HOMEWORK SOLUTIONS MATH 1910 Sections 6.4, 6.5, 7.1 Fall 2016

Size: px
Start display at page:

Download "HOMEWORK SOLUTIONS MATH 1910 Sections 6.4, 6.5, 7.1 Fall 2016"

Transcription

1 HOMEWORK SOLUTIONS MATH 9 Sections 6.4, 6.5, 7. Fall 6 Problem 6.4. Sketch the region enclosed by x = 4 y +, x = 4y, and y =. Use the Shell Method to calculate the volume of rotation about the x-axis SOLUTION. The first equation is a line with positive slope and x-intercept x =, the second is a line with negative slope and x-intercept x =. These lines intersect at 4 y + = 4 y or y = 4. Then, our picture looks as follows: Parallel to the x-axis we have shells with thickness dy, radius y, and height y 4 ( + y 4 ) = y. Thus, the volume of the solid is 4 π(radius)(height of shell)dy = π = π (y y 6 ) 4 4 y( y )dy = π 4 = π( ) = π( 6 ) = π y y dy 6.4. Problem Use both the Shell and Disk Methods to calculate the volume obtained by rotating the region under the graph of f(x) = 8 x from x about the x-axis the y-axis SOLUTION. This region to be rotated is as follows:

2 About the x-axis, the disk method gives disks of thickness dx and radius y = 8 x. Thus the volume is π(8 x ) dx = π 64 6x + x 6 dx = π (64x 4x 4 + x7 7 ) = 576π 7 Using the shell method, we get shells with thickness dy, radius y, and height x = (8 y). Thus, the volume is 8 Substituting u = 8 y and du = dy we get πy(8 y) dy π (8 u)u du = π 8u 4 4 u 7 u du = π (6u ) 8 = 576π 7 About the y-axis, disks have thickness dy and radius x = (8 y) so we get volume 8 π((8 y) ) dy = π 8 (8 y) dy = π ( 5 (8 y) 5 ) 8 = 96π 5 Using the shell method, we get shells with thickness dx, radius x and height y = 8 x. Thus the volume is πx(8 x )dx = π 8x x 4 dx = π (4x x5 5 ) = 96π Problem Use the Shell Method to find the volume of the torus obtained by rotating the circle (x a) + y = b about the y-axis (assume a > b) SOLUTION. Our picture is again:

3 Then we have cylinders with radius x going from x = a b to x = a+b. Each of these cylinders has height given by twice y = b (x a) so we have volume: a+b a b πx( b (x a) )dx = 4π Substituting u = x a and du = dx we get 4π b (u + a) b u du = 4π b a+b a b x b (x a) dx u b u du + 4πa b u du b Note that u b u is an odd function (u b u = (( u) b ( u) ) so it is integrated about the symmetric interval [-b,b] (or use substitution u = bsin(θ), du = bcos(θ)dθ to show this fact). Then the volume is just 4πa b b u du. Since the integral here is again half of a circle of radius b, we have that the volume is 4πa( πb ) = π ab Problem The surface area of a sphere of radius r is 4πr. Use this to derive the formula for the volume V of a sphere of radius R in a new way Show that the volume of a thin spherical shell of inner radius r and thickness r is approximately 4πr r Approximate V by decomposing the sphere of radius R into N thin spherical shells of thickness r = R N Show that the approximation is a Riemann sum that converges to an integral. Evaluate the integral

4 SOLUTION. The volume of such a spherical shell is approximately the surface area at the inner radius times the thickness, 4πr r. This is not exact because as we move r away from the inner radius r, the surface area of these spheres actually involves a slightly larger radius than r. Now we estimate V by decomposing the sphere into N spherical shells. The boundary points of these shells are given by x k = R Nk, k =,.., N (e.g. the first shell goes from x = to x = R N and the last shell goes from x N = N N R to x N = R). Then, each shell has volume approximately equal to surface area at the outer radius times the thickness (e.g. the first shell has volume approximately 4π(x ) r = 4π( R N ) R N ). This will give us an overestimation, for the same reason that part a described an underestimation. Thus, we can describe the approximate volume of the whole sphere as: N 4π(x k ) r = k= N 4π( R R N k) N = 4π( R N N ) k= k= k N(N + )(N + ) = 4πR 6N = πr (N + N + N) N By definition, this is a Riemann sum partitioned by = x < x < x N = R and sampled at x,..., x N. Then, as we take the limit as N goes to infinity r becomes dr, x k becomes r, and we now take r everywhere in [, R]. Thus we obtain R 4πr dr = 4π ( r ) R = 4π R Problem Calculate the work (in joules) required to pump all of the water out of the full tank below. Distances are in meters, the density of water is kg m SOLUTION. The work against gravity to lift each layer of water of thickness dy is F(distance lifted) = mg(distance) = area dy density g (distance). If we define the origin at the center of the hemisphere and let the positive y-axis point downward then a layer at depth y has radius y by the Pythagorean theorem and thus area π( y ) m. This layer will 4

5 have to be lifted y + meters (because of the spout). π( y ) 9.8 (y + ) dy. Hence the work to lift this layer is So the total work to lift all layers is: y= 98π( y )(y+)dy = 98π = 98π( 5 y+ y y = 98π (5y + y y4 4 y ) ) = 7 π joules Problem 6.5. Conical tank in Figure ; water exits through the spout. SOLUTION. Place the origin at the vertex of the inverted cone, and let the positive y-axis point upward. Consider a layer of water at a height of y meters. From similar triangles, the area of the layer is ( y ) π m, so the volume is ( y ) π δym. Thus the weight of one layer is ( y ) 98π δyn. The layer must be lifted y meters, so the total work needed to empty the tank is ( y ) 98π ( y)dy = π( )J.55 7 J Problem Calculate the work required to life a -m chain over the side of a building. Assume the chain has density 8kg/m. 5

6 SOLUTION. We again consider the work against gravity to lift a length dy segment of chain (y meters down the rope). This is given by mg(distance). Here, the mass of the dy meter portion of chain is 8 dy m(kg) m. This segment will be lifted y meters. Thus work to lift this segment is 8 dy 9.8 y. Then to lift all segments of the rope, starting from the top ( meters down the rope) and ending at the bottom ( meters down the rope), we have: ydy = 78.4 ( y y= ) = 9 joules Problem The gravitational force between two objects of mass m and M, separated by a distance r, has magnitude GMm r where G = 6.67 m kg s. Show that if two objects of mass M and m are separated by a distance r, then the work required to increase the separation to a distance r is equal to W = GMm(r r ) SOLUTION. Using the equation We obtain W = r r W = a F(x)dx GMm r r dr = GMm r r dr = GMm ( r ) r r = GMm(r r ) Problem Use the result of Exercise 5 to calculate the work required to place a -kg satellite in an orbit km above the surface of the earth. Assume that the earth is a sphere of radius R e = m and mass M e = kg. Treat the satellite as a point mass. 6

7 SOLUTION. The satellite moves from the surface of the earth to * m above the earth. This is from distance r = R e m to r = R e + = R e + m. Thus the work is W = GMm(r r ) = GMm( R e R e + ) = (6.67 )( )()( ) joules Problem 7..8 Find the equation of the tangent line at the point indicated y = e x, x = SOLUTION. Let f(x) = e x. Then f (x) = xe x and f () = e. At x =, f() = e, so the equation of the tangent line is y = e(x ) + e = ex e Problem Calculate the derivative indicated d y dt ; y = e t sin t SOLUTION. Let Y = e t sin t. Then and dy dt = e t ( cos t) e t sin t = e t ( cos t sin t), d y dt = e t ( 9 sin t 6 cos t) e t ( cos t sin t) = e t ( 5 sin t cos t) Problem 7..5 f(x) = x e x SOLUTION. Setting f (x) = (x + x)e x equal to zero and solving for x gives (x + x)e x = which is true if and only if x = or x =. Now, f (x) = (x + 4x + )e x. Because f () = >, x = corresponds to a local minimum. On the other hand, f ( ) = (4 8 + )e = /e <, so x = corresponds to a local maximum. Problem 7..8 e x e 4x e dx x 7..5 SOLUTION. ( e x e 4x e x ) dx = (e x e x )dx = e x ex + C

8 Problem 7..9 Wind engineers have found that wind speed v (in m/s) at a given location follows a Rayleigh distribution of the type W(v) = ve v /64 This means that the probability that v lies between a and b is equal to the shaded area in the figure below. Show that the probability that v [, b] is e b /64.. Calculate the probability that v [, 5]. SOLUTION.. The probability that v [.b] is Let u = v /64. Then du = v dv and ve v /64 dv. b /64 ve v /64 dv = e u du = e b /64.. The probability that v [, 5] is the probability that v [, 5] minus the probability that v [, ] Using part (a), it follows that the probability that v [, 5] is Problem ( e 5/64 ) ( e 4/64 ) = e /6 e 5/64.6. Recall the following property of integrals: If f(t) g(t) for all t, then for all x, f(t)dt The inequality e t holds for t because e >. Use () to prove that e x + x for x Then prove, by successive integration, the following inequalities (for x ): 7..9 g(t)dt () e x + x + x e x + x + x + 6 x SOLUTION. Integrating both sides of the inequality e t yields e t dt = e x x or e x + x. 8

9 Integrating both sides of this new inequality then gives Finally, integrating both sides again gives e t dt = e x x + x / or e x + x + x /. e t dt = e x x + x / + x /6 or e x + x + x / + x /6 as requested

Calculus II - Fall 2013

Calculus II - Fall 2013 Calculus II - Fall Midterm Exam II, November, In the following problems you are required to show all your work and provide the necessary explanations everywhere to get full credit.. Find the area between

More information

Math 75B Practice Midterm III Solutions Chapter 6 (Stewart) Multiple Choice. Circle the letter of the best answer.

Math 75B Practice Midterm III Solutions Chapter 6 (Stewart) Multiple Choice. Circle the letter of the best answer. Math 75B Practice Midterm III Solutions Chapter 6 Stewart) English system formulas: Metric system formulas: ft. = in. F = m a 58 ft. = mi. g = 9.8 m/s 6 oz. = lb. cm = m Weight of water: ω = 6.5 lb./ft.

More information

For the intersections: cos x = 0 or sin x = 1 2

For the intersections: cos x = 0 or sin x = 1 2 Chapter 6 Set-up examples The purpose of this document is to demonstrate the work that will be required if you are asked to set-up integrals on an exam and/or quiz.. Areas () Set up, do not evaluate, any

More information

1 The Derivative and Differrentiability

1 The Derivative and Differrentiability 1 The Derivative and Differrentiability 1.1 Derivatives and rate of change Exercise 1 Find the equation of the tangent line to f (x) = x 2 at the point (1, 1). Exercise 2 Suppose that a ball is dropped

More information

Math 76 Practice Problems for Midterm II Solutions

Math 76 Practice Problems for Midterm II Solutions Math 76 Practice Problems for Midterm II Solutions 6.4-8. DISCLAIMER. This collection of practice problems is not guaranteed to be identical, in length or content, to the actual exam. You may expect to

More information

Department of Mathematical 1 Limits. 1.1 Basic Factoring Example. x 1 x 2 1. lim

Department of Mathematical 1 Limits. 1.1 Basic Factoring Example. x 1 x 2 1. lim Contents 1 Limits 2 1.1 Basic Factoring Example...................................... 2 1.2 One-Sided Limit........................................... 3 1.3 Squeeze Theorem..........................................

More information

2) ( 8 points) The point 1/4 of the way from (1, 3, 1) and (7, 9, 9) is

2) ( 8 points) The point 1/4 of the way from (1, 3, 1) and (7, 9, 9) is MATH 6 FALL 6 FIRST EXAM SEPTEMBER 8, 6 SOLUTIONS ) ( points) The center and the radius of the sphere given by x + y + z = x + 3y are A) Center (, 3/, ) and radius 3/ B) Center (, 3/, ) and radius 3/ C)

More information

HOMEWORK SOLUTIONS MATH 1910 Sections 6.1, 6.2, 6.3 Fall 2016

HOMEWORK SOLUTIONS MATH 1910 Sections 6.1, 6.2, 6.3 Fall 2016 HOMEWORK SOLUTIONS MATH 191 Sections.1,.,. Fall 1 Problem.1.19 Find the area of the shaded region. SOLUTION. The equation of the line passing through ( π, is given by y 1() = π, and the equation of the

More information

Math 147 Exam II Practice Problems

Math 147 Exam II Practice Problems Math 147 Exam II Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture, all homework problems, all lab

More information

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61 Integrals D. DeTurck University of Pennsylvania January 1, 2018 D. DeTurck Math 104 002 2018A: Integrals 1 / 61 Integrals Start with dx this means a little bit of x or a little change in x If we add up

More information

Green s Theorem. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Green s Theorem

Green s Theorem. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Green s Theorem Green s Theorem MATH 311, alculus III J. obert Buchanan Department of Mathematics Fall 2011 Main Idea Main idea: the line integral around a positively oriented, simple closed curve is related to a double

More information

MATH 162. Midterm Exam 1 - Solutions February 22, 2007

MATH 162. Midterm Exam 1 - Solutions February 22, 2007 MATH 62 Midterm Exam - Solutions February 22, 27. (8 points) Evaluate the following integrals: (a) x sin(x 4 + 7) dx Solution: Let u = x 4 + 7, then du = 4x dx and x sin(x 4 + 7) dx = 4 sin(u) du = 4 [

More information

Volume: The Disk Method. Using the integral to find volume.

Volume: The Disk Method. Using the integral to find volume. Volume: The Disk Method Using the integral to find volume. If a region in a plane is revolved about a line, the resulting solid is a solid of revolution and the line is called the axis of revolution. y

More information

Practice Exam 1 Solutions

Practice Exam 1 Solutions Practice Exam 1 Solutions 1a. Let S be the region bounded by y = x 3, y = 1, and x. Find the area of S. What is the volume of the solid obtained by rotating S about the line y = 1? Area A = Volume 1 1

More information

MATH 162. FINAL EXAM ANSWERS December 17, 2006

MATH 162. FINAL EXAM ANSWERS December 17, 2006 MATH 6 FINAL EXAM ANSWERS December 7, 6 Part A. ( points) Find the volume of the solid obtained by rotating about the y-axis the region under the curve y x, for / x. Using the shell method, the radius

More information

MATH 18.01, FALL PROBLEM SET # 6 SOLUTIONS

MATH 18.01, FALL PROBLEM SET # 6 SOLUTIONS MATH 181, FALL 17 - PROBLEM SET # 6 SOLUTIONS Part II (5 points) 1 (Thurs, Oct 6; Second Fundamental Theorem; + + + + + = 16 points) Let sinc(x) denote the sinc function { 1 if x =, sinc(x) = sin x if

More information

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2 Math Prelim II Solutions Spring Note: Each problem is worth points except numbers 5 and 6 which are 5 points. x. Compute x da where is the region in the second quadrant between the + y circles x + y and

More information

Practice Final Exam Solutions

Practice Final Exam Solutions Important Notice: To prepare for the final exam, study past exams and practice exams, and homeworks, quizzes, and worksheets, not just this practice final. A topic not being on the practice final does

More information

Math 20C Homework 2 Partial Solutions

Math 20C Homework 2 Partial Solutions Math 2C Homework 2 Partial Solutions Problem 1 (12.4.14). Calculate (j k) (j + k). Solution. The basic properties of the cross product are found in Theorem 2 of Section 12.4. From these properties, we

More information

Chapter 6: Applications of Integration

Chapter 6: Applications of Integration Chapter 6: Applications of Integration Section 6.3 Volumes by Cylindrical Shells Sec. 6.3: Volumes: Cylindrical Shell Method Cylindrical Shell Method dv = 2πrh thickness V = න a b 2πrh thickness Thickness

More information

8.4 Density and 8.5 Work Group Work Target Practice

8.4 Density and 8.5 Work Group Work Target Practice 8.4 Density and 8.5 Work Group Work Target Practice 1. The density of oil in a circular oil slick on the surface of the ocean at a distance meters from the center of the slick is given by δ(r) = 5 1+r

More information

Spring 2015 Sample Final Exam

Spring 2015 Sample Final Exam Math 1151 Spring 2015 Sample Final Exam Final Exam on 4/30/14 Name (Print): Time Limit on Final: 105 Minutes Go on carmen.osu.edu to see where your final exam will be. NOTE: This exam is much longer than

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 3 Differentiation Rules 3.1 The Derivative of Polynomial and Exponential Functions In this section we learn how to differentiate constant functions, power functions, polynomials, and exponential functions.

More information

Math 106 Answers to Exam 3a Fall 2015

Math 106 Answers to Exam 3a Fall 2015 Math 6 Answers to Exam 3a Fall 5.. Consider the curve given parametrically by x(t) = cos(t), y(t) = (t 3 ) 3, for t from π to π. (a) (6 points) Find all the points (x, y) where the graph has either a vertical

More information

Solutions to Homework 1

Solutions to Homework 1 Solutions to Homework 1 1. Let f(x) = x 2, a = 1, b = 2, and let x = a = 1, x 1 = 1.1, x 2 = 1.2, x 3 = 1.4, x 4 = b = 2. Let P = (x,..., x 4 ), so that P is a partition of the interval [1, 2]. List the

More information

Department of Mathematical x 1 x 2 1

Department of Mathematical x 1 x 2 1 Contents Limits. Basic Factoring Eample....................................... One-Sided Limit........................................... 3.3 Squeeze Theorem.......................................... 4.4

More information

AP Calculus BC Fall Final Part IIa

AP Calculus BC Fall Final Part IIa AP Calculus BC 18-19 Fall Final Part IIa Calculator Required Name: 1. At time t = 0, there are 120 gallons of oil in a tank. During the time interval 0 t 10 hours, oil flows into the tank at a rate of

More information

Calculus II. Philippe Rukimbira. Department of Mathematics Florida International University PR (FIU) MAC / 1

Calculus II. Philippe Rukimbira. Department of Mathematics Florida International University PR (FIU) MAC / 1 Calculus II Philippe Rukimbira Department of Mathematics Florida International University PR (FIU) MAC 2312 1 / 1 5.4. Sigma notation; The definition of area as limit Assignment: page 350, #11-15, 27,

More information

Chapter 6 Some Applications of the Integral

Chapter 6 Some Applications of the Integral Chapter 6 Some Applications of the Integral Section 6.1 More on Area a. Representative Rectangle b. Vertical Separation c. Example d. Integration with Respect to y e. Example Section 6.2 Volume by Parallel

More information

Work. 98N We must exert a force of 98N to raise the object. 98N 15m 1470Nm. One Newton- meter is called a Joule and the

Work. 98N We must exert a force of 98N to raise the object. 98N 15m 1470Nm. One Newton- meter is called a Joule and the ork Suppose an object is moving in one dimension either horizontally or vertically. Suppose a Force which is constant in magnitude and in the same direction as the object's motion acts on that object.

More information

(You may need to make a sin / cos-type trigonometric substitution.) Solution.

(You may need to make a sin / cos-type trigonometric substitution.) Solution. MTHE 7 Problem Set Solutions. As a reminder, a torus with radii a and b is the surface of revolution of the circle (x b) + z = a in the xz-plane about the z-axis (a and b are positive real numbers, with

More information

Math 116 First Midterm October 13, 2010

Math 116 First Midterm October 13, 2010 Math 116 First Midterm October 13, 1 Name: EXAM SOLUTIONS Instructor: Section: 1. Do not open this exam until you are told to do so.. This exam has 11 pages including this cover. There are 8 problems.

More information

Sample Final Questions: Solutions Math 21B, Winter y ( y 1)(1 + y)) = A y + B

Sample Final Questions: Solutions Math 21B, Winter y ( y 1)(1 + y)) = A y + B Sample Final Questions: Solutions Math 2B, Winter 23. Evaluate the following integrals: tan a) y y dy; b) x dx; c) 3 x 2 + x dx. a) We use partial fractions: y y 3 = y y ) + y)) = A y + B y + C y +. Putting

More information

Practice Final Exam Solutions

Practice Final Exam Solutions Important Notice: To prepare for the final exam, one should study the past exams and practice midterms (and homeworks, quizzes, and worksheets), not just this practice final. A topic not being on the practice

More information

x+1 e 2t dt. h(x) := Find the equation of the tangent line to y = h(x) at x = 0.

x+1 e 2t dt. h(x) := Find the equation of the tangent line to y = h(x) at x = 0. Math Sample final problems Here are some problems that appeared on past Math exams. Note that you will be given a table of Z-scores for the standard normal distribution on the test. Don t forget to have

More information

Math Makeup Exam - 3/14/2018

Math Makeup Exam - 3/14/2018 Math 22 - Makeup Exam - 3/4/28 Name: Section: The following rules apply: This is a closed-book exam. You may not use any books or notes on this exam. For free response questions, you must show all work.

More information

Chapter 6: Applications of Integration

Chapter 6: Applications of Integration Chapter 6: Applications of Integration Section 6.4 Work Definition of Work Situation There is an object whose motion is restricted to a straight line (1-dimensional motion) There is a force applied to

More information

Applications of Integration to Physics and Engineering

Applications of Integration to Physics and Engineering Applications of Integration to Physics and Engineering MATH 211, Calculus II J Robert Buchanan Department of Mathematics Spring 2018 Mass and Weight mass: quantity of matter (units: kg or g (metric) or

More information

MATH 162. Midterm 2 ANSWERS November 18, 2005

MATH 162. Midterm 2 ANSWERS November 18, 2005 MATH 62 Midterm 2 ANSWERS November 8, 2005. (0 points) Does the following integral converge or diverge? To get full credit, you must justify your answer. 3x 2 x 3 + 4x 2 + 2x + 4 dx You may not be able

More information

10550 PRACTICE FINAL EXAM SOLUTIONS. x 2 4. x 2 x 2 5x +6 = lim x +2. x 2 x 3 = 4 1 = 4.

10550 PRACTICE FINAL EXAM SOLUTIONS. x 2 4. x 2 x 2 5x +6 = lim x +2. x 2 x 3 = 4 1 = 4. 55 PRACTICE FINAL EXAM SOLUTIONS. First notice that x 2 4 x 2x + 2 x 2 5x +6 x 2x. This function is undefined at x 2. Since, in the it as x 2, we only care about what happens near x 2 an for x less than

More information

Math 116 Second Midterm March 19, 2012

Math 116 Second Midterm March 19, 2012 Math 6 Second Midterm March 9, 22 Name: EXAM SOLUTIONS Instructor: Section:. Do not open this exam until you are told to do so. 2. This exam has pages including this cover. There are 9 problems. Note that

More information

t 2 + 2t dt = (t + 1) dt + 1 = arctan t x + 6 x(x 3)(x + 2) = A x +

t 2 + 2t dt = (t + 1) dt + 1 = arctan t x + 6 x(x 3)(x + 2) = A x + MATH 06 0 Practice Exam #. (0 points) Evaluate the following integrals: (a) (0 points). t +t+7 This is an irreducible quadratic; its denominator can thus be rephrased via completion of the square as a

More information

In general, the formula is S f ds = D f(φ(u, v)) Φ u Φ v da. To compute surface area, we choose f = 1. We compute

In general, the formula is S f ds = D f(φ(u, v)) Φ u Φ v da. To compute surface area, we choose f = 1. We compute alculus III Test 3 ample Problem Answers/olutions 1. Express the area of the surface Φ(u, v) u cosv, u sinv, 2v, with domain u 1, v 2π, as a double integral in u and v. o not evaluate the integral. In

More information

Calculus II Practice Test 1 Problems: , 6.5, Page 1 of 10

Calculus II Practice Test 1 Problems: , 6.5, Page 1 of 10 Calculus II Practice Test Problems: 6.-6.3, 6.5, 7.-7.3 Page of This is in no way an inclusive set of problems there can be other types of problems on the actual test. To prepare for the test: review homework,

More information

Solutions to Math 41 Final Exam December 10, 2012

Solutions to Math 41 Final Exam December 10, 2012 Solutions to Math 4 Final Exam December,. ( points) Find each of the following limits, with justification. If there is an infinite limit, then explain whether it is or. x ln(t + ) dt (a) lim x x (5 points)

More information

Review: Exam Material to be covered: 6.1, 6.2, 6.3, 6.5 plus review of u, du substitution.

Review: Exam Material to be covered: 6.1, 6.2, 6.3, 6.5 plus review of u, du substitution. Review: Exam. Goals for this portion of the course: Be able to compute the area between curves, the volume of solids of revolution, and understand the mean value of a function. We had three basic volumes:

More information

1. If the line l has symmetric equations. = y 3 = z+2 find a vector equation for the line l that contains the point (2, 1, 3) and is parallel to l.

1. If the line l has symmetric equations. = y 3 = z+2 find a vector equation for the line l that contains the point (2, 1, 3) and is parallel to l. . If the line l has symmetric equations MA 6 PRACTICE PROBLEMS x = y = z+ 7, find a vector equation for the line l that contains the point (,, ) and is parallel to l. r = ( + t) i t j + ( + 7t) k B. r

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES PARAMETRIC EQUATIONS & POLAR COORDINATES We have seen how to represent curves by parametric equations. Now, we apply the methods of calculus to these parametric

More information

Name Period. Date: Topic: 9-2 Circles. Standard: G-GPE.1. Objective:

Name Period. Date: Topic: 9-2 Circles. Standard: G-GPE.1. Objective: Name Period Date: Topic: 9-2 Circles Essential Question: If the coefficients of the x 2 and y 2 terms in the equation for a circle were different, how would that change the shape of the graph of the equation?

More information

MA 114 Worksheet # 1: Improper Integrals

MA 114 Worksheet # 1: Improper Integrals MA 4 Worksheet # : Improper Integrals. For each of the following, determine if the integral is proper or improper. If it is improper, explain why. Do not evaluate any of the integrals. (c) 2 0 2 2 x x

More information

Practice Final Solutions

Practice Final Solutions Practice Final Solutions Math 1, Fall 17 Problem 1. Find a parameterization for the given curve, including bounds on the parameter t. Part a) The ellipse in R whose major axis has endpoints, ) and 6, )

More information

( ) 7 ( 5x 5 + 3) 9 b) y = x x

( ) 7 ( 5x 5 + 3) 9 b) y = x x New York City College of Technology, CUNY Mathematics Department Fall 0 MAT 75 Final Eam Review Problems Revised by Professor Kostadinov, Fall 0, Fall 0, Fall 00. Evaluate the following its, if they eist:

More information

+ 1 for x > 2 (B) (E) (B) 2. (C) 1 (D) 2 (E) Nonexistent

+ 1 for x > 2 (B) (E) (B) 2. (C) 1 (D) 2 (E) Nonexistent dx = (A) 3 sin(3x ) + C 1. cos ( 3x) 1 (B) sin(3x ) + C 3 1 (C) sin(3x ) + C 3 (D) sin( 3x ) + C (E) 3 sin(3x ) + C 6 3 2x + 6x 2. lim 5 3 x 0 4x + 3x (A) 0 1 (B) 2 (C) 1 (D) 2 (E) Nonexistent is 2 x 3x

More information

Final Examination 201-NYA-05 May 18, 2018

Final Examination 201-NYA-05 May 18, 2018 . ( points) Evaluate each of the following limits. 3x x + (a) lim x x 3 8 x + sin(5x) (b) lim x sin(x) (c) lim x π/3 + sec x ( (d) x x + 5x ) (e) lim x 5 x lim x 5 + x 6. (3 points) What value of c makes

More information

MAC Calculus II Spring Homework #6 Some Solutions.

MAC Calculus II Spring Homework #6 Some Solutions. MAC 2312-15931-Calculus II Spring 23 Homework #6 Some Solutions. 1. Find the centroid of the region bounded by the curves y = 2x 2 and y = 1 2x 2. Solution. It is obvious, by inspection, that the centroid

More information

Quiz 6 Practice Problems

Quiz 6 Practice Problems Quiz 6 Practice Problems Practice problems are similar, both in difficulty and in scope, to the type of problems you will see on the quiz. Problems marked with a are for your entertainment and are not

More information

f(p i )Area(T i ) F ( r(u, w) ) (r u r w ) da

f(p i )Area(T i ) F ( r(u, w) ) (r u r w ) da MAH 55 Flux integrals Fall 16 1. Review 1.1. Surface integrals. Let be a surface in R. Let f : R be a function defined on. efine f ds = f(p i Area( i lim mesh(p as a limit of Riemann sums over sampled-partitions.

More information

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 13 (Second moments of a volume (A)) A.J.Hobson

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 13 (Second moments of a volume (A)) A.J.Hobson JUST THE MATHS UNIT NUMBER 13.13 INTEGRATION APPLICATIONS 13 (Second moments of a volume (A)) by A.J.Hobson 13.13.1 Introduction 13.13. The second moment of a volume of revolution about the y-axis 13.13.3

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.02 Multivariable Calculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 3. Double Integrals 3A. Double

More information

Math 233. Practice Problems Chapter 15. i j k

Math 233. Practice Problems Chapter 15. i j k Math 233. Practice Problems hapter 15 1. ompute the curl and divergence of the vector field F given by F (4 cos(x 2 ) 2y)i + (4 sin(y 2 ) + 6x)j + (6x 2 y 6x + 4e 3z )k olution: The curl of F is computed

More information

Section 4.1: Related Rates

Section 4.1: Related Rates 1 Section 4.1: Related Rates Practice HW from Stewart Textbook (not to hand in) p. 67 # 1-19 odd, 3, 5, 9 In a related rates problem, we want to compute the rate of change of one quantity in terms of the

More information

APPLICATIONS OF INTEGRATION

APPLICATIONS OF INTEGRATION 6 APPLICATIONS OF INTEGRATION APPLICATIONS OF INTEGRATION 6.4 Work In this section, we will learn about: Applying integration to calculate the amount of work done in performing a certain physical task.

More information

Math 221 Exam III (50 minutes) Friday April 19, 2002 Answers

Math 221 Exam III (50 minutes) Friday April 19, 2002 Answers Math Exam III (5 minutes) Friday April 9, Answers I. ( points.) Fill in the boxes as to complete the following statement: A definite integral can be approximated by a Riemann sum. More precisely, if a

More information

10.1 Review of Parametric Equations

10.1 Review of Parametric Equations 10.1 Review of Parametric Equations Recall that often, instead of representing a curve using just x and y (called a Cartesian equation), it is more convenient to define x and y using parametric equations

More information

Final Examination MATH 2321Fall 2010

Final Examination MATH 2321Fall 2010 Final Examination MATH 2321Fall 2010 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Total Extra Credit Name: Instructor: Students are allowed to bring a 8 1 2 11 page of formulas. Answers must be supported by detailed

More information

6 APPLICATIONS OF INTEGRATION

6 APPLICATIONS OF INTEGRATION 6 APPLICATIONS OF INTEGRATION 6. Areas Between Curves. A. A x x y y (y T y B) dx (x R x L ) dy + (). A (9 x ) (x +) dx ( x x ) dx x x x 6 + + 9 (x x ) x dx (x x ) dx x x 6 y (y ) dy (y / y +)dy y/ y +

More information

Solutions to Math 41 Final Exam December 9, 2013

Solutions to Math 41 Final Exam December 9, 2013 Solutions to Math 4 Final Eam December 9,. points In each part below, use the method of your choice, but show the steps in your computations. a Find f if: f = arctane csc 5 + log 5 points Using the Chain

More information

Math 181, Exam 1, Study Guide 2 Problem 1 Solution. =[17ln 5 +3(5)] [17 ln 1 +3(1)] =17ln = 17ln5+12

Math 181, Exam 1, Study Guide 2 Problem 1 Solution. =[17ln 5 +3(5)] [17 ln 1 +3(1)] =17ln = 17ln5+12 Math 8, Exam, Study Guide Problem Solution. Compute the definite integral: 5 ( ) 7 x +3 dx Solution: UsingtheFundamentalTheoremofCalculusPartI,thevalueof the integral is: 5 ( ) 7 [ ] 5 x +3 dx = 7 ln x

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES If we are pumping air into a balloon, both the volume and the radius of the balloon are increasing and their rates of increase are related to each other. However,

More information

Math 115 Final Review 5 December 15, 2015

Math 115 Final Review 5 December 15, 2015 Math 115 Final Review 5 December 15, 2015 Name: 1. (From Team Homework 7) A 12-foot tree is 8 feet from a light that can be raised up and down, as shown in the figure below. 12 ft h shadow 8 ft The height

More information

4.1 & 4.2 Student Notes Using the First and Second Derivatives. for all x in D, where D is the domain of f. The number f()

4.1 & 4.2 Student Notes Using the First and Second Derivatives. for all x in D, where D is the domain of f. The number f() 4.1 & 4. Student Notes Using the First and Second Derivatives Definition A function f has an absolute maximum (or global maximum) at c if f ( c) f ( x) for all x in D, where D is the domain of f. The number

More information

April 23, 2009 SOLUTIONS SECTION NUMBER:

April 23, 2009 SOLUTIONS SECTION NUMBER: MATH 5 FINAL EXAM April, 9 NAME: SOLUTIONS INSTRUCTOR: SECTION NUMBER:. Do not open this exam until you are told to begin.. This exam has pages including this cover. There are 9 questions.. Do not separate

More information

MATH 52 FINAL EXAM SOLUTIONS

MATH 52 FINAL EXAM SOLUTIONS MAH 5 FINAL EXAM OLUION. (a) ketch the region R of integration in the following double integral. x xe y5 dy dx R = {(x, y) x, x y }. (b) Express the region R as an x-simple region. R = {(x, y) y, x y }

More information

AP Calculus Free-Response Questions 1969-present AB

AP Calculus Free-Response Questions 1969-present AB AP Calculus Free-Response Questions 1969-present AB 1969 1. Consider the following functions defined for all x: f 1 (x) = x, f (x) = xcos x, f 3 (x) = 3e x, f 4 (x) = x - x. Answer the following questions

More information

Foundations of Calculus. November 18, 2014

Foundations of Calculus. November 18, 2014 Foundations of Calculus November 18, 2014 Contents 1 Conic Sections 3 11 A review of the coordinate system 3 12 Conic Sections 4 121 Circle 4 122 Parabola 5 123 Ellipse 5 124 Hyperbola 6 2 Review of Functions

More information

Exam 3. MA 114 Exam 3 Fall Multiple Choice Questions. 1. Find the average value of the function f (x) = 2 sin x sin 2x on 0 x π. C. 0 D. 4 E.

Exam 3. MA 114 Exam 3 Fall Multiple Choice Questions. 1. Find the average value of the function f (x) = 2 sin x sin 2x on 0 x π. C. 0 D. 4 E. Exam 3 Multiple Choice Questions 1. Find the average value of the function f (x) = sin x sin x on x π. A. π 5 π C. E. 5. Find the volume of the solid S whose base is the disk bounded by the circle x +

More information

Chapter 8: Radical Functions

Chapter 8: Radical Functions Chapter 8: Radical Functions Chapter 8 Overview: Types and Traits of Radical Functions Vocabulary:. Radical (Irrational) Function an epression whose general equation contains a root of a variable and possibly

More information

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives.

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives. PRACTICE PROBLEMS Please let me know if you find any mistakes in the text so that i can fix them. 1.1. Let Show that f is C 1 and yet How is that possible? 1. Mixed partial derivatives f(x, y) = {xy x

More information

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

SUMMER KNOWHOW STUDY AND LEARNING CENTRE SUMMER KNOWHOW STUDY AND LEARNING CENTRE Differential Calculus 2 Contents Limits..5 Gradients, Tangents and Derivatives.6 Differentiation from First Principles.8 Rules for Differentiation..10 Chain Rule.12

More information

Math 190 (Calculus II) Final Review

Math 190 (Calculus II) Final Review Math 90 (Calculus II) Final Review. Sketch the region enclosed by the given curves and find the area of the region. a. y = 7 x, y = x + 4 b. y = cos ( πx ), y = x. Use the specified method to find the

More information

For all questions, answer choice E. NOTA" means none of the above answers is correct.

For all questions, answer choice E. NOTA means none of the above answers is correct. For all questions, answer choice " means none of the above answers is correct. 1. The sum of the integers 1 through n can be modeled by a quadratic polynomial. What is the product of the non-zero coefficients

More information

Final Exam Solutions

Final Exam Solutions Final Exam Solutions Laurence Field Math, Section March, Name: Solutions Instructions: This exam has 8 questions for a total of points. The value of each part of each question is stated. The time allowed

More information

Concepts in Calculus II

Concepts in Calculus II Concepts in Calculus II Beta Version UNIVERSITY PRESS OF FLORIDA Florida A&M University, Tallahassee Florida Atlantic University, Boca Raton Florida Gulf Coast University, Ft. Myers Florida International

More information

Review Sheet for Second Midterm Mathematics 1300, Calculus 1

Review Sheet for Second Midterm Mathematics 1300, Calculus 1 Review Sheet for Second Midterm Mathematics 300, Calculus. For what values of is the graph of y = 5 5 both increasing and concave up? >. 2. Where does the tangent line to y = 2 through (0, ) intersect

More information

1985 AP Calculus AB: Section I

1985 AP Calculus AB: Section I 985 AP Calculus AB: Section I 9 Minutes No Calculator Notes: () In this eamination, ln denotes the natural logarithm of (that is, logarithm to the base e). () Unless otherwise specified, the domain of

More information

AP Calculus (BC) Summer Assignment (169 points)

AP Calculus (BC) Summer Assignment (169 points) AP Calculus (BC) Summer Assignment (69 points) This packet is a review of some Precalculus topics and some Calculus topics. It is to be done NEATLY and on a SEPARATE sheet of paper. Use your discretion

More information

Chapter 7 Applications of Integration

Chapter 7 Applications of Integration Chapter 7 Applications of Integration 7.1 Area of a Region Between Two Curves 7.2 Volume: The Disk Method 7.3 Volume: The Shell Method 7.5 Work 7.6 Moments, Centers of Mass, and Centroids 7.7 Fluid Pressure

More information

Chapter 7: Applications of Integration

Chapter 7: Applications of Integration Chapter 7: Applications of Integration Fall 214 Department of Mathematics Hong Kong Baptist University 1 / 21 7.1 Volumes by Slicing Solids of Revolution In this section, we show how volumes of certain

More information

6.5 Work and Fluid Forces

6.5 Work and Fluid Forces 6.5 Work and Fluid Forces Work Work=Force Distance Work Work=Force Distance Units Force Distance Work Newton meter Joule (J) pound foot foot-pound (ft lb) Work Work=Force Distance Units Force Distance

More information

Name: Instructor: Lecture time: TA: Section time:

Name: Instructor: Lecture time: TA: Section time: Math 222 Final May 11, 29 Name: Instructor: Lecture time: TA: Section time: INSTRUCTIONS READ THIS NOW This test has 1 problems on 16 pages worth a total of 2 points. Look over your test package right

More information

y=5 y=1+x 2 AP Calculus Chapter 5 Testbank Part I. Multiple-Choice Questions

y=5 y=1+x 2 AP Calculus Chapter 5 Testbank Part I. Multiple-Choice Questions AP Calculus Chapter 5 Testbank Part I. Multiple-Choice Questions. Which of the following integrals correctly corresponds to the area of the shaded region in the figure to the right? (A) (B) (C) (D) (E)

More information

MIDTERM 2 REVIEW: ADDITIONAL PROBLEMS. 1 2 x + 1. y = + 1 = x 1/ = 1. y = 1 2 x 3/2 = 1. into this equation would have then given. y 1.

MIDTERM 2 REVIEW: ADDITIONAL PROBLEMS. 1 2 x + 1. y = + 1 = x 1/ = 1. y = 1 2 x 3/2 = 1. into this equation would have then given. y 1. MIDTERM 2 REVIEW: ADDITIONAL PROBLEMS ) If x + y =, find y. IMPLICIT DIFFERENTIATION Solution. Taking the derivative (with respect to x) of both sides of the given equation, we find that 2 x + 2 y y =

More information

Final Review Worksheet

Final Review Worksheet Score: Name: Final Review Worksheet Math 2110Q Fall 2014 Professor Hohn Answers (in no particular order): f(x, y) = e y + xe xy + C; 2; 3; e y cos z, e z cos x, e x cos y, e x sin y e y sin z e z sin x;

More information

4.1 Analysis of functions I: Increase, decrease and concavity

4.1 Analysis of functions I: Increase, decrease and concavity 4.1 Analysis of functions I: Increase, decrease and concavity Definition Let f be defined on an interval and let x 1 and x 2 denote points in that interval. a) f is said to be increasing on the interval

More information

Math 2413 General Review for Calculus Last Updated 02/23/2016

Math 2413 General Review for Calculus Last Updated 02/23/2016 Math 243 General Review for Calculus Last Updated 02/23/206 Find the average velocity of the function over the given interval.. y = 6x 3-5x 2-8, [-8, ] Find the slope of the curve for the given value of

More information

Stokes Theorem. MATH 311, Calculus III. J. Robert Buchanan. Summer Department of Mathematics. J. Robert Buchanan Stokes Theorem

Stokes Theorem. MATH 311, Calculus III. J. Robert Buchanan. Summer Department of Mathematics. J. Robert Buchanan Stokes Theorem tokes Theorem MATH 311, alculus III J. Robert Buchanan Department of Mathematics ummer 2011 Background (1 of 2) Recall: Green s Theorem, M(x, y) dx + N(x, y) dy = R ( N x M ) da y where is a piecewise

More information

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours) SOLUTIONS TO THE 18.02 FINAL EXAM BJORN POONEN December 14, 2010, 9:00am-12:00 (3 hours) 1) For each of (a)-(e) below: If the statement is true, write TRUE. If the statement is false, write FALSE. (Please

More information

y=5 y=1+x 2 AP Calculus Chapter 5 Testbank Part I. Multiple-Choice Questions

y=5 y=1+x 2 AP Calculus Chapter 5 Testbank Part I. Multiple-Choice Questions AP Calculus Chapter 5 Testbank Part I. Multiple-Choice Questions. Which of the following integrals correctly corresponds to the area of the shaded region in the figure to the right? (A) (B) (C) (D) (E)

More information

Review Problems for the Final

Review Problems for the Final Review Problems for the Final Math -3 5 7 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the

More information

Math. 151, WebCalc Sections December Final Examination Solutions

Math. 151, WebCalc Sections December Final Examination Solutions Math. 5, WebCalc Sections 507 508 December 00 Final Examination Solutions Name: Section: Part I: Multiple Choice ( points each) There is no partial credit. You may not use a calculator.. Another word for

More information