1st year Relativity - Notes on Lectures 6, 7 & 8

Size: px
Start display at page:

Download "1st year Relativity - Notes on Lectures 6, 7 & 8"

Transcription

1 1st year Relativity - Notes on Lectures 6, 7 & 8 Lecture Six 1. Let us consider momentum Both Galilean and relativistic mechanics define momentum to be: p = mv and p i = P = a constant i i.e. Total momentum in a system of interacting particles is conserved - has its origin in Newton s third law and it is a principle that holds both relativistically and non-relativistically. Therefore we have conservation of momentum in special relativity. However, as p classically v - not allowed in special relativity! Therefore: p = mf(v)v where f(v) 1 as v 0 and must be dimensionless, f(v) can only depend upon the magnitude of v and thus can only depend upon terms such as v (and higher even powers). Because it is dimensionless then it is reasonable to say f(v) v /c. Therefore f(v) = f(v /c ) or f(v) = f(γ) In fact f(v) = γ = 1 1 v /c To get the identity f(v) = γ requires an analysis of collisions between equal mass particles (see later). So we have: mv p = mγv = 1 v /c m is the REST MASS and I will always use it as such to avoid confusion. Thus Newton s second law becomes: F = dp = m d (γv) N.B. we now see that F and dv. Force: no longer have to point in the same direction! F = dp = m d (γv) F = γma + mv dγ where a = dv so if a leads to a change of speed, dγ is finite. Therefore force equals mass times acceleration is NOT valid in relativistic mechanics.

2 3. Motion of a particle in a field The Lorentz force law for EM fields: f elect = qe f mag = qv B F total = d (γmv) = d [ ] mv = q(e + v B) (1 v /c ) 1 q must not depend upon v otherwise the hydrogen atom would not be neutral! (confidence in this statement is at the 1 : 10 0 level experimentally). Shown by King (1960). 4. Motion in an electric field Diagram is on viewgraph (p4 of Rosser fig.). Form above [ ] d v = qe (1 v /c ) 1 m Then integrate with respect to time to give: [ ] v v = qe (1 v /c ) 1 m [t]t 0 0 v = (1 v /c ) q E t v = v = multiply top and bottom by mc/qet to get: v = m q E t ( ) m 1 + q E t m c qet m ( ) 1 + q E t 1 m c c ( ) 1 + m c 1 q E t If t is very big (long acceleration time in the field) then m c q E t (although always less than c). In Newtonian mechanics, 1 and v c a = f m = qe m v = at = qet m v as t

3 from above if qet mc 1 then v qet m as required. This was confirmed experimentally by Bertozzi (1964). A van der Graaf accelerator was used to accelerate electrons to 1.5MeV and then to 15MeV using a linac [French p7 - p9]. Times of flight over 8.4m were measured. For the speed of light, t = 8ns. t pulse = 3ns, therefore time of flight is long compared to the pulse wih [see viewgraph]. 5. What about x? If at x = 0, t = 0 then, v = dx = x 0 dx = t 0 qet m ( ) 1 + q E t 1 m c qet m ( ) 1 + q E t 1 m c this can be integrated by the substitution w = 1 + q E t /m c giving (do this as an exercise) ( x = mc 1 + q E t ) 1 1 qe m c From Newton x = 1 at = 1 qet m theorem: x mc qe 1 qet m expand the above equation for x using the Binomial ( q E t ) m c The above approximation is OK for v < 3000kmh What about B fields? Here v is a constant because: Work done = W = f.dl then dw = f. dl = f.v f = qv B dw = qv.v B 0 Therefore the kinetic energy is constant, v is constant, thus f = d (γmv) = γmdv = qv B acceleration a = qvb γm but a = v r = qvb γm

4 and the period is given by r = γmv qb p = γmv = qbr T = πr v = πγm qb then we have an expression for the Larmor frequency ω L : ω L = qb γm 7. Transformation of Velocity ****THIS IS NOT REQUIRED FOR PRELIMS**** Consider two inertial frames S and S, where S is moving at a constant relative speed v with respect to S along their mutual x axes. Then we have In S, u = dx In S, u = dx 8. Then applying the Lorentz transformations gives x = γ(x βct) y = y ct = γ(ct βx) z = z u x = dx = dx dx ( ) dx = γ v = γ(u x v) ( = γ 1 dx ) v c division gives u x = u x v (1 u x v/c ) if we now look at the y components we get u y = u y γ(1 u x v/c ) and similarly for u z. Thus even for relative motion of the inertial frames along x alone, u x, u y and u z are ALL changed. 9. If u y and u z are not simple transformations then is there some set of quantities which does transform more like x and ct? 10. Momentum from above if we stick to mv as p then conservation of momentum becomes FRAME DEPENDENT.

5 11. As an example consider the viewgraph showing the collision of two particles. Consider an elastic collision between two equal mass particles from the point of view of two inertial frames S and S. S is the centre of mass frame and thus both particles approach each other with equal and opposite velocities. Before After v 1 = ( v x, v y ) v 1 = ( v x, v y ) v = (v x, v y ) v = (v x, v y ) the y component of velocity is reversed in the collision. In S, which has a velocity v x along O x with respect to S, particle has no component of velocity v x. Before After v 1 = ( v 1x, v 1y) v 1 = ( v 1x, v 1y) v = (0, v y) v = (0, v y) We can now use the transformation of velocities to relate v y and v y. v 1y = v y = v y γ(1 + vx/c ) v y γ(1 vx/c ) but the masses are the same, so the momentum in the y direction is not conserved in S if it is in S. The problem is that time is NOT an invariant, we need PROPER TIME: τ = t/γ or t = γτ where τ is the proper time. In the particle s rest frame γ = 1 so t = τ. This leads us to a definition of the relativistic velocity of the form: V = dx dτ = dx dτ = γ(v)dx we then have a definition for relativistic momentum of the form: P = mv = γ(v)mv Does this fix the conservation of momentum problem above? - YES. In S: p y = m dy dτ In S : p y = m dy dτ But m is constant and τ an invariant so if y = y then p y = p y. Therefore if momentum is conserved in y direction in S it will remain so in S. 1. What happens to p x? p x = m dx but x = γ(x βct) dτ ( ) dx p x = mγ(v) β(v)c dτ dτ p x = γ(v) (p x mβ(v)cγ (u))

6 This is nearer our goal of a Lorentz transformation but the second term above is still a problem - we need the energy! 13. Relativistic Energy The relativistic force is given by: Then the work done W is: F rel = dp W = F.dx To bring a particle at rest at t = 0 to a speed v at time t we have W = t F dx = F dx t 0 = F v 0 F v = v dp = vm d (γv) = mv dγ dv + mγv The first term contains dγ W = = d ( 1 v /c ) 1 = 1 ( ( 1 v /c ) 3 c v dv ) = γ3 c v dv [ ( ) ] t v mγ 3 + mγ v dv 0 c (a) The factor in square brackets in this expression is: [( ) ] [ v mγ γ v /c ] [ ] + 1 = mγ c 1 (v /c ) = mγ = mγ 3 1 v /c Thus the integrand is mγ 3 v dv, but from (a), mγ 3 v dv = mc dγ t W = mc dγ = mc 0 [ W = mc (γ 1) = mc γ=γ γ=1 dγ 1 (1 v /c ) 1 1 ] This is the expression for the Relativistic Kinetic Energy. 14. What happens as v/c 0? For small v /c, (1 v /c ) 1 1 v /c W = mc. v c = 1 mv!

7 15. An Invariant p = γmv pc = γmvc Now DEFINE E = W + mc = γmc. Then consider E (pc) : E (pc) = (mc ) γ (mc) γ v = (mc) γ (c v ) But γ = 1 1 v /c = c c v E (pc) = m c 4 INVARIANT Lecture Seven 16. Let s recap the results of the last lecture: E p c = m c 4 INVARIANT p c E = m c 4 c.f. x c t = c τ INVARIANT When v = 0, γ = 1 and W = 0, therefore E = mc This is the REST ENERGY of the particle. 17. Transformation of E and p From above p x = γ(v) (p x mβ(v)cγ (u)) The extra bit is now recognisable as E/c. Therefore p x = γ(p x βe/c) and E = γ(e βp x c) Thus we can now write the transformation of relativistic momentum and energy in special relativity as: p x = γ(p x βe/c) p y = p y p z = p z E /c = γ(e/c βp x ) This is just the same Lorentz transformation as for (x, t, x, t ). So in general we can write: X µ = L µν X ν

8 where X is a 4-vector and L µν is the Lorentz transformation matrix. Thus quite generally: x µ = (x, y, z, ict) p µ = (p x, p y, p z, ie/c) γ 0 0 iβγ L µν = iβγ 0 0 γ 18. What about velocity? If you remember the transformation of velocity discussion in lecture 6 (NOT ON SYLLABUS!) then you will, I hope, see that we can now define a 4-velocity as: U µ = dx µ dτ = γ (u) (u, ic) Then U µ = L µν U ν or in the full, expanded form (NOT ON SYLLABUS!), γ(u ) u x u y u z ic = γ 0 0 iβγ iβγ 0 0 γ u x u y u z ic γ(u) which will lead to the transformation of velocity derived earlier - as an exercise for the brave expand the above to recover the transformation equations derived in lecture 6, note that the ic term lets you eliminate γ(u ). 19. Therefore we have for momentum p µ = mu µ = mγ(v)(v, ic) imc p 4 = imcγ(v) = (1 v /c ) 1 expanding gives or p 4 c i p 4 imc ( ) 1 + v c +... ( ) mc + mv +... = ie 0. I hope that from the above you can now see that it is the ENERGY and the MOMENTUM and not the velocity that are the natural quantities to use in relativistic kinematics. Conservation of energy and momentum holds so that in a closed system (no external forces) E i and p i are CONSERVED.

9 1. The relevance of E rest = mc This is an amazing result, starting from a re-examination of ideas of space, time and simultaneity we now find that mass and energy are in some sense INTER- CHANGEABLE. Because c is so big, small mass changes release huge amounts of energy e.g. fission and fusion.. Zero mass particles If m = 0 then E = pc. Thus radiation (photons) have an associated momentum - already proven by Maxwell (whose equations are, of course, correct relativistically). Thus all massless particles must travel at the speed of light. 3. Relativistic Kinematics Particle physicists don t like c! They use units more suited to collisions involving sub-atomic particles. Everything is measured in terms of energy in MeV or GeV. 1eV = J 1MeV = 10 6 ev, 1GeV = 10 9 ev, 1TeV = 10 1 ev We have E = p c + m c 4 thus we say that mass is measured in units of MeV/c, and that momentum is measured in units of MeV/c. This gives E = p + m 4. There is an important, and useful, limit to the above equations. In particle physics β 1 in many cases. If this is the case then γ becomes the important quantity and the relations for E and p are: E = γmc p = γmcβ γ = E β = p c mc E m always refers to the rest mass quantity. Thus in particle physics units, γ = E m β = p E 5. Centre of Mass and Centre of Momentum Frame and t part = γτ part = Eτ part /m The C of M frame is convenient in both non-relativistic and relativistic mechanics. To transform to the C of M of a system of particles we need to find the velocity of the C of M in terms of E i and p i for the particle in an arbitrary frame. For a single particle we know that E p c is an invariant. Because the Lorentz transformation is linear it is straightforward to show that ( ) ( ) A = E i p i c i is also invariant for a group of particles. In the C of M frame, by definition i p i = 0. So in C of M frame ( ) A = = (E cm) i E i i

10 where Ei is the energy of the i th particle in that frame. Then, by analogy with the single particle case i E i γ CM = E cm and β CM = i p i c i E i where β CM is the velocity of the centre of mass of the particles in the frame in which the momenta and energies are p i, E i, and E cm is the total energy of those particles in the C of M frame. 6. Threshold Energies Because E and m are interchangeable we can create particles out of energy. This energy is usually provided by colliding other, stable, particles such as protons, electrons, etc. Suppose I have a proton beam and a hydrogen target and I want to make a p p pair - what is the minimum energy that the proton beam must have? p + p p + p + (p + p) In the C of M frame, the question is easy, E cm must be just big enough to make 4 proton masses E cm = 4m p c But A = E cm is an invariant and therefore we must have same value in the LAB frame in which there are only two protons, one at rest. Thus in the LAB frame: a E al, p b m p c and A = (E L a + m p c ) (pc) = (E L a ) (pc) + m p c E L a + (m p c ) but (E L a ) (pc) = (m p c ) (invariants again) A = m p c (m p c + E L a ) but A threshold = (E cm ) = (4m p c ) 16(m p c ) = m p c (m p c + Ea L ) 8(m p c ) = (m p c + Ea L ) Ea L = 7m p c

11 or, the kinetic energy of the proton beam must be T L a = E L a m p c = 6m p c Note by the use of invariants we have NOT needed Lorentz transformations in this problem. 7. General point about body collisions A particle of mass m 1 collides with a particle of mass m at rest, m 1 has energy and momentum given by p 1, E 1. What is E cm, v cm? β cm = p 1 E 1 + m A = (E cm ) = (E 1 + m ) p 1 E cm = (m 1 + m + m E 1 ) 1 Therefore the available energy for creating particles increases only as E 1 when working with a stationary target. This is the reason that colliding beam accelerators are used. 8. Two Body Decay (a) Decay of a stationary particle: a E a * E b * b -q X q In the rest frame of the parent particle (equivalent to the C of M frame of the decay products) X a + b Decay products must have equal and opposite momenta q. What are the energies E a,b? Conservation of Energy and m X c = E a + E b (1) m ac 4 = Ea (qc) () m bc 4 = Eb (qc) (3) subtract equation 3 from equation to give ( ) m a m b c 4 = Ea Eb (4)

12 Divide 4 by 1 to give (m a m b) c finally, add or subtract 5 to/from 1 and get m X = E a E b (5) E a = (m X + m a m b)c m X E b = (m X + m b m a)c m X from we can then recover qc (exercise for the reader!) to give the final result (in particle physics units) q = m4 X + m 4 a + m 4 b m Xm a m Xm b m am b m X = q + m a + q + m b 4m X Thus everything apart from the direction of q is fixed in terms of the particle masses. Lecture Eight 9. Two Body Decay (b) Decay of moving particle: In the LAB system we need to use the Lorentz transformations explicitly. Suppose particle X has energy and momentum E X and p X, take p X along O X. p a E a * q* p X, E X E a q a q* X E b q b p b - q* E b * LAB C of M N.B. the β and γ for the Lorentz transformations are those of particle X, so γ X = E X m X c β X = p X c E X Since we want a Lorentz transformation from the rest frame of X to the LAB frame, we use the inverse transform. In this way we can use results derived in the rest frame. The energy is given by E a = γ X (E a + β X q c cos θ )

13 and similarly for E b. From this relation we see that E a varies between two limits, θ = 0 (max) and θ = π (min). Therefore γ X (E a β X q c) E a γ X (E a + β X q c) These cases correspond to a along the line of flight of X. Now lets look at the angles θ a and θ b. The component of p along O X is: p a cos θ a = γ X (q cos θ + β X Ea/c) p a sin θ a = q sin θ The solution is now straightforward, if messy, remembering that we also have p b cos θ b = γ X ( q cos θ + β X Eb /c) p b sin θ b = q sin θ If you want to follow this derivation in detail see Lectures on Special Relativity by M.G. Bowler. I ll take a special example at this point, π 0 γ. Since γ is massless, E = q c, we can use this and take the ratio of the angular equations above: tan θ a = tan θ b = taking these two together we get tan(θ a + θ b ) = sin θ γ X (cos θ + β X ) sin θ γ X ( cos θ + β X ) β X γ X sin θ (γ X 1) sin θ 1 Thus in this decay in the LAB frame we get a range of opening angles which can be obtained by varying θ between π/ and π (one γ must go backwards) 30. Photons E = hν = hc (m rest = 0) λ p c = E or p = E/c as we have seen before, photons are the ultimate relativistic particle. 31. Compton Scattering This is the scattering of photons by electrons. Apart from being an important process itself, it was also historically important in confirming the quantum theory of light and providing very accurate tests of the relativistic velocity - momentum relation. Let s work in the LAB frame in which an incoming photon of frequency ν scatters from a stationary electron. A scattered photon is produced of frequency ν at an angle θ relative to the incoming photon direction γ + e γ + e

14 ν ν θ φ Ε E = hν, E = hν, E = (p c) + (mc ) Now we conserve energy and momentum to give E + mc = E + E (6) q = q + p p = q q (p c) = (qc) + (q c) q.q c However, E photon = p photon c and so (p c) = E + E EE cos θ = E (mc ) (7) We can use 6 to eliminate E, E = E E + mc (E E + mc ) (mc ) = E + E EE cos θ (E E ) + (E E )mc = EE cos θ + E + E EE + (E E )mc = EE cos θ mc (E E ) = EE (1 cos θ) (8) But we know that E = hν = hc/λ and that E = hc/λ, therefore ν ν = hνν (1 cos θ) mc λ λ = h (1 cos θ) mc This is the expression for the change in wavelength of the scattered photon. 3. We can also find the energy and angle of the recoil electron. Rewriting 6, E mc = E E

15 the left hand side is the kinetic energy of the electron. Rearranging 8 to give E in terms of E and θ: E [E(1 cos θ) + mc ] = Emc E = We can therefore write the kinetic energy T e as T e = E E Emc = E E(1 cos θ) + mc T e = E (1 cos θ) E(1 cos θ) + mc Emc E(1 cos θ) + mc (9) This is a maximum when θ = π (photon is back-scattered) then: T e = E E + mc We can get the angle of scattering by considering the conservation of momentum q = E/c q = q cos θ + p cos φ E = E cos θ + p c cos φ (p x ) (10) 0 = E sin θ p c sin φ (p y ) (11) thus from 11 we have p c = E sin θ sin φ If we now substitute this into 10 we have using equation 9 we can write E mc E = E (cos θ + sin θ cot φ) E = 1 = E E (1 cos θ) + 1 mc cos θ + sin θ cot φ E mc (1 cos θ) + 1 (1 cos θ) + 1 = cos θ + sin θ cot φ ( ) E mc + 1 = cos θ ( E mc + 1 ) + sin θ cot φ

16 at this point I ll introduce a trick, let a = (E/mc + 1) and t = tan θ/ so that (using a trig. formula from the SMP tables) sin θ = t 1 + t cos θ = 1 t 1 + t a = a (1 t ) t cot φ + (1 + t ) (1 + t ) a(1 + t ) = a at + t cot φ at = t cot φ cot φ = at ( ) E cot φ = mc + 1 tan θ/ 33. Recoil shifts in emission and absorption of radiation For an atom or nucleus, let the excitation energy be E 0 and the ground state rest mass energy be mc. Define m c = E 0 + mc (a) Emission Atom/nucleus in an excited state decays at rest A A + γ Since A recoils, E 0 is not the energy of the emitted γ! What is the difference? As in a -body decay Energy m c = E A + E γ (1) The momenta are the same, therefore Eliminate E A using 1 13 to give (mc ) = E A (pc) and 0 = E γ (pc) E γ = (pc) E A = E γ + (mc ) (13) (m c E γ ) = E γ + (mc ) (m c ) m c E γ = (mc ) E γ = (m c ) (mc ) m c

17 But, from energy level diagram, mc = m c E 0 E γ = (m c ) (m c E 0 ) m c E γ = E 0 E 0 m c (b) Absorption Ground state A at rest, absorbs photon of energy E γ to produce and excite state A which recoils γ γ E γ + mc = E E 0 + mc = m c The momentum of A equals that of the γ so eliminate E to give E = E γ + (m c ) (E γ + mc ) = E γ + (E 0 + mc ) E γmc = E 0 + E 0 mc E γ = E 0 + E 0 mc For most nuclei and atoms the difference between m and m can be ignored. This is not so for sub-nuclear particles. The shifts for atoms and nuclei are small and are generally unimportant for atoms, but are relatively more important for nuclei. The criterion is the size of the shift (E 0/mc ) compared to the natural line wih obtained from quantum mechanical considerations: Γ h τ τ = lifetime 34. Mössbauer recoilless spectroscopy Consider the radioactive decay detailed below ν ν 57 7Co 57 6Fe (excited state) + e + + ν e 57 6Fe 57 6Fe + γ (14.4 kev) ( 57 6Fe ) = (Pound and Rebeka, PRL 3, (1959))

18 The linewih of the emitted γ is extremely small. Therefore in this special case we have the opportunity to measure the relativistic correction. From above, for emission: ( E γ = E 0 1 E ) 0 E E = E 0 m c = Thus the effect is easily seen. m c = In 1958 R.L. Mössbauer, aged 9, showed that when radioactive nuclei embedded in a solid emit γ-rays, many fail to recoil as free atoms. Instead they behave as if locked rigidly to the rest of the solid. The recoil is then communicated to the solid as a whole, thus giving an effective m many orders of magnitude bigger than that of the nucleus alone (mass of the crystal). Thus E 0 and we have a so called recoilless process. For example assume that the mass of the crystal is 1g, then E E = E 0 m c = = The Mössbauer effect has been used to test relativity as it gives an extremely precise tool with which to measure any energy shifts. Some of these are detailed below (a) Doppler effect test using resonant scattering (one moving Fe source and one stationary Fe absorber). (b) Tests of the gravitational red shift - Pound and Snider, Phys. Rev. 140, B (1965), PRL 4, (1960). (c) Test of the twins paradox using the thermal motion of Fe nuclei at different temperatures, PRL 4, (1960).

George Mason University. Physics 540 Spring Notes on Relativistic Kinematics. 1 Introduction 2

George Mason University. Physics 540 Spring Notes on Relativistic Kinematics. 1 Introduction 2 George Mason University Physics 540 Spring 2011 Contents Notes on Relativistic Kinematics 1 Introduction 2 2 Lorentz Transformations 2 2.1 Position-time 4-vector............................. 3 2.2 Velocity

More information

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: Momentum and Energy Conservation Albert Einstein 879-955 Review: Transforming Velocity Remember: u = dx dt x = γ ν (x + vt ) t = γ ν ( v c 2 x + t ) From this

More information

Lecture 9 - Applications of 4 vectors, and some examples

Lecture 9 - Applications of 4 vectors, and some examples Lecture 9 - Applications of 4 vectors, and some examples E. Daw April 4, 211 1 Review of invariants and 4 vectors Last time we learned the formulae for the total energy and the momentum of a particle in

More information

Problem Set # 2 SOLUTIONS

Problem Set # 2 SOLUTIONS Wissink P640 Subatomic Physics I Fall 007 Problem Set # SOLUTIONS 1. Easy as π! (a) Consider the decay of a charged pion, the π +, that is at rest in the laboratory frame. Most charged pions decay according

More information

Vectors in Special Relativity

Vectors in Special Relativity Chapter 2 Vectors in Special Relativity 2.1 Four - vectors A four - vector is a quantity with four components which changes like spacetime coordinates under a coordinate transformation. We will write the

More information

PHYS1015 MOTION AND RELATIVITY JAN 2015 EXAM ANSWERS

PHYS1015 MOTION AND RELATIVITY JAN 2015 EXAM ANSWERS PHYS1015 MOTION AND RELATIVITY JAN 2015 EXAM ANSWERS Section A A1. (Based on previously seen problem) Displacement as function of time: x(t) = A sin ωt Frequency f = ω/2π. Velocity of mass is v(t) = dx

More information

Chapter 2 Problem Solutions

Chapter 2 Problem Solutions Chapter Problem Solutions 1. If Planck's constant were smaller than it is, would quantum phenomena be more or less conspicuous than they are now? Planck s constant gives a measure of the energy at which

More information

1 Preliminary notions

1 Preliminary notions 1 Preliminary notions 1 Elementary particles are at the deepest level of the structure of matter. Students have already met the upper levels, namely the molecules, the atoms and the nuclei. These structures

More information

1. Kinematics, cross-sections etc

1. Kinematics, cross-sections etc 1. Kinematics, cross-sections etc A study of kinematics is of great importance to any experiment on particle scattering. It is necessary to interpret your measurements, but at an earlier stage to determine

More information

Final Exam Sample Problems

Final Exam Sample Problems UNIVERSITY OF ALABAMA Department of Physics and Astronomy PH 253 / LeClair Spring 2010 Final Exam Sample Problems 1. The orbital speed of the Earth around the Sun is 30 km/s. In one year, how many seconds

More information

Lecture 3 - Compton Scattering

Lecture 3 - Compton Scattering Lecture 3 - Compton Scattering E. Daw March 0, 01 1 Review of Lecture Last time we recalled that in special relativity, as in pre-relativistic dynamics, the total energy in an interaction or collision

More information

PH 253 Exam I Solutions

PH 253 Exam I Solutions PH 253 Exam I Solutions. An electron and a proton are each accelerated starting from rest through a potential difference of 0.0 million volts (0 7 V). Find the momentum (in MeV/c) and kinetic energy (in

More information

Kinetic Energy: K = (γ - 1)mc 2 Rest Energy (includes internal kinetic and potential energy): E R mc 2

Kinetic Energy: K = (γ - 1)mc 2 Rest Energy (includes internal kinetic and potential energy): E R mc 2 Kinetic Energy: K = (γ - 1)mc 2 Rest Energy (includes internal kinetic and potential energy): E R mc 2 For an object moving in an inertial frame), Total energy : E = K + E R = γmc 2 Problem 1: A mosquito

More information

Lorentz Force. Acceleration of electrons due to the magnetic field gives rise to synchrotron radiation Lorentz force.

Lorentz Force. Acceleration of electrons due to the magnetic field gives rise to synchrotron radiation Lorentz force. Set 10: Synchrotron Lorentz Force Acceleration of electrons due to the magnetic field gives rise to synchrotron radiation Lorentz force 0 E x E y E z dp µ dτ = e c F µ νu ν, F µ E x 0 B z B y ν = E y B

More information

Modern Physics. Luis A. Anchordoqui. Department of Physics and Astronomy Lehman College, City University of New York. Lesson V October 1, 2015

Modern Physics. Luis A. Anchordoqui. Department of Physics and Astronomy Lehman College, City University of New York. Lesson V October 1, 2015 Modern Physics Luis A. Anchordoqui Department of Physics and Astronomy Lehman College, City University of New York Lesson V October 1, 2015 L. A. Anchordoqui (CUNY) Modern Physics 10-1-2015 1 / 20 Table

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 151 Lecture 15 Special Relativity (Chapter 7) What We Did Last Time Defined Lorentz transformation Linear transformation of 4-vectors that conserve the length in Minkowski space Derived

More information

Physics 202. Professor P. Q. Hung. 311B, Physics Building. Physics 202 p. 1/2

Physics 202. Professor P. Q. Hung. 311B, Physics Building. Physics 202 p. 1/2 Physics 202 p. 1/2 Physics 202 Professor P. Q. Hung 311B, Physics Building Physics 202 p. 2/2 Momentum in Special Classically, the momentum is defined as p = m v = m r t. We also learned that momentum

More information

Relativistic Kinematics Cont d

Relativistic Kinematics Cont d Phy489 Lecture 5 Relativistic Kinematics Cont d Last time discussed: Different (inertial) reference frames, Lorentz transformations Four-vector notation for relativistic kinematics, invariants Collisions

More information

Special Relativity. Christopher R. Prior. Accelerator Science and Technology Centre Rutherford Appleton Laboratory, U.K.

Special Relativity. Christopher R. Prior. Accelerator Science and Technology Centre Rutherford Appleton Laboratory, U.K. Special Relativity Christopher R. Prior Fellow and Tutor in Mathematics Trinity College, Oxford Accelerator Science and Technology Centre Rutherford Appleton Laboratory, U.K. The principle of special relativity

More information

RELATIVISTIC ENERGY AND MOMENTUM

RELATIVISTIC ENERGY AND MOMENTUM RELATIVISTIC ENERGY AND MOMENTUM Non-relativistically, the momentum and the energy of a free particle are related to its velocity v as p = mv, E = const + 1 2 mv2, (1) where m is the particle s mass. In

More information

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: Applications of Energy and Momentum Conservation; Albert Einstein 1879-1955 AnNouncements -Reading Assignment for Thursday, September 7th: chapter 2, section 2.8-2.9.

More information

Physics 280 Lecture 2

Physics 280 Lecture 2 Physics 280 Lecture 2 Summer 2016 Dr. Jones 1 1 Department of Physics Drexel University June 29, 2016 Objectives Review Lorentz Coordinate Transforms and principles of relativity Objectives Review Lorentz

More information

Slowing down the neutrons

Slowing down the neutrons Slowing down the neutrons Clearly, an obvious way to make a reactor work, and to make use of this characteristic of the 3 U(n,f) cross-section, is to slow down the fast, fission neutrons. This can be accomplished,

More information

Modern Physics Part 2: Special Relativity

Modern Physics Part 2: Special Relativity Modern Physics Part 2: Special Relativity Last modified: 23/08/2018 Links Relative Velocity Fluffy and the Tennis Ball Fluffy and the Car Headlights Special Relativity Relative Velocity Example 1 Example

More information

Lecture 3. Experimental Methods & Feynman Diagrams

Lecture 3. Experimental Methods & Feynman Diagrams Lecture 3 Experimental Methods & Feynman Diagrams Natural Units & the Planck Scale Review of Relativistic Kinematics Cross-Sections, Matrix Elements & Phase Space Decay Rates, Lifetimes & Branching Fractions

More information

Appendix A: Relativistic Kinematics

Appendix A: Relativistic Kinematics General Appendi A-1 4/9/015 Appendi A: Relativistic Kinematics In this appendi we review some of the calculations required to solve various high-energy collision problems using Special Relativity. 1 Contents

More information

Part A-type questions

Part A-type questions PHYS306: lecture 8 th February 008 Part A-type questions. You toss an apple horizontally at 8.7 m/s from a height of.6 m. Simultaneously, you drop a peach from the same height. How long does each take

More information

Selected Topics in Physics a lecture course for 1st year students by W.B. von Schlippe Spring Semester 2007

Selected Topics in Physics a lecture course for 1st year students by W.B. von Schlippe Spring Semester 2007 Selected Topics in Physics a lecture course for 1st year students by W.B. von Schlippe Spring Semester 2007 Lecture 7 1. Relativistic Mechanics Charged particle in magnetic field 2. Relativistic Kinematics

More information

Introduction. Classical vs Modern Physics. Classical Physics: High speeds Small (or very large) distances

Introduction. Classical vs Modern Physics. Classical Physics: High speeds Small (or very large) distances Introduction Classical vs Modern Physics High speeds Small (or very large) distances Classical Physics: Conservation laws: energy, momentum (linear & angular), charge Mechanics Newton s laws Electromagnetism

More information

Radiative Processes in Astrophysics

Radiative Processes in Astrophysics Radiative Processes in Astrophysics 6. Relativistic Covariance & Kinematics Eline Tolstoy http://www.astro.rug.nl/~etolstoy/astroa07/ Practise, practise, practise... mid-term, 31st may, 9.15-11am As we

More information

The Bohr Model of Hydrogen

The Bohr Model of Hydrogen The Bohr Model of Hydrogen Suppose you wanted to identify and measure the energy high energy photons. One way to do this is to make a calorimeter. The CMS experiment s electromagnetic calorimeter is made

More information

Massachusetts Institute of Technology Physics Department. Physics 8.20 IAP 2005 Special Relativity January 28, 2005 FINAL EXAM

Massachusetts Institute of Technology Physics Department. Physics 8.20 IAP 2005 Special Relativity January 28, 2005 FINAL EXAM Massachusetts Institute of Technology Physics Department Physics 8.20 IAP 2005 Special Relativity January 28, 2005 FINAL EXAM Instructions You have 2.5 hours for this test. Papers will be picked up promptly

More information

4-Vector Notation. Chris Clark September 5, 2006

4-Vector Notation. Chris Clark September 5, 2006 4-Vector Notation Chris Clark September 5, 2006 1 Lorentz Transformations We will assume that the reader is familiar with the Lorentz Transformations for a boost in the x direction x = γ(x vt) ȳ = y x

More information

Electrodynamics of Radiation Processes

Electrodynamics of Radiation Processes Electrodynamics of Radiation Processes 7. Emission from relativistic particles (contd) & Bremsstrahlung http://www.astro.rug.nl/~etolstoy/radproc/ Chapter 4: Rybicki&Lightman Sections 4.8, 4.9 Chapter

More information

Problem Set 3: Solutions

Problem Set 3: Solutions PH 53 / LeClair Spring 013 Problem Set 3: Solutions 1. In an experiment to find the value of h, light at wavelengths 18 and 431 nm were shone on a clean sodium surface. The potentials that stopped the

More information

Final Exam - Solutions PHYS/ECE Fall 2011

Final Exam - Solutions PHYS/ECE Fall 2011 Final Exam - Solutions PHYS/ECE 34 - Fall 211 Problem 1 Cosmic Rays The telescope array project in Millard County, UT can detect cosmic rays with energies up to E 1 2 ev. The cosmic rays are of unknown

More information

Physics 8.20 Special Relativity IAP 2008

Physics 8.20 Special Relativity IAP 2008 Physics 8.20 Special Relativity IAP 2008 Problem Set # 4 Solutions 1. Proper acceleration (4 points) Note: this problem and the next two ask you to work through the details of results derived in lecture.

More information

English CPH E-Book Theory of CPH Section 2 Experimental Foundation of CPH Theory Hossein Javadi

English CPH E-Book Theory of CPH Section 2 Experimental Foundation of CPH Theory Hossein Javadi English CPH E-Book Theory of CPH Section 2 Experimental Foundation of CPH Theory Hossein Javadi Javadi_hossein@hotmail.com Contains: Introduction Gravitational Red Shift Gravity and the Photon Mossbauer

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 5 Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 5 Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.033 October, 003 Problem Set 5 Solutions Problem A Flying Brick, Resnick & Halliday, #, page 7. (a) The length contraction factor along

More information

Lecture Notes on Relativity. Last updated 10/1/02 Pages 1 65 Lectures 1 10

Lecture Notes on Relativity. Last updated 10/1/02 Pages 1 65 Lectures 1 10 Lecture Notes on Relativity Last updated 10/1/02 Pages 1 65 Lectures 1 10 Special Relativity: Introduction Describes physics of fast motion i.e. when objects move relative to each other at very high speeds,

More information

Particles and Deep Inelastic Scattering

Particles and Deep Inelastic Scattering Particles and Deep Inelastic Scattering Heidi Schellman University HUGS - JLab - June 2010 June 2010 HUGS 1 Course Outline 1. Really basic stuff 2. How we detect particles 3. Basics of 2 2 scattering 4.

More information

Particle Physics Homework Assignment 3

Particle Physics Homework Assignment 3 Particle Physics Homework Assignment Dr. Costas Foudas January 7 Problem : The HERA accelerator collides GeV electrons with 92 GeV protons. I. Compute the centre of mass energy (total available energy

More information

Graduate Accelerator Physics. G. A. Krafft Jefferson Lab Old Dominion University Lecture 1

Graduate Accelerator Physics. G. A. Krafft Jefferson Lab Old Dominion University Lecture 1 Graduate Accelerator Physics G. A. Krafft Jefferson Lab Old Dominion University Lecture 1 Course Outline Course Content Introduction to Accelerators and Short Historical Overview Basic Units and Definitions

More information

Relativity Albert Einstein: Brownian motion. fi atoms. Photoelectric effect. fi Quantum Theory On the Electrodynamics of Moving Bodies

Relativity Albert Einstein: Brownian motion. fi atoms. Photoelectric effect. fi Quantum Theory On the Electrodynamics of Moving Bodies Relativity 1905 - Albert Einstein: Brownian motion fi atoms. Photoelectric effect. fi Quantum Theory On the Electrodynamics of Moving Bodies fi The Special Theory of Relativity The Luminiferous Ether Hypothesis:

More information

PH 253 Final Exam: Solution

PH 253 Final Exam: Solution PH 53 Final Exam: Solution 1. A particle of mass m is confined to a one-dimensional box of width L, that is, the potential energy of the particle is infinite everywhere except in the interval 0

More information

Lecture 6-4 momentum transfer and the kinematics of two body scattering

Lecture 6-4 momentum transfer and the kinematics of two body scattering Lecture 6-4 momentum transfer and the kinematics of two body scattering E. Daw March 26, 2012 1 Review of Lecture 5 Last time we figured out the physical meaning of the square of the total 4 momentum in

More information

The main text for the course is AM Steane, Relativity Made Relatively Easy, Oxford University

The main text for the course is AM Steane, Relativity Made Relatively Easy, Oxford University Chapter 1 Introduction (Version 1.0, 2 Oct 2017) These notes are in the process of construction. corrections, are welcome by the author. Comments, clarifications, and especially 1.1 Books The main text

More information

2.1 The Ether and the Michelson-Morley Experiment

2.1 The Ether and the Michelson-Morley Experiment Chapter. Special Relativity Notes: Some material presented in this chapter is taken The Feynman Lectures on Physics, Vol. I by R. P. Feynman, R. B. Leighton, and M. Sands, Chap. 15 (1963, Addison-Wesley)..1

More information

Physics 2D Lecture Slides Jan 15. Vivek Sharma UCSD Physics

Physics 2D Lecture Slides Jan 15. Vivek Sharma UCSD Physics Physics D Lecture Slides Jan 15 Vivek Sharma UCSD Physics Relativistic Momentum and Revised Newton s Laws and the Special theory of relativity: Example : p= mu Need to generalize the laws of Mechanics

More information

More Energetics of Alpha Decay The energy released in decay, Q, is determined by the difference in mass of the parent nucleus and the decay products, which include the daughter nucleus and the particle.

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-302 Dr. E. Rizvi Lecture 13 - Gamma Radiation Material For This Lecture Gamma decay: Definition Quantum interpretation Uses of gamma spectroscopy 2 Turn to γ decay

More information

(10%) (c) What other peaks can appear in the pulse-height spectrum if the detector were not small? Give a sketch and explain briefly.

(10%) (c) What other peaks can appear in the pulse-height spectrum if the detector were not small? Give a sketch and explain briefly. Sample questions for Quiz 3, 22.101 (Fall 2006) Following questions were taken from quizzes given in previous years by S. Yip. They are meant to give you an idea of the kind of questions (what was expected

More information

Part II Particle and Nuclear Physics Examples Sheet 1

Part II Particle and Nuclear Physics Examples Sheet 1 T. Potter Lent/Easter Terms 2017 Part II Particle and Nuclear Physics Examples Sheet 1 Matter and Forces 1. (A) Explain the meaning of the terms quark, lepton, hadron, nucleus and boson as used in the

More information

Fundamental Concepts of Particle Accelerators III : High-Energy Beam Dynamics (2) Koji TAKATA KEK. Accelerator Course, Sokendai. Second Term, JFY2012

Fundamental Concepts of Particle Accelerators III : High-Energy Beam Dynamics (2) Koji TAKATA KEK. Accelerator Course, Sokendai. Second Term, JFY2012 .... Fundamental Concepts of Particle Accelerators III : High-Energy Beam Dynamics (2) Koji TAKATA KEK koji.takata@kek.jp http://research.kek.jp/people/takata/home.html Accelerator Course, Sokendai Second

More information

Physics 161 Homework 2 - Solutions Wednesday August 31, 2011

Physics 161 Homework 2 - Solutions Wednesday August 31, 2011 Physics 161 Homework 2 - s Wednesday August 31, 2011 Make sure your name is on every page, and please box your final answer. Because we will be giving partial credit, be sure to attempt all the problems,

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-30 Dr. E. Rizvi Lecture 5 - Quantum Statistics & Kinematics Nuclear Reaction Types Nuclear reactions are often written as: a+x Y+b for accelerated projectile a colliding

More information

Astrophysical Radiation Processes

Astrophysical Radiation Processes PHY3145 Topics in Theoretical Physics Astrophysical Radiation Processes 3: Relativistic effects I Dr. J. Hatchell, Physics 407, J.Hatchell@exeter.ac.uk Course structure 1. Radiation basics. Radiative transfer.

More information

LIGHT and SPECIAL RELATIVITY RELATIVISTIC MASS, MOMENTUM and ENERGY

LIGHT and SPECIAL RELATIVITY RELATIVISTIC MASS, MOMENTUM and ENERGY VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT LIGHT and SPECIAL RELATIVITY RELATIVISTIC MASS, MOMENTUM and ENERGY Einstein s 1 st postulate states that the laws of physics are the same for all observers

More information

Bethe-Block. Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max

Bethe-Block. Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max Bethe-Block Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max can be used for PID but typically de/dx depend only on β (given a particle

More information

Department of Natural Sciences Clayton State University. Physics 3650 Quiz 1

Department of Natural Sciences Clayton State University. Physics 3650 Quiz 1 Physics 3650 Quiz 1 October 1, 009 Name SOLUTION 1. If the displacement of the object, x, is related to velocity, v, according to the relation x = A v, the constant, A, has the dimension of which of the

More information

Relativistic Dynamics

Relativistic Dynamics Chapter 13 Relativistic Dynamics 13.1 Relativistic Action As stated in Section 4.4, all of dynamics is derived from the principle of least action. Thus it is our chore to find a suitable action to produce

More information

a) quantum mechanics b) special relativity c) general relativity d) Newtonian physics e) Maxwellian electromagnetism

a) quantum mechanics b) special relativity c) general relativity d) Newtonian physics e) Maxwellian electromagnetism 1 Modern Physics: Physics 305, Section 1 NAME: Homework 3: Photons Homeworks are due as posted on the course web site. They are NOT handed in. The student reports that it is completed and receives one

More information

Preliminaries. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 January 6, 2011

Preliminaries. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 January 6, 2011 Preliminaries Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 January 6, 2011 NUCS 342 (Lecture 0) January 6, 2011 1 / 21 Outline 1 Useful links NUCS 342 (Lecture 0) January

More information

Rb, which had been compressed to a density of 1013

Rb, which had been compressed to a density of 1013 Modern Physics Study Questions for the Spring 2018 Departmental Exam December 3, 2017 1. An electron is initially at rest in a uniform electric field E in the negative y direction and a uniform magnetic

More information

energy loss Ionization + excitation of atomic energy levels Mean energy loss rate de /dx proportional to (electric charge) 2 of incident particle

energy loss Ionization + excitation of atomic energy levels Mean energy loss rate de /dx proportional to (electric charge) 2 of incident particle Lecture 4 Particle physics processes - particles are small, light, energetic à processes described by quantum mechanics and relativity à processes are probabilistic, i.e., we cannot know the outcome of

More information

(Special) Relativity. Werner Herr, CERN. (

(Special) Relativity. Werner Herr, CERN. ( (Special) Relativity Werner Herr, CERN (http://cern.ch/werner.herr/cas2014/lectures/relativity.pdf) Why Special Relativity? Most beams are relativistic (or at least fast) Strong implications for beam dynamics:

More information

Physics 228. Momentum and Force Kinetic Energy Relativistic Mass and Rest Mass Photoelectric Effect Energy and Momentum of Photons

Physics 228. Momentum and Force Kinetic Energy Relativistic Mass and Rest Mass Photoelectric Effect Energy and Momentum of Photons Physics 228 Momentum and Force Kinetic Energy Relativistic Mass and Rest Mass Photoelectric Effect Energy and Momentum of Photons Lorentz Transformations vs. Rotations The Lorentz transform is similar

More information

Interaction of Ionizing Radiation with Matter

Interaction of Ionizing Radiation with Matter Type of radiation charged particles photonen neutronen Uncharged particles Charged particles electrons (β - ) He 2+ (α), H + (p) D + (d) Recoil nuclides Fission fragments Interaction of ionizing radiation

More information

The Theory of Relativity

The Theory of Relativity At end of 20th century, scientists knew from Maxwell s E/M equations that light traveled as a wave. What medium does light travel through? There can be no doubt that the interplanetary and interstellar

More information

1 The pion bump in the gamma reay flux

1 The pion bump in the gamma reay flux 1 The pion bump in the gamma reay flux Calculation of the gamma ray spectrum generated by an hadronic mechanism (that is by π decay). A pion of energy E π generated a flat spectrum between kinematical

More information

Mechanics and Special Relativity (MAPH10030) Assignment 4

Mechanics and Special Relativity (MAPH10030) Assignment 4 MAPH0030) Assignment 4 Issue Date: Tuesday 3 April 00 Due Date: Wednesday April 00 Collection Date: Friday 3 April 00 In these questions, you may use the following conversion factor relating the electron-volt

More information

Particles and Waves Particles Waves

Particles and Waves Particles Waves Particles and Waves Particles Discrete and occupy space Exist in only one location at a time Position and velocity can be determined with infinite accuracy Interact by collisions, scattering. Waves Extended,

More information

Photons in the universe. Indian Institute of Technology Ropar

Photons in the universe. Indian Institute of Technology Ropar Photons in the universe Photons in the universe Element production on the sun Spectral lines of hydrogen absorption spectrum absorption hydrogen gas Hydrogen emission spectrum Element production on the

More information

Applied Nuclear Physics (Fall 2006) Lecture 19 (11/22/06) Gamma Interactions: Compton Scattering

Applied Nuclear Physics (Fall 2006) Lecture 19 (11/22/06) Gamma Interactions: Compton Scattering .101 Applied Nuclear Physics (Fall 006) Lecture 19 (11//06) Gamma Interactions: Compton Scattering References: R. D. Evans, Atomic Nucleus (McGraw-Hill New York, 1955), Chaps 3 5.. W. E. Meyerhof, Elements

More information

Part III. Interaction with Single Electrons - Plane Wave Orbits

Part III. Interaction with Single Electrons - Plane Wave Orbits Part III - Orbits 52 / 115 3 Motion of an Electron in an Electromagnetic 53 / 115 Single electron motion in EM plane wave Electron momentum in electromagnetic wave with fields E and B given by Lorentz

More information

Units. In this lecture, natural units will be used:

Units. In this lecture, natural units will be used: Kinematics Reminder: Lorentz-transformations Four-vectors, scalar-products and the metric Phase-space integration Two-body decays Scattering The role of the beam-axis in collider experiments Units In this

More information

(in 60 minutes...) With very strong emphasis on electrodynamics and accelerators. Werner Herr

(in 60 minutes...) With very strong emphasis on electrodynamics and accelerators. Werner Herr (in 60 minutes...) With very strong emphasis on electrodynamics and accelerators Werner Herr Why Special Relativity? because we have problems... We have to deal with moving charges in accelerators Electromagnetism

More information

Chapter 2: The Special Theory of Relativity. A reference fram is inertial if Newton s laws are valid in that frame.

Chapter 2: The Special Theory of Relativity. A reference fram is inertial if Newton s laws are valid in that frame. Chapter 2: The Special Theory of Relativity What is a reference frame? A reference fram is inertial if Newton s laws are valid in that frame. If Newton s laws are valid in one reference frame, they are

More information

Physics H7C Midterm 2 Solutions

Physics H7C Midterm 2 Solutions Physics H7C Midterm 2 Solutions Eric Dodds 21 November, 2013 1 Qualitative questions a) The angular resolution of a space based telescope is limited by the wave properties of light, that is, by diffraction.

More information

Compound and heavy-ion reactions

Compound and heavy-ion reactions Compound and heavy-ion reactions Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 March 23, 2011 NUCS 342 (Lecture 24) March 23, 2011 1 / 32 Outline 1 Density of states in a

More information

Physics 111 Homework Solutions Week #9 - Thursday

Physics 111 Homework Solutions Week #9 - Thursday Physics 111 Homework Solutions Week #9 - Thursday Monday, March 1, 2010 Chapter 24 241 Based on special relativity we know that as a particle with mass travels near the speed of light its mass increases

More information

8.20 MIT Introduction to Special Relativity IAP 2005 Tentative Outline

8.20 MIT Introduction to Special Relativity IAP 2005 Tentative Outline 8.20 MIT Introduction to Special Relativity IAP 2005 Tentative Outline 1 Main Headings I Introduction and relativity pre Einstein II Einstein s principle of relativity and a new concept of spacetime III

More information

Nuclear Physics. (PHY-231) Dr C. M. Cormack. Nuclear Physics This Lecture

Nuclear Physics. (PHY-231) Dr C. M. Cormack. Nuclear Physics This Lecture Nuclear Physics (PHY-31) Dr C. M. Cormack 11 Nuclear Physics This Lecture This Lecture We will discuss an important effect in nuclear spectroscopy The Mössbauer Effect and its applications in technology

More information

Lecture 5 - Ultra high energy cosmic rays and the GZK cutoff

Lecture 5 - Ultra high energy cosmic rays and the GZK cutoff Lecture 5 - Ultra high energy cosmic rays and the GZK cutoff E. Daw April 4, 2012 1 Review of Lecture 4 Last time we studied use of 4 vectors, particularly the 4 momentum, in relativity calculations. We

More information

PHY-494: Applied Relativity Lecture 5 Relativistic Particle Kinematics

PHY-494: Applied Relativity Lecture 5 Relativistic Particle Kinematics PHY-494: Applied Relativity ecture 5 Relativistic Particle Kinematics Richard J. Jacob February, 003. Relativistic Two-body Decay.. π 0 Decay ets return to the decay of an object into two daughter objects.

More information

1 Stellar Energy Generation Physics background

1 Stellar Energy Generation Physics background 1 Stellar Energy Generation Physics background 1.1 Relevant relativity synopsis We start with a review of some basic relations from special relativity. The mechanical energy E of a particle of rest mass

More information

λ φ φ = hc λ ev stop φ = λ φ and now ev stop λ ' = Physics 220 Homework #2 Spring 2016 Due Monday 4/11/16

λ φ φ = hc λ ev stop φ = λ φ and now ev stop λ ' = Physics 220 Homework #2 Spring 2016 Due Monday 4/11/16 Physics 0 Homework # Spring 06 Due Monday 4//6. Photons with a wavelength λ = 40nm are used to eject electrons from a metallic cathode (the emitter) by the photoelectric effect. The electrons are prevented

More information

1st Year Relativity - Notes on Lectures 3, 4 & 5

1st Year Relativity - Notes on Lectures 3, 4 & 5 1st Year Relativity - Notes on Lectures 3, 4 & 5 Lecture Three 1. Now lets look at two very important consequences of the LTs, Lorentz-Fitzgerald contraction and time dilation. We ll start with time dilation.

More information

Mossbauer Effect and Spectroscopy. Kishan Sinha Xu Group Department of Physics and Astronomy University of Nebraska-Lincoln

Mossbauer Effect and Spectroscopy. Kishan Sinha Xu Group Department of Physics and Astronomy University of Nebraska-Lincoln Mossbauer Effect and Spectroscopy Kishan Sinha Xu Group Department of Physics and Astronomy University of Nebraska-Lincoln Emission E R γ-photon E transition hν = E transition - E R Photon does not carry

More information

1.4 The Compton Effect

1.4 The Compton Effect 1.4 The Compton Effect The Nobel Prize in Physics, 1927: jointly-awarded to Arthur Holly Compton (figure 9), for his discovery of the effect named after him. Figure 9: Arthur Holly Compton (1892 1962):

More information

Problems of Chapter 1: Introduction

Problems of Chapter 1: Introduction Chapter 1 Problems of Chapter 1: Introduction 1.1 Problem 1 1: Luminosity of Gaussian bunches a) If the bunches can be described by Gaussian ellipsoids with ( ( )) x 2 ρ exp 2σx 2 + y2 2σy 2 + z2 2σz 2,

More information

The Pound-Rebka Experiment as Disproof of Einstein s General Relativity Gravity Theory.

The Pound-Rebka Experiment as Disproof of Einstein s General Relativity Gravity Theory. The Pound-Rebka Experiment as Disproof of Einstein s General Relativity Gravity Theory. By James Carter When Einstein first used his equations to predict the transverse gravitational red shift of photons

More information

Relativity II. Home Work Solutions

Relativity II. Home Work Solutions Chapter 2 Relativity II. Home Work Solutions 2.1 Problem 2.4 (In the text book) A charged particle moves along a straight line in a uniform electric field E with a speed v. If the motion and the electric

More information

Accelerator Physics. G. A. Krafft Jefferson Lab Old Dominion University Lecture 2

Accelerator Physics. G. A. Krafft Jefferson Lab Old Dominion University Lecture 2 Accelerator Physics G. A. Krafft Jefferson Lab Old Dominion University Lecture 2 Four-vectors Four-vector transformation under z boost Lorentz Transformation v ' v v v v 0 0 3 ' 1 1 ' v v 2 2 v ' v v 3

More information

The ATLAS Experiment and the CERN Large Hadron Collider

The ATLAS Experiment and the CERN Large Hadron Collider The ATLAS Experiment and the CERN Large Hadron Collider HEP101-4 February 20, 2012 Al Goshaw 1 HEP 101 Today Introduction to HEP units Particles created in high energy collisions What can be measured in

More information

Nuclear Fusion and Radiation

Nuclear Fusion and Radiation Nuclear Fusion and Radiation Lecture 2 (Meetings 3 & 4) Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Nuclear Fusion and Radiation p. 1/41 Modern Physics Concepts

More information

Physics 121 Hour Exam #5 60 Minutes, Take Home, Closed Book

Physics 121 Hour Exam #5 60 Minutes, Take Home, Closed Book Physics 121 Hour Exam #5 60 Minutes, Take Home, Closed Book What s different about this exam? ˆ This is a 60-minute exam (like exams 1 through 3, but not like exam 4). The standard exam instructions: This

More information

Lecture: Lorentz Invariant Dynamics

Lecture: Lorentz Invariant Dynamics Chapter 5 Lecture: Lorentz Invariant Dynamics In the preceding chapter we introduced the Minkowski metric and covariance with respect to Lorentz transformations between inertial systems. This was shown

More information

[variable] = units (or dimension) of variable.

[variable] = units (or dimension) of variable. Dimensional Analysis Zoe Wyatt wyatt.zoe@gmail.com with help from Emanuel Malek Understanding units usually makes physics much easier to understand. It also gives a good method of checking if an answer

More information

Special Relativity. Chris Prior. Trinity College Oxford. and

Special Relativity. Chris Prior. Trinity College Oxford. and Special Relativity Chris Prior ASTeC RAL Trinity College Oxford and 1 Overview The principle of special relativity Lorentz transformation and consequences Space-time 4-vectors: position, velocity, momentum,

More information