HOMEWORK SOLUTIONS MATH 1910 Sections 6.1, 6.2, 6.3 Fall 2016

Size: px
Start display at page:

Download "HOMEWORK SOLUTIONS MATH 1910 Sections 6.1, 6.2, 6.3 Fall 2016"

Transcription

1 HOMEWORK SOLUTIONS MATH 191 Sections.1,.,. Fall 1 Problem.1.19 Find the area of the shaded region. SOLUTION. The equation of the line passing through ( π, is given by y 1() = π, and the equation of the line passing through ( π, 1 ) is given by y () = The area of the region to the left of = π is π (y 1 () y ()) d = π ( π π π ) d = ( π = π π π 4π = ( 1)π. 48 And the area of the region to the right of = π is π/ π/ (cos ) d = (sin π 4π ) π/ π/ 4π ) = 8 8 π. 1 π Thus, the total area of the region is ( 1)π π 1 = ( )π. 4 Problem Find the area of the region lying to the right of = y + 4y and to the left of = y + 8. SOLUTION. To figure out where the two curves intersect, we set y + 4y = y + 8. This yields = y + y = (y 5)(y + ), so the curves intersect at y = 5 and y =. Thus, the area of the region is given by 5 ((y + 8) (y + 4y )) dy = 5 ( y y + ) dy = ( 1 y 1 y + y) 5 =

2 Problem.1.48 Sketch the region enclosed by the curves and compute its area as an integral along the - or y-ais: y = sin, y =, π 9π SOLUTION. To compute the area enclosed by the curves, first we need to find where the two curves intersect, in the given interval. So we set = sin ; and since is nonzero on the interval [π, 9π ], this equation becomes = sin. Since = sin θ has solutions θ = nπ for integers n, setting θ = shows that sin has solutions = n π for integers n. The only such solutions in [π, 9π ] are = π, 4π, 9π Now, we need to see which curve is above the other for the intervals [π, 4π ] and [4π, 9π ], respectively. To do this, we choose a point in the interior of each interval, and check if sin or equal to, or less than or equal to, : We choose 9 4 π in [π, 4π ]. Then sin 9 4 π 9 4 π = sin( π ) π = 1 π is greater than Since these curves are continuous, and do not intersect in (π, 4π ), we know that sin for all in [π, 4π ] So the curve y = sin is below the curve y = on the interval [π, 4π ]. Similar work will show that the curve y = is below the curve y = sin on the interval [4π, 9π ] (for eample, you can plug in = 5π 4 ). Thus, the area A enclosed by the two curves is given by 4π A = ( sin 9π ) d + ( sin ) d 4π π To evaluate this integral, choose u = = 1/. Then du = 1 1/ d = 1 d, so the integral becomes 1 4π A = π ( sin π ) d = 4π π = cos u cos u = = 8 sin 9π d + π π π π π sin u du + sin u du π.1.48

3 Problem.1. Find the line y = m that divides the area under the curve y = (1 ) over [, 1] into two regions of equal area. SOLUTION. First note that the area under the curve y = (1 ) is 1 (1 ) d = 1 ( ) d = ( 1 1 ) 1 = 1 1 = 1. Now, the curves y = m and y = (1 ) intersect when m = (1 ): at = or at = 1 m. [Note that if m > 1, then we d have an intersection at a negative value. In the contet of our problem, this is nonsense: the line with a such a slope passes above the curve y = (1 ) on the interval [, 1], and therefore cannot divide the region into two parts. So a valid solution requires that m 1.] So the area A of the region enclosed by the curves y = m and y = (1 ) is given by A = 1 m ((1 ) m) d = 1 m ((1 m) ) d = (1 m) 1 1 m = 1 (1 m) Setting A = 1 1 = 1 1, we get 1 (1 m) = 1 1, which requires m = 1 ( 1 )1/. Problem Find the volume of liquid needed to fill a sphere of radius R to height h. SOLUTION. The horizontal cross section of the sphere at a height y above the sphere s lowest point is a circle. Its radius is r(y) = R (R y), by the Pythagorean theorem. So the area A(y) of such a cross section at height y is given by A(y) = π(r(y)) = π(r (R y) ). To find the volume V of the region, we integrate these cross sectional areas for heights y ranging from to h: that is, V = h π((r (R y) )) dy = π h (Ry y ) dy = π(ry y ) h = π(rh h ). Problem....5 A plane inclined at an angle of 45 degrees passes through a diameter of the base of a cylinder of radius r. Find the volume of the region within the cylinder and below the plane.

4 SOLUTION. Place the origin at the center of the base of the cylinder, with the -ais running perpendicularly to the diameter defined by the plane intersecting the cylinder. The point = r should lie directly below the highest point of the intersection of the plane and cylinder, as we ve defined things here. Now, for each in [, r], the vertical cross section taken perpendicular to the -ais is a rectangle of base r and height. Thus, the volume V of the region is V r r d Choose u = r. Then du = d, so our integral becomes V r r d = u 1/ du = r u/ = r r. Problem..1.. The solid S in Figure 5 is the intersection of two cylinders of radius r whose aes are perpendicular. (a) The horizontal cross section of each cylinder at distance y from the central ais is a rectangular strip. Find the strip s width. (b) Find the area of the horizontal cross section of S at distance y. (c) Find the volume of S as a function of r. SOLUTION. (a) Since our strip is a distance y above the central ais, and the radius of our cylinder is r, the Pythagorean theorem tells us that the width of the strip is r y. (b) The horizontal cross section of S at distance y from the central ais is the intersection of the two rectangular strips at distance y from the central ais, from each cylinder. Since each strip has width r y, and the two rectangular strips intersect at right angles, this horizontal cross section is a square of width r y. Thus, the area of the horizontal cross section of S at distance y is ( r y ) = 4(r y ). (c) Since y ranges from r to r, the volume V of S is given by V = r r 4(r y ) dy = 4(r y 1 y ) r r = 1 r. Problem

5 Let v(r) be the velocity of blood in an arterial capillary of radius R = m. Use Poiseuille s Law (Eample ) with k = 1 /(meter-seconds) to determine the velocity at the center of the capillary, and the flow rate (use correct units). SOLUTION. Poiseuille s Law states that v(r) = k(r r ), but with R and r measured in cm and k measured in 1/(centimeter-seconds). So R = m = cm = 4 1 cm, and k = 1 /(m-s) = 1 /(1cm-s) = 1 4 /(cm-s). Now, the velocity at the center of the capillary is v() = kr = 1 4 (4 1 ) = 1 1 cm/s =.1m/s. The flow rate Q is given by Q = π R rv(r) dr = π R rk(r r ) dr = kπ( R r r4 4 ) R in cm /s. = πk R4 4 = π(14 )(4 1 1 ) = 1.8π 1, This is the same as 1.8π 1 1 m /s...8 Problem..5 An object with zero initial velocity accelerates at a constant rate of 1m/s. Find the average velocity during the first 15 s. SOLUTION. An acceleration a(t) = 1 gives v(t) = 1t + c for some constant c and zero initial velocity implies c =. Thus the average velocity is given by t dt = 1 15 t = 75m/s. Problem..58 What is the average area of the circles whose radii vary from to R? SOLUTION. The average area is 1 R R πr dr = π R r R = 1 πr. Problem..1 Consider the functions y =, y = +. (a) Sketch the region enclosed by the curves. (b) Describe the cross section perpendicular to the ais located at. (c) Find the volume of the solid obtained by rotating the region about the ais

6 SOLUTION. (a) Setting = + yields = = ( )( + 1) The two curves therefore intersect at = 1 and =. The region enclosed by the two curves is shown in the figure below. (b) When the region is rotated about the ais, each cross section is a washer with outer radius R = + and inner radius r =. (c) The volume of the solid of revolution is ( π ( + ) ( ) ) d = π ( )d 1 1 ( 4 = π ) = 188π Problem.. Find the volume of the solid obtained by rotating the region enclosed by = sin(y) and = about the y-ais over the interval y π SOLUTION. Graphing the region yields the following:

7 Then rotating about the y-ais gives disks of radius sin(y), so the volume is: π πr dy = π π sin(y)dy = π( cos(y)) π = π.. Problem..5 The torus is obtained by rotating the circle ( a) + y = b around the y-ais (assume that a > b). Show that it has volume π ab SOLUTION. The image of the torus is as follows: Rotating the region enclosed by the circle ( a) + y = b about the Y ais produces a torus whose cross sections are washers with outer radius R = a + b y and inner radius r = a b y. The volume of the torus is then b ( ( π a + ) b y (a ) ) b y dy = 4aπ b b b b y dy. Now, the remaining definite integral is one-half the area of a circle of radius B; therefore, the volume of the torus is 4aπ. 1 πb = π ab..5 Problem..59 A bead is formed by removing a cylinder of radius r from the center of a sphere of radius R. Find the volume of the bead with r = 1 and R =. 7

8 SOLUTION. The equation of the outer circle is + y = = 4 and the inner cylinder intersects the sphere when y = ±. Eachcross section of the bead is a washer with outer radius 4 y and inner radius 1, so the volume is given by ( ( ) π 4 y 1 ) dy = π ( y )dy = 4π..59 8

Volume: The Disk Method. Using the integral to find volume.

Volume: The Disk Method. Using the integral to find volume. Volume: The Disk Method Using the integral to find volume. If a region in a plane is revolved about a line, the resulting solid is a solid of revolution and the line is called the axis of revolution. y

More information

Technique 1: Volumes by Slicing

Technique 1: Volumes by Slicing Finding Volumes of Solids We have used integrals to find the areas of regions under curves; it may not seem obvious at first, but we can actually use similar methods to find volumes of certain types of

More information

HOMEWORK SOLUTIONS MATH 1910 Sections 6.4, 6.5, 7.1 Fall 2016

HOMEWORK SOLUTIONS MATH 1910 Sections 6.4, 6.5, 7.1 Fall 2016 HOMEWORK SOLUTIONS MATH 9 Sections 6.4, 6.5, 7. Fall 6 Problem 6.4. Sketch the region enclosed by x = 4 y +, x = 4y, and y =. Use the Shell Method to calculate the volume of rotation about the x-axis SOLUTION.

More information

Math 20C Homework 2 Partial Solutions

Math 20C Homework 2 Partial Solutions Math 2C Homework 2 Partial Solutions Problem 1 (12.4.14). Calculate (j k) (j + k). Solution. The basic properties of the cross product are found in Theorem 2 of Section 12.4. From these properties, we

More information

Math 75B Practice Midterm III Solutions Chapter 6 (Stewart) Multiple Choice. Circle the letter of the best answer.

Math 75B Practice Midterm III Solutions Chapter 6 (Stewart) Multiple Choice. Circle the letter of the best answer. Math 75B Practice Midterm III Solutions Chapter 6 Stewart) English system formulas: Metric system formulas: ft. = in. F = m a 58 ft. = mi. g = 9.8 m/s 6 oz. = lb. cm = m Weight of water: ω = 6.5 lb./ft.

More information

PDF Created with deskpdf PDF Writer - Trial ::

PDF Created with deskpdf PDF Writer - Trial :: y 3 5 Graph of f ' x 76. The graph of f ', the derivative f, is shown above for x 5. n what intervals is f increasing? (A) [, ] only (B) [, 3] (C) [3, 5] only (D) [0,.5] and [3, 5] (E) [, ], [, ], and

More information

1985 AP Calculus AB: Section I

1985 AP Calculus AB: Section I 985 AP Calculus AB: Section I 9 Minutes No Calculator Notes: () In this eamination, ln denotes the natural logarithm of (that is, logarithm to the base e). () Unless otherwise specified, the domain of

More information

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61 Integrals D. DeTurck University of Pennsylvania January 1, 2018 D. DeTurck Math 104 002 2018A: Integrals 1 / 61 Integrals Start with dx this means a little bit of x or a little change in x If we add up

More information

Solutions to Homework 1

Solutions to Homework 1 Solutions to Homework 1 1. Let f(x) = x 2, a = 1, b = 2, and let x = a = 1, x 1 = 1.1, x 2 = 1.2, x 3 = 1.4, x 4 = b = 2. Let P = (x,..., x 4 ), so that P is a partition of the interval [1, 2]. List the

More information

LESSON 14: VOLUME OF SOLIDS OF REVOLUTION SEPTEMBER 27, 2017

LESSON 14: VOLUME OF SOLIDS OF REVOLUTION SEPTEMBER 27, 2017 LESSON 4: VOLUME OF SOLIDS OF REVOLUTION SEPTEMBER 27, 27 We continue to expand our understanding of solids of revolution. The key takeaway from today s lesson is that finding the volume of a solid of

More information

The region enclosed by the curve of f and the x-axis is rotated 360 about the x-axis. Find the volume of the solid formed.

The region enclosed by the curve of f and the x-axis is rotated 360 about the x-axis. Find the volume of the solid formed. Section A ln. Let g() =, for > 0. ln Use the quotient rule to show that g ( ). 3 (b) The graph of g has a maimum point at A. Find the -coordinate of A. (Total 7 marks) 6. Let h() =. Find h (0). cos 3.

More information

Math 259 Winter Solutions to Homework # We will substitute for x and y in the linear equation and then solve for r. x + y = 9.

Math 259 Winter Solutions to Homework # We will substitute for x and y in the linear equation and then solve for r. x + y = 9. Math 59 Winter 9 Solutions to Homework Problems from Pages 5-5 (Section 9.) 18. We will substitute for x and y in the linear equation and then solve for r. x + y = 9 r cos(θ) + r sin(θ) = 9 r (cos(θ) +

More information

Volume of Solid of Known Cross-Sections

Volume of Solid of Known Cross-Sections Volume of Solid of Known Cross-Sections Problem: To find the volume of a given solid S. What do we know about the solid? Suppose we are told what the cross-sections perpendicular to some axis are. Figure:

More information

Green s Theorem. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Green s Theorem

Green s Theorem. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Green s Theorem Green s Theorem MATH 311, alculus III J. obert Buchanan Department of Mathematics Fall 2011 Main Idea Main idea: the line integral around a positively oriented, simple closed curve is related to a double

More information

x+1 e 2t dt. h(x) := Find the equation of the tangent line to y = h(x) at x = 0.

x+1 e 2t dt. h(x) := Find the equation of the tangent line to y = h(x) at x = 0. Math Sample final problems Here are some problems that appeared on past Math exams. Note that you will be given a table of Z-scores for the standard normal distribution on the test. Don t forget to have

More information

Tuesday, September 29, Page 453. Problem 5

Tuesday, September 29, Page 453. Problem 5 Tuesday, September 9, 15 Page 5 Problem 5 Problem. Set up and evaluate the integral that gives the volume of the solid formed by revolving the region bounded by y = x, y = x 5 about the x-axis. Solution.

More information

Math 140 Final Sample A Solutions. Tyrone Crisp

Math 140 Final Sample A Solutions. Tyrone Crisp Math 4 Final Sample A Solutions Tyrone Crisp (B) Direct substitution gives, so the limit is infinite. When is close to, but greater than,, the numerator is negative while the denominator is positive. So

More information

Chapter 6 Some Applications of the Integral

Chapter 6 Some Applications of the Integral Chapter 6 Some Applications of the Integral Section 6.1 More on Area a. Representative Rectangle b. Vertical Separation c. Example d. Integration with Respect to y e. Example Section 6.2 Volume by Parallel

More information

MATH 32A: MIDTERM 1 REVIEW. 1. Vectors. v v = 1 22

MATH 32A: MIDTERM 1 REVIEW. 1. Vectors. v v = 1 22 MATH 3A: MIDTERM 1 REVIEW JOE HUGHES 1. Let v = 3,, 3. a. Find e v. Solution: v = 9 + 4 + 9 =, so 1. Vectors e v = 1 v v = 1 3,, 3 b. Find the vectors parallel to v which lie on the sphere of radius two

More information

2) ( 8 points) The point 1/4 of the way from (1, 3, 1) and (7, 9, 9) is

2) ( 8 points) The point 1/4 of the way from (1, 3, 1) and (7, 9, 9) is MATH 6 FALL 6 FIRST EXAM SEPTEMBER 8, 6 SOLUTIONS ) ( points) The center and the radius of the sphere given by x + y + z = x + 3y are A) Center (, 3/, ) and radius 3/ B) Center (, 3/, ) and radius 3/ C)

More information

Volumes of Solids of Revolution. We revolve this curve about the x-axis and create a solid of revolution.

Volumes of Solids of Revolution. We revolve this curve about the x-axis and create a solid of revolution. Volumes of Solids of Revolution Consider the function ( ) from a = to b = 9. 5 6 7 8 9 We revolve this curve about the x-axis and create a solid of revolution. - 5 6 7 8 9 - - - We want to find the volume

More information

f x and the x axis on an interval from x a and

f x and the x axis on an interval from x a and Unit 6: Chapter 8 Areas and Volumes & Density Functions Part 1: Areas To find the area bounded by a function bwe use the integral: f d b a b 0 f d f d. a b a f and the ais on an interval from a and. This

More information

MCB4UW Handout 7.6. Comparison of the Disk/Washer and Shell Methods. V f x g x. V f y g y

MCB4UW Handout 7.6. Comparison of the Disk/Washer and Shell Methods. V f x g x. V f y g y MCBUW Handout 7.6 Comparison of the Disk/Washer and Shell Methods Method Ais of Formula Notes aout the Revolution Representative Rectangle a Disk Method -ais V f d -ais a V g d Washer Method -ais a V f

More information

and y c from x 0 to x 1

and y c from x 0 to x 1 Math 44 Activity 9 (Due by end of class August 6). Find the value of c, c, that minimizes the volume of the solid generated by revolving the region between the graphs of y 4 and y c from to about the line

More information

is the intuition: the derivative tells us the change in output y (from f(b)) in response to a change of input x at x = b.

is the intuition: the derivative tells us the change in output y (from f(b)) in response to a change of input x at x = b. Uses of differentials to estimate errors. Recall the derivative notation df d is the intuition: the derivative tells us the change in output y (from f(b)) in response to a change of input at = b. Eamples.

More information

14.1. Multiple Integration. Iterated Integrals and Area in the Plane. Iterated Integrals. Iterated Integrals. MAC2313 Calculus III - Chapter 14

14.1. Multiple Integration. Iterated Integrals and Area in the Plane. Iterated Integrals. Iterated Integrals. MAC2313 Calculus III - Chapter 14 14 Multiple Integration 14.1 Iterated Integrals and Area in the Plane Objectives Evaluate an iterated integral. Use an iterated integral to find the area of a plane region. Copyright Cengage Learning.

More information

Review sheet Final Exam Math 140 Calculus I Fall 2015 UMass Boston

Review sheet Final Exam Math 140 Calculus I Fall 2015 UMass Boston Review sheet Final Eam Math Calculus I Fall 5 UMass Boston The eam is closed tetbook NO CALCULATORS OR ELECTRONIC DEVICES ARE ALLOWED DURING THE EXAM The final eam will contain problems of types similar

More information

MATH141: Calculus II Exam #1 review 6/8/2017 Page 1

MATH141: Calculus II Exam #1 review 6/8/2017 Page 1 MATH: Calculus II Eam # review /8/7 Page No review sheet can cover everything that is potentially fair game for an eam, but I tried to hit on all of the topics with these questions, as well as show you

More information

Multiple Choice. Circle the best answer. No work needed. No partial credit available. is continuous.

Multiple Choice. Circle the best answer. No work needed. No partial credit available. is continuous. Multiple Choice. Circle the best answer. No work needed. No partial credit available. + +. Evaluate lim + (a (b (c (d 0 (e None of the above.. Evaluate lim (a (b (c (d 0 (e + + None of the above.. Find

More information

For the intersections: cos x = 0 or sin x = 1 2

For the intersections: cos x = 0 or sin x = 1 2 Chapter 6 Set-up examples The purpose of this document is to demonstrate the work that will be required if you are asked to set-up integrals on an exam and/or quiz.. Areas () Set up, do not evaluate, any

More information

Review Problems for the Final

Review Problems for the Final Review Problems for the Final Math -3 5 7 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the

More information

Calculus II Practice Test 1 Problems: , 6.5, Page 1 of 10

Calculus II Practice Test 1 Problems: , 6.5, Page 1 of 10 Calculus II Practice Test Problems: 6.-6.3, 6.5, 7.-7.3 Page of This is in no way an inclusive set of problems there can be other types of problems on the actual test. To prepare for the test: review homework,

More information

Math 11 Fall 2018 Practice Final Exam

Math 11 Fall 2018 Practice Final Exam Math 11 Fall 218 Practice Final Exam Disclaimer: This practice exam should give you an idea of the sort of questions we may ask on the actual exam. Since the practice exam (like the real exam) is not long

More information

Examples. 1. (Solution) (a) Suppose f is an increasing function, and let A(x) = x

Examples. 1. (Solution) (a) Suppose f is an increasing function, and let A(x) = x Math 31A Final Exam Practice Problems Austin Christian December 1, 15 Here are some practice problems for the final. You ll notice that these problems all come from material since the last exam. You are,

More information

AP Calculus (BC) Summer Assignment (169 points)

AP Calculus (BC) Summer Assignment (169 points) AP Calculus (BC) Summer Assignment (69 points) This packet is a review of some Precalculus topics and some Calculus topics. It is to be done NEATLY and on a SEPARATE sheet of paper. Use your discretion

More information

Answers for Ch. 6 Review: Applications of the Integral

Answers for Ch. 6 Review: Applications of the Integral Answers for Ch. 6 Review: Applications of the Integral. The formula for the average value of a function, which you must have stored in your magical mathematical brain, is b b a f d. a d / / 8 6 6 ( 8 )

More information

Applications of the Definite Integral

Applications of the Definite Integral Department of Mathematics, Computer Science, and Statistics loomsburg University loomsburg, Pennsylvania 17815 pplications of the Definite Integral Summary The new dvanced Placement Course Description

More information

ENGI 4430 Multiple Integration Cartesian Double Integrals Page 3-01

ENGI 4430 Multiple Integration Cartesian Double Integrals Page 3-01 ENGI 4430 Multiple Integration Cartesian Double Integrals Page 3-01 3. Multiple Integration This chapter provides only a very brief introduction to the major topic of multiple integration. Uses of multiple

More information

ANOTHER FIVE QUESTIONS:

ANOTHER FIVE QUESTIONS: No peaking!!!!! See if you can do the following: f 5 tan 6 sin 7 cos 8 sin 9 cos 5 e e ln ln @ @ Epress sin Power Series Epansion: d as a Power Series: Estimate sin Estimate MACLAURIN SERIES ANOTHER FIVE

More information

1993 AP Calculus AB: Section I

1993 AP Calculus AB: Section I 99 AP Calculus AB: Section I 90 Minutes Scientific Calculator Notes: () The eact numerical value of the correct answer does not always appear among the choices given. When this happens, select from among

More information

Sample Questions to the Final Exam in Math 1111 Chapter 2 Section 2.1: Basics of Functions and Their Graphs

Sample Questions to the Final Exam in Math 1111 Chapter 2 Section 2.1: Basics of Functions and Their Graphs Sample Questions to the Final Eam in Math 1111 Chapter Section.1: Basics of Functions and Their Graphs 1. Find the range of the function: y 16. a.[-4,4] b.(, 4],[4, ) c.[0, ) d.(, ) e.. Find the domain

More information

2.1 The Rectangular Coordinate System

2.1 The Rectangular Coordinate System . The Rectangular Coordinate Sstem In this section ou will learn to: plot points in a rectangular coordinate sstem understand basic functions of the graphing calculator graph equations b generating a table

More information

Solutionbank C2 Edexcel Modular Mathematics for AS and A-Level

Solutionbank C2 Edexcel Modular Mathematics for AS and A-Level Heinemann Solutionbank: Core Maths C Page of Solutionbank C Eercise A, Question Find the values of for which f() is an increasing function, given that f() equals: (a) + 8 + (b) (c) 5 8 (d) 5 + 6 (e) +

More information

Questions Q1. The function f is defined by. (a) Show that (5) The function g is defined by. (b) Differentiate g(x) to show that g '(x) = (3)

Questions Q1. The function f is defined by. (a) Show that (5) The function g is defined by. (b) Differentiate g(x) to show that g '(x) = (3) Questions Q1. The function f is defined by (a) Show that The function g is defined by (b) Differentiate g(x) to show that g '(x) = (c) Find the exact values of x for which g '(x) = 1 (Total 12 marks) Q2.

More information

Math 2414 Activity 1 (Due by end of class July 23) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line.

Math 2414 Activity 1 (Due by end of class July 23) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line. Math 44 Activity (Due by end of class July 3) Precalculus Problems: 3, and are tangent to the parabola ais. Find the other line.. One of the two lines that pass through y is the - {Hint: For a line through

More information

MATH 18.01, FALL PROBLEM SET # 6 SOLUTIONS

MATH 18.01, FALL PROBLEM SET # 6 SOLUTIONS MATH 181, FALL 17 - PROBLEM SET # 6 SOLUTIONS Part II (5 points) 1 (Thurs, Oct 6; Second Fundamental Theorem; + + + + + = 16 points) Let sinc(x) denote the sinc function { 1 if x =, sinc(x) = sin x if

More information

4.4: Optimization. Problem 2 Find the radius of a cylindrical container with a volume of 2π m 3 that minimizes the surface area.

4.4: Optimization. Problem 2 Find the radius of a cylindrical container with a volume of 2π m 3 that minimizes the surface area. 4.4: Optimization Problem 1 Suppose you want to maximize a continuous function on a closed interval, but you find that it only has one local extremum on the interval which happens to be a local minimum.

More information

Add Math (4047) Paper 2

Add Math (4047) Paper 2 1. Solve the simultaneous equations 5 and 1. [5]. (i) Sketch the graph of, showing the coordinates of the points where our graph meets the coordinate aes. [] Solve the equation 10, giving our answer correct

More information

Math 461 Homework 8. Paul Hacking. November 27, 2018

Math 461 Homework 8. Paul Hacking. November 27, 2018 Math 461 Homework 8 Paul Hacking November 27, 2018 (1) Let S 2 = {(x, y, z) x 2 + y 2 + z 2 = 1} R 3 be the sphere with center the origin and radius 1. Let N = (0, 0, 1) S 2 be the north pole. Let F :

More information

There are some trigonometric identities given on the last page.

There are some trigonometric identities given on the last page. MA 114 Calculus II Fall 2015 Exam 4 December 15, 2015 Name: Section: Last 4 digits of student ID #: No books or notes may be used. Turn off all your electronic devices and do not wear ear-plugs during

More information

Math 461 Homework 8 Paul Hacking November 27, 2018

Math 461 Homework 8 Paul Hacking November 27, 2018 (1) Let Math 461 Homework 8 Paul Hacking November 27, 2018 S 2 = {(x, y, z) x 2 +y 2 +z 2 = 1} R 3 be the sphere with center the origin and radius 1. Let N = (0, 0, 1) S 2 be the north pole. Let F : S

More information

BE SURE TO READ THE DIRECTIONS PAGE & MAKE YOUR NOTECARDS FIRST!! Part I: Unlimited and Continuous! (21 points)

BE SURE TO READ THE DIRECTIONS PAGE & MAKE YOUR NOTECARDS FIRST!! Part I: Unlimited and Continuous! (21 points) BE SURE TO READ THE DIRECTIONS PAGE & MAKE YOUR NOTECARDS FIRST!! Part I: United and Continuous! ( points) For #- below, find the its, if they eist.(#- are pt each) ) 7 ) 9 9 ) 5 ) 8 For #5-7, eplain why

More information

ENGI Multiple Integration Page 8-01

ENGI Multiple Integration Page 8-01 ENGI 345 8. Multiple Integration Page 8-01 8. Multiple Integration This chapter provides only a very brief introduction to the major topic of multiple integration. Uses of multiple integration include

More information

MATH Final Review

MATH Final Review MATH 1592 - Final Review 1 Chapter 7 1.1 Main Topics 1. Integration techniques: Fitting integrands to basic rules on page 485. Integration by parts, Theorem 7.1 on page 488. Guidelines for trigonometric

More information

AP Physics C. Gauss s Law. Free Response Problems

AP Physics C. Gauss s Law. Free Response Problems AP Physics Gauss s Law Free Response Problems 1. A flat sheet of glass of area 0.4 m 2 is placed in a uniform electric field E = 500 N/. The normal line to the sheet makes an angle θ = 60 ẘith the electric

More information

Unit #13 - Integration to Find Areas and Volumes, Volumes of Revolution

Unit #13 - Integration to Find Areas and Volumes, Volumes of Revolution Unit #1 - Integration to Find Areas and Volumes, Volumes of Revolution Some problems and solutions selected or adapted from Hughes-Hallett Calculus. Areas In Questions #1-8, find the area of one strip

More information

Solutions th AMC 12 A (E) Since $20 is 2000 cents, she pays (0.0145)(2000) = 29 cents per hour in local taxes.

Solutions th AMC 12 A (E) Since $20 is 2000 cents, she pays (0.0145)(2000) = 29 cents per hour in local taxes. Solutions 2004 55 th AMC 12 A 2 1. (E) Since $20 is 2000 cents, she pays (0.0145)(2000) = 29 cents per hour in local taxes. 2. (C) The 8 unanswered problems are worth (2.5)(8) = 20 points, so Charlyn must

More information

C4 "International A-level" (150 minute) papers: June 2014 and Specimen 1. C4 INTERNATIONAL A LEVEL PAPER JUNE 2014

C4 International A-level (150 minute) papers: June 2014 and Specimen 1. C4 INTERNATIONAL A LEVEL PAPER JUNE 2014 C4 "International A-level" (150 minute) papers: June 2014 and Specimen 1. C4 INTERNATIONAL A LEVEL PAPER JUNE 2014 1. f(x) = 2x 3 + x 10 (a) Show that the equation f(x) = 0 has a root in the interval [1.5,

More information

Graphing Review Part 1: Circles, Ellipses and Lines

Graphing Review Part 1: Circles, Ellipses and Lines Graphing Review Part : Circles, Ellipses and Lines Definition The graph of an equation is the set of ordered pairs, (, y), that satisfy the equation We can represent the graph of a function by sketching

More information

Math 147 Exam II Practice Problems

Math 147 Exam II Practice Problems Math 147 Exam II Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture, all homework problems, all lab

More information

3 Applications of Derivatives Instantaneous Rates of Change Optimization Related Rates... 13

3 Applications of Derivatives Instantaneous Rates of Change Optimization Related Rates... 13 Contents Limits Derivatives 3. Difference Quotients......................................... 3. Average Rate of Change...................................... 4.3 Derivative Rules...........................................

More information

5.5 Volumes: Tubes. The Tube Method. = (2π [radius]) (height) ( x k ) = (2πc k ) f (c k ) x k. 5.5 volumes: tubes 435

5.5 Volumes: Tubes. The Tube Method. = (2π [radius]) (height) ( x k ) = (2πc k ) f (c k ) x k. 5.5 volumes: tubes 435 5.5 volumes: tubes 45 5.5 Volumes: Tubes In Section 5., we devised the disk method to find the volume swept out when a region is revolved about a line. To find the volume swept out when revolving a region

More information

Math 107. Rumbos Fall Solutions to Review Problems for Exam 3

Math 107. Rumbos Fall Solutions to Review Problems for Exam 3 Math 17. umbos Fall 29 1 Solutions to eview Problems for Eam 3 1. Consider a wheel of radius a which is rolling on the ais in the plane. Suppose that the center of the wheel moves in the positive direction

More information

5 Find an equation of the circle in which AB is a diameter in each case. a A (1, 2) B (3, 2) b A ( 7, 2) B (1, 8) c A (1, 1) B (4, 0)

5 Find an equation of the circle in which AB is a diameter in each case. a A (1, 2) B (3, 2) b A ( 7, 2) B (1, 8) c A (1, 1) B (4, 0) C2 CRDINATE GEMETRY Worksheet A 1 Write down an equation of the circle with the given centre and radius in each case. a centre (0, 0) radius 5 b centre (1, 3) radius 2 c centre (4, 6) radius 1 1 d centre

More information

MATH 162. Midterm 2 ANSWERS November 18, 2005

MATH 162. Midterm 2 ANSWERS November 18, 2005 MATH 62 Midterm 2 ANSWERS November 8, 2005. (0 points) Does the following integral converge or diverge? To get full credit, you must justify your answer. 3x 2 x 3 + 4x 2 + 2x + 4 dx You may not be able

More information

Practice Final Solutions

Practice Final Solutions Practice Final Solutions Math 1, Fall 17 Problem 1. Find a parameterization for the given curve, including bounds on the parameter t. Part a) The ellipse in R whose major axis has endpoints, ) and 6, )

More information

Math 2414 Activity 1 (Due by end of class Jan. 26) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line.

Math 2414 Activity 1 (Due by end of class Jan. 26) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line. Math Activity (Due by end of class Jan. 6) Precalculus Problems: 3, and are tangent to the parabola ais. Find the other line.. One of the two lines that pass through y is the - {Hint: For a line through

More information

Math 233. Practice Problems Chapter 15. i j k

Math 233. Practice Problems Chapter 15. i j k Math 233. Practice Problems hapter 15 1. ompute the curl and divergence of the vector field F given by F (4 cos(x 2 ) 2y)i + (4 sin(y 2 ) + 6x)j + (6x 2 y 6x + 4e 3z )k olution: The curl of F is computed

More information

SOLUTIONS TO HOMEWORK ASSIGNMENT #2, Math 253

SOLUTIONS TO HOMEWORK ASSIGNMENT #2, Math 253 SOLUTIONS TO HOMEWORK ASSIGNMENT #, Math 5. Find the equation of a sphere if one of its diameters has end points (, 0, 5) and (5, 4, 7). The length of the diameter is (5 ) + ( 4 0) + (7 5) = =, so the

More information

Solutions to old Exam 3 problems

Solutions to old Exam 3 problems Solutions to old Exam 3 problems Hi students! I am putting this version of my review for the Final exam review here on the web site, place and time to be announced. Enjoy!! Best, Bill Meeks PS. There are

More information

Math 005A Prerequisite Material Answer Key

Math 005A Prerequisite Material Answer Key Math 005A Prerequisite Material Answer Key 1. a) P = 4s (definition of perimeter and square) b) P = l + w (definition of perimeter and rectangle) c) P = a + b + c (definition of perimeter and triangle)

More information

MATH 1207 R02 FINAL SOLUTION

MATH 1207 R02 FINAL SOLUTION MATH 7 R FINAL SOLUTION SPRING 6 - MOON Write your answer neatly and show steps. Except calculators, any electronic devices including laptops and cell phones are not allowed. () Let f(x) = x cos x. (a)

More information

Chapter 6 Overview: Applications of Derivatives

Chapter 6 Overview: Applications of Derivatives Chapter 6 Overview: Applications of Derivatives There are two main contets for derivatives: graphing and motion. In this chapter, we will consider the graphical applications of the derivative. Much of

More information

Mathematics Extension 2

Mathematics Extension 2 0 HIGHER SCHOOL CERTIFICATE EXAMINATION Mathematics Etension General Instructions Reading time 5 minutes Working time hours Write using black or blue pen Black pen is preferred Board-approved calculators

More information

10550 PRACTICE FINAL EXAM SOLUTIONS. x 2 4. x 2 x 2 5x +6 = lim x +2. x 2 x 3 = 4 1 = 4.

10550 PRACTICE FINAL EXAM SOLUTIONS. x 2 4. x 2 x 2 5x +6 = lim x +2. x 2 x 3 = 4 1 = 4. 55 PRACTICE FINAL EXAM SOLUTIONS. First notice that x 2 4 x 2x + 2 x 2 5x +6 x 2x. This function is undefined at x 2. Since, in the it as x 2, we only care about what happens near x 2 an for x less than

More information

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10 Units of Chapter 10 Determining Moments of Inertia Rotational Kinetic Energy Rotational Plus Translational Motion; Rolling Why Does a Rolling Sphere Slow Down? General Definition of Torque, final Taking

More information

MATHEMATICS 317 December 2010 Final Exam Solutions

MATHEMATICS 317 December 2010 Final Exam Solutions MATHEMATI 317 December 1 Final Eam olutions 1. Let r(t) = ( 3 cos t, 3 sin t, 4t ) be the position vector of a particle as a function of time t. (a) Find the velocity of the particle as a function of time

More information

AP Calculus BC Chapter 4 AP Exam Problems A) 4 B) 2 C) 1 D) 0 E) 2 A) 9 B) 12 C) 14 D) 21 E) 40

AP Calculus BC Chapter 4 AP Exam Problems A) 4 B) 2 C) 1 D) 0 E) 2 A) 9 B) 12 C) 14 D) 21 E) 40 Extreme Values in an Interval AP Calculus BC 1. The absolute maximum value of x = f ( x) x x 1 on the closed interval, 4 occurs at A) 4 B) C) 1 D) 0 E). The maximum acceleration attained on the interval

More information

Sample Final Questions: Solutions Math 21B, Winter y ( y 1)(1 + y)) = A y + B

Sample Final Questions: Solutions Math 21B, Winter y ( y 1)(1 + y)) = A y + B Sample Final Questions: Solutions Math 2B, Winter 23. Evaluate the following integrals: tan a) y y dy; b) x dx; c) 3 x 2 + x dx. a) We use partial fractions: y y 3 = y y ) + y)) = A y + B y + C y +. Putting

More information

Math 2250 Final Exam Practice Problem Solutions. f(x) = ln x x. 1 x. lim. lim. x x = lim. = lim 2

Math 2250 Final Exam Practice Problem Solutions. f(x) = ln x x. 1 x. lim. lim. x x = lim. = lim 2 Math 5 Final Eam Practice Problem Solutions. What are the domain and range of the function f() = ln? Answer: is only defined for, and ln is only defined for >. Hence, the domain of the function is >. Notice

More information

Chapter 9 Overview: Parametric and Polar Coordinates

Chapter 9 Overview: Parametric and Polar Coordinates Chapter 9 Overview: Parametric and Polar Coordinates As we saw briefly last year, there are axis systems other than the Cartesian System for graphing (vector coordinates, polar coordinates, rectangular

More information

Math 8 Honors Coordinate Geometry part 1 Unit Updated July 29, 2016

Math 8 Honors Coordinate Geometry part 1 Unit Updated July 29, 2016 Reviewing the basics The number line A number line is a visual representation of all real numbers. Each of the images below are examples of number lines. The top left one includes only positive whole numbers,

More information

CHAPTER 72 AREAS UNDER AND BETWEEN CURVES

CHAPTER 72 AREAS UNDER AND BETWEEN CURVES CHAPTER 7 AREAS UNDER AND BETWEEN CURVES EXERCISE 8 Page 77. Show by integration that the area of the triangle formed by the line y, the ordinates and and the -ais is 6 square units. A sketch of y is shown

More information

Mth Review Problems for Test 2 Stewart 8e Chapter 3. For Test #2 study these problems, the examples in your notes, and the homework.

Mth Review Problems for Test 2 Stewart 8e Chapter 3. For Test #2 study these problems, the examples in your notes, and the homework. For Test # study these problems, the examples in your notes, and the homework. Derivative Rules D [u n ] = nu n 1 du D [ln u] = du u D [log b u] = du u ln b D [e u ] = e u du D [a u ] = a u ln a du D [sin

More information

THE NCUK INTERNATIONAL FOUNDATION YEAR (IFY) Further Mathematics

THE NCUK INTERNATIONAL FOUNDATION YEAR (IFY) Further Mathematics IFYFM00 Further Maths THE NCUK INTERNATIONAL FOUNDATION YEAR (IFY) Further Mathematics Examination Session Summer 009 Time Allowed hours 0 minutes (Including 0 minutes reading time) INSTRUCTIONS TO STUDENTS

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES Before starting this section, you might need to review the trigonometric functions. DIFFERENTIATION RULES In particular, it is important to remember that,

More information

Math 132 Information for Test 2

Math 132 Information for Test 2 Math 13 Information for Test Test will cover material from Sections 5.6, 5.7, 5.8, 6.1, 6., 6.3, 7.1, 7., and 7.3. The use of graphing calculators will not be allowed on the test. Some practice questions

More information

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 13 (Second moments of a volume (A)) A.J.Hobson

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 13 (Second moments of a volume (A)) A.J.Hobson JUST THE MATHS UNIT NUMBER 13.13 INTEGRATION APPLICATIONS 13 (Second moments of a volume (A)) by A.J.Hobson 13.13.1 Introduction 13.13. The second moment of a volume of revolution about the y-axis 13.13.3

More information

Practice Midterm Exam 1. Instructions. You have 60 minutes. No calculators allowed. Show all your work in order to receive full credit.

Practice Midterm Exam 1. Instructions. You have 60 minutes. No calculators allowed. Show all your work in order to receive full credit. MATH202X-F01/UX1 Spring 2015 Practice Midterm Exam 1 Name: Answer Key Instructions You have 60 minutes No calculators allowed Show all your work in order to receive full credit 1 Consider the points P

More information

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 1. The value of the double integral (a) 15 26 (b) 15 8 (c) 75 (d) 105 26 5 4 0 1 1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 2. What is the value of the double integral interchange the order

More information

AP Calculus AB 2nd Semester Homework List

AP Calculus AB 2nd Semester Homework List AP Calculus AB 2nd Semester Homework List Date Assigned: 1/4 DUE Date: 1/6 Title: Typsetting Basic L A TEX and Sigma Notation Write the homework out on paper. Then type the homework on L A TEX. Use this

More information

Chapter 3: Derivatives and Graphing

Chapter 3: Derivatives and Graphing Chapter 3: Derivatives and Graphing 127 Chapter 3 Overview: Derivatives and Graphs There are two main contexts for derivatives: graphing and motion. In this chapter, we will consider the graphical applications

More information

Math 1 packet for Coordinate Geometry part 1. Reviewing the basics. The coordinate plane

Math 1 packet for Coordinate Geometry part 1. Reviewing the basics. The coordinate plane Math 1 packet for Coordinate Geometry part 1 Reviewing the basics The coordinate plane The coordinate plane (also called the Cartesian plane named after French mathematician Rene Descartes, who formalized

More information

MA 114 Worksheet # 1: Improper Integrals

MA 114 Worksheet # 1: Improper Integrals MA 4 Worksheet # : Improper Integrals. For each of the following, determine if the integral is proper or improper. If it is improper, explain why. Do not evaluate any of the integrals. (c) 2 0 2 2 x x

More information

Answer Key. ( 1) n (2x+3) n. n n=1. (2x+3) n. = lim. < 1 or 2x+3 < 4. ( 1) ( 1) 2n n

Answer Key. ( 1) n (2x+3) n. n n=1. (2x+3) n. = lim. < 1 or 2x+3 < 4. ( 1) ( 1) 2n n Math Midterm Eam #3 December, 3 Answer Key. [5 Points] Find the Interval and Radius of Convergence for the following power series. Analyze carefully and with full justification. Use Ratio Test. L lim a

More information

Chapter 8: Radical Functions

Chapter 8: Radical Functions Chapter 8: Radical Functions Chapter 8 Overview: Types and Traits of Radical Functions Vocabulary:. Radical (Irrational) Function an epression whose general equation contains a root of a variable and possibly

More information

Final practice, Math 31A - Lec 1, Fall 2013 Name and student ID: Question Points Score Total: 90

Final practice, Math 31A - Lec 1, Fall 2013 Name and student ID: Question Points Score Total: 90 Final practice, Math 31A - Lec 1, Fall 13 Name and student ID: Question Points Score 1 1 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 Total: 9 1. a) 4 points) Find all points x at which the function fx) x 4x + 3 + x

More information

MATH 32 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS

MATH 32 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS MATH 3 FALL 0 FINAL EXAM - PRACTICE EXAM SOLUTIONS () You cut a slice from a circular pizza (centered at the origin) with radius 6 along radii at angles 4 and 3 with the positive horizontal axis. (a) (3

More information

Find the rectangular coordinates for each of the following polar coordinates:

Find the rectangular coordinates for each of the following polar coordinates: WORKSHEET 13.1 1. Plot the following: 7 3 A. 6, B. 3, 6 4 5 8 D. 6, 3 C., 11 2 E. 5, F. 4, 6 3 Find the rectangular coordinates for each of the following polar coordinates: 5 2 2. 4, 3. 8, 6 3 Given the

More information

Math 2250 Final Exam Practice Problem Solutions. f(x) = ln x x. 1 x. lim. lim. x x = lim. = lim 2

Math 2250 Final Exam Practice Problem Solutions. f(x) = ln x x. 1 x. lim. lim. x x = lim. = lim 2 Math 5 Final Eam Practice Problem Solutions. What are the domain and range of the function f() = ln? Answer: is only defined for, and ln is only defined for >. Hence, the domain of the function is >. Notice

More information