminar on Theoretical Particle Physics Springterm 2006 Bonn University Outline of the Talk Introduction: What do they mean by anomaly? Main Part: QM formulation of current

More information

Supersymmetric field theories

Supersymmetric field theories Supersymmetric field theories Antoine Van Proeyen KU Leuven Summer school on Differential Geometry and Supersymmetry, September 10-14, 2012, Hamburg Based on some chapters of the book Supergravity Wess,

More information

Spinors in Curved Space

Spinors in Curved Space December 5, 2008 Tetrads The problem: How to put gravity into a Lagrangian density? The problem: How to put gravity into a Lagrangian density? The solution: The Principle of General Covariance The problem:

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory I Contact: Michael Kachelrieß, tel. 99890701 Allowed tools: mathematical tables 1. Procca equation. 5 points A massive spin-1

More information

Theory of Elementary Particles homework VIII (June 04)

Theory of Elementary Particles homework VIII (June 04) Theory of Elementary Particles homework VIII June 4) At the head of your report, please write your name, student ID number and a list of problems that you worked on in a report like II-1, II-3, IV- ).

More information

Unstable Particles and Resonances

Unstable Particles and Resonances Master Thesis Unstable Particles and Resonances Author: Jeroen Rodenburg Supervisor: Prof. dr. Eric Laenen Abstract In the standard model all but the lightest particles are unstable. Any scattering process

More information

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II 8.3 Relativistic Quantum Field Theory II MIT OpenCourseWare Lecture Notes Hong Liu, Fall 010 Lecture Firstly, we will summarize our previous results. We start with a bare Lagrangian, L [ 0, ϕ] = g (0)

More information

PAPER 310 COSMOLOGY. Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

PAPER 310 COSMOLOGY. Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight. MATHEMATICAL TRIPOS Part III Wednesday, 1 June, 2016 9:00 am to 12:00 pm PAPER 310 COSMOLOGY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY

More information

2.4 Parity transformation

2.4 Parity transformation 2.4 Parity transformation An extremely simple group is one that has only two elements: {e, P }. Obviously, P 1 = P, so P 2 = e, with e represented by the unit n n matrix in an n- dimensional representation.

More information

8.324 Quantum Field Theory II. Problem Set 7 Solutions. d λ dλ

8.324 Quantum Field Theory II. Problem Set 7 Solutions. d λ dλ 8.4 Quantum Field Theory II Problem Set 7 Solutions. a Changing the variable λ = λλ we can find β using the chain rule of differentiation. We find, β λ = µ d λ dµ = µ dλ d λ dµ dλ = βλ d λ dλ. Thus β transforms

More information

QFT PS7: Interacting Quantum Field Theory: λφ 4 (30/11/17) The full propagator in λφ 4 theory. Consider a theory of a real scalar field φ

QFT PS7: Interacting Quantum Field Theory: λφ 4 (30/11/17) The full propagator in λφ 4 theory. Consider a theory of a real scalar field φ QFT PS7: Interacting Quantum Field Theory: λφ 4 (30/11/17) 1 Problem Sheet 7: Interacting Quantum Field Theory: λφ 4 Comments on these questions are always welcome. For instance if you spot any typos or

More information

Loop corrections in Yukawa theory based on S-51

Loop corrections in Yukawa theory based on S-51 Loop corrections in Yukawa theory based on S-51 Similarly, the exact Dirac propagator can be written as: Let s consider the theory of a pseudoscalar field and a Dirac field: the only couplings allowed

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams III. Quantization of constrained systems and Maxwell s theory 1. The

More information

Euclidean path integral formalism: from quantum mechanics to quantum field theory

Euclidean path integral formalism: from quantum mechanics to quantum field theory : from quantum mechanics to quantum field theory Dr. Philippe de Forcrand Tutor: Dr. Marco Panero ETH Zürich 30th March, 2009 Introduction Real time Euclidean time Vacuum s expectation values Euclidean

More information

SISSA entrance examination (2007)

SISSA entrance examination (2007) SISSA Entrance Examination Theory of Elementary Particles Trieste, 18 July 2007 Four problems are given. You are expected to solve completely two of them. Please, do not try to solve more than two problems;

More information

3 Quantization of the Dirac equation

3 Quantization of the Dirac equation 3 Quantization of the Dirac equation 3.1 Identical particles As is well known, quantum mechanics implies that no measurement can be performed to distinguish particles in the same quantum state. Elementary

More information

be stationary under variations in A, we obtain Maxwell s equations in the form ν J ν = 0. (7.5)

be stationary under variations in A, we obtain Maxwell s equations in the form ν J ν = 0. (7.5) Chapter 7 A Synopsis of QED We will here sketch the outlines of quantum electrodynamics, the theory of electrons and photons, and indicate how a calculation of an important physical quantity can be carried

More information

Particle Notes. Ryan D. Reece

Particle Notes. Ryan D. Reece Particle Notes Ryan D. Reece July 9, 2007 Chapter 1 Preliminaries 1.1 Overview of Special Relativity 1.1.1 Lorentz Boosts Searches in the later part 19th century for the coordinate transformation that

More information

arxiv:hep-th/ v1 2 Jul 1998

arxiv:hep-th/ v1 2 Jul 1998 α-representation for QCD Richard Hong Tuan arxiv:hep-th/9807021v1 2 Jul 1998 Laboratoire de Physique Théorique et Hautes Energies 1 Université de Paris XI, Bâtiment 210, F-91405 Orsay Cedex, France Abstract

More information

The Klein-Gordon Equation Meets the Cauchy Horizon

The Klein-Gordon Equation Meets the Cauchy Horizon Enrico Fermi Institute and Department of Physics University of Chicago University of Mississippi May 10, 2005 Relativistic Wave Equations At the present time, our best theory for describing nature is Quantum

More information

A Renormalization Group Primer

A Renormalization Group Primer A Renormalization Group Primer Physics 295 2010. Independent Study. Topics in Quantum Field Theory Michael Dine Department of Physics University of California, Santa Cruz May 2010 Introduction: Some Simple

More information

Finite-temperature Field Theory

Finite-temperature Field Theory Finite-temperature Field Theory Aleksi Vuorinen CERN Initial Conditions in Heavy Ion Collisions Goa, India, September 2008 Outline Further tools for equilibrium thermodynamics Gauge symmetry Faddeev-Popov

More information

Disclaimer. [disclaimer]

Disclaimer. [disclaimer] Disclaimer This is a problem set (as turned in) for the module physics755. This problem set is not reviewed by a tutor. This is just what I have turned in. All problem sets for this module can be found

More information

Introduction to gauge theory

Introduction to gauge theory Introduction to gauge theory 2008 High energy lecture 1 장상현 연세대학교 September 24, 2008 장상현 ( 연세대학교 ) Introduction to gauge theory September 24, 2008 1 / 72 Table of Contents 1 Introduction 2 Dirac equation

More information

Quantum Field Theory Notes. Ryan D. Reece

Quantum Field Theory Notes. Ryan D. Reece Quantum Field Theory Notes Ryan D. Reece November 27, 2007 Chapter 1 Preliminaries 1.1 Overview of Special Relativity 1.1.1 Lorentz Boosts Searches in the later part 19th century for the coordinate transformation

More information

arxiv:quant-ph/ v5 1 Aug 2005

arxiv:quant-ph/ v5 1 Aug 2005 Constraints of the Dynamic Equations and Lagrangian required by Superposition of Field X. Sun a, Z. Yang b,c a Institute of High Energy Physics, Beijing 100039, China a Graduate University of the Chinese

More information

Spinor Representation of Conformal Group and Gravitational Model

Spinor Representation of Conformal Group and Gravitational Model Spinor Representation of Conformal Group and Gravitational Model Kohzo Nishida ) arxiv:1702.04194v1 [physics.gen-ph] 22 Jan 2017 Department of Physics, Kyoto Sangyo University, Kyoto 603-8555, Japan Abstract

More information

d 3 xe ipm x φ(x) (2) d 3 x( φ(x)) 2 = 1 2 p n p 2 n φ(p n ) φ( p n ). (4) leads to a p n . (6) Finally, fill in the steps to show that = 1δpn,p m

d 3 xe ipm x φ(x) (2) d 3 x( φ(x)) 2 = 1 2 p n p 2 n φ(p n ) φ( p n ). (4) leads to a p n . (6) Finally, fill in the steps to show that = 1δpn,p m Physics 61 Homework Due Thurs 7 September 1 1 Commutation relations In class we found that φx, πy iδ 3 x y 1 and then defined φp m L 3/ d 3 xe ipm x φx and likewise for πp m. Show that it really follows

More information

5 Infrared Divergences

5 Infrared Divergences 5 Infrared Divergences We have already seen that some QED graphs have a divergence associated with the masslessness of the photon. The divergence occurs at small values of the photon momentum k. In a general

More information

Quantum Field Theory II

Quantum Field Theory II Quantum Field Theory II T. Nguyen PHY 391 Independent Study Term Paper Prof. S.G. Rajeev University of Rochester April 2, 218 1 Introduction The purpose of this independent study is to familiarize ourselves

More information

Lectures on Perturbative Renormalization Group (Draft) A. HARINDRANATH SAHA INSTITUTE OF NUCLEAR PHYSICS CALCUTTA

Lectures on Perturbative Renormalization Group (Draft) A. HARINDRANATH SAHA INSTITUTE OF NUCLEAR PHYSICS CALCUTTA Lectures on Perturbative Renormalization Group (Draft) A. HARINDRANATH SAHA INSTITUTE OF NUCLEAR PHYSICS CALCUTTA 2003-2004 Revised, 2010 TABLE OF CONTENTS Page Chapters: 1. Introduction........................................

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory I Contact: Michael Kachelrieß, tel. 99890701 Allowed tools: mathematical tables Some formulas can be found on p.2. 1. Concepts.

More information

Renormalization in Lorentz-violating field theory: external states

Renormalization in Lorentz-violating field theory: external states Renormalization in Lorentz-violating field theory: external states Robertus Potting CENTRA and Physics Department Faculdade de Ciências e Tecnologia Universidade do Algarve Faro, Portugal SME2015 Summer

More information

Before you begin read these instructions carefully:

Before you begin read these instructions carefully: NATURAL SCIENCES TRIPOS Part IB & II (General) Friday, 31 May, 2013 9:00 am to 12:00 pm MATHEMATICS (2) Before you begin read these instructions carefully: You may submit answers to no more than six questions.

More information

Before you begin read these instructions carefully:

Before you begin read these instructions carefully: NATURAL SCIENCES TRIPOS Part IB & II (General) Tuesday, 29 May, 2012 9:00 am to 12:00 pm MATHEMATICS (1) Before you begin read these instructions carefully: You may submit answers to no more than six questions.

More information

This means that n or p form a doublet under isospin transformation. Isospin invariance simply means that. [T i, H s ] = 0

This means that n or p form a doublet under isospin transformation. Isospin invariance simply means that. [T i, H s ] = 0 1 QCD 1.1 Quark Model 1. Isospin symmetry In early studies of nuclear reactions, it was found that, to a good approximation, nuclear force is independent of the electromagnetic charge carried by the nucleons

More information

Gravitational Renormalization in Large Extra Dimensions

Gravitational Renormalization in Large Extra Dimensions Gravitational Renormalization in Large Extra Dimensions Humboldt Universität zu Berlin Institut für Physik October 1, 2009 D. Ebert, J. Plefka, and AR J. High Energy Phys. 0902 (2009) 028. T. Schuster

More information

DR.RUPNATHJI( DR.RUPAK NATH )

DR.RUPNATHJI( DR.RUPAK NATH ) 11 Perturbation Theory and Feynman Diagrams We now turn our attention to interacting quantum field theories. All of the results that we will derive in this section apply equally to both relativistic and

More information

Physics 444: Quantum Field Theory 2. Homework 2.

Physics 444: Quantum Field Theory 2. Homework 2. Physics 444: Quantum Field Theory Homework. 1. Compute the differential cross section, dσ/d cos θ, for unpolarized Bhabha scattering e + e e + e. Express your results in s, t and u variables. Compute the

More information

QED and the Standard Model Autumn 2014

QED and the Standard Model Autumn 2014 QED and the Standard Model Autumn 2014 Joel Goldstein University of Bristol Joel.Goldstein@bristol.ac.uk These lectures are designed to give an introduction to the gauge theories of the standard model

More information

2 Quantization of the scalar field

2 Quantization of the scalar field 22 Quantum field theory 2 Quantization of the scalar field Commutator relations. The strategy to quantize a classical field theory is to interpret the fields Φ(x) and Π(x) = Φ(x) as operators which satisfy

More information

arxiv: v1 [hep-ph] 19 Jan 2019

arxiv: v1 [hep-ph] 19 Jan 2019 MITP/19-002 January 19, 2019 arxiv:1901.06573v1 [hep-ph] 19 Jan 2019 Les Houches Lectures on Renormalization Theory and Effective Field Theories Matthias Neubert PRISMA Cluster of Excellence & Mainz Institute

More information

The hadronization into the octet of pseudoscalar mesons in terms of SU(N) gauge invariant Lagrangian

The hadronization into the octet of pseudoscalar mesons in terms of SU(N) gauge invariant Lagrangian The hadronization into the octet of pseudoscalar mesons in terms of SU(N gauge invariant Lagrangian National Research Nuclear University Moscow 115409, Moscow, Russia E-mail: a kosh@internets.ru By breaking

More information

The Dirac equation. L= i ψ(x)[ 1 2 2

The Dirac equation. L= i ψ(x)[ 1 2 2 The Dirac equation Infobox 0.1 Chapter Summary The Dirac theory of spinor fields ψ(x) has Lagrangian density L= i ψ(x)[ 1 2 1 +m]ψ(x) / 2 where/ γ µ µ. Applying the Euler-Lagrange equation yields the Dirac

More information

Maxwell s equations. electric field charge density. current density

Maxwell s equations. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

Introduction to Renomalization in Field Theory

Introduction to Renomalization in Field Theory Introduction to Renomalization in Field Theory arxiv:108.4700v1 [hep-ph] 3 Aug 01 Ling-Fong Li Carnegie Mellon University, Pittsburgh, PA. USA and Chongqing Univerisity of Posts & Telecommunications, Chongqing,

More information

ADVANCED QUANTUM FIELD THEORY

ADVANCED QUANTUM FIELD THEORY ADVANCED QUANTUM FIELD THEORY Syllabus Non-Abelian gauge theories Higher order perturbative corrections in φ 3 theory Renormalization Renormalization in QED The renormalization group - β functions Infrared

More information

Exercises Symmetries in Particle Physics

Exercises Symmetries in Particle Physics Exercises Symmetries in Particle Physics 1. A particle is moving in an external field. Which components of the momentum p and the angular momentum L are conserved? a) Field of an infinite homogeneous plane.

More information

Beta functions in quantum electrodynamics

Beta functions in quantum electrodynamics Beta functions in quantum electrodynamics based on S-66 Let s calculate the beta function in QED: the dictionary: Note! following the usual procedure: we find: or equivalently: For a theory with N Dirac

More information

Twistor Strings, Gauge Theory and Gravity. Abou Zeid, Hull and Mason hep-th/

Twistor Strings, Gauge Theory and Gravity. Abou Zeid, Hull and Mason hep-th/ Twistor Strings, Gauge Theory and Gravity Abou Zeid, Hull and Mason hep-th/0606272 Amplitudes for YM, Gravity have elegant twistor space structure: Twistor Geometry Amplitudes for YM, Gravity have elegant

More information

Inverse square potential, scale anomaly, and complex extension

Inverse square potential, scale anomaly, and complex extension Inverse square potential, scale anomaly, and complex extension Sergej Moroz Seattle, February 2010 Work in collaboration with Richard Schmidt ITP, Heidelberg Outline Introduction and motivation Functional

More information

Quantum Field Theory Example Sheet 4 Michelmas Term 2011

Quantum Field Theory Example Sheet 4 Michelmas Term 2011 Quantum Field Theory Example Sheet 4 Michelmas Term 0 Solutions by: Johannes Hofmann Laurence Perreault Levasseur Dave M. Morris Marcel Schmittfull jbh38@cam.ac.uk L.Perreault-Levasseur@damtp.cam.ac.uk

More information

Quantization of scalar fields

Quantization of scalar fields Quantization of scalar fields March 8, 06 We have introduced several distinct types of fields, with actions that give their field equations. These include scalar fields, S α ϕ α ϕ m ϕ d 4 x and complex

More information

The path integral for photons

The path integral for photons The path integral for photons based on S-57 We will discuss the path integral for photons and the photon propagator more carefully using the Lorentz gauge: as in the case of scalar field we Fourier-transform

More information