PH880 Topics in Physics

Size: px
Start display at page:

Download "PH880 Topics in Physics"

Transcription

1 PH880 Topics in Physics Modern Optical Imaging (Fall 2010)

2 Monday Fourier Optics Overview of week 3 Transmission function, Diffraction 4f telescopic system PSF, OTF Wednesday Conjugate Plane Bih Bright field microscopy Illumination

3 (Updated) Theorems f ( x ) F ( u ) g G h H 0. Linearity: a f ( x) + b g( x) a F( u) + b G( u) f ( x x ) F( u, v) e i2π u x 0 1. Shift theorem: modulation in F space 0 i2π u x 0 2. Modulation theorem: f ( xe ) Fu ( u) shift in F space 0 3. Scaling theorem: 1 u f ( ax) F( ) a a 4. Convolution theorem: g = f h G = F H ( f h)( x') f ( xhx ) ( ' xdx ) 5. Correlation theorem: * g = f h G = F H ( f h)( x') f ( x) h( x' + x) dx *

4 Convolution * =

5 (updated) Useful Fourier Transform pairs Space domain Fourier domain g( x) = δ ( x) Gu ( ) = 1 g( x) i2 u x e π Gx ( ) = δ ( u u) 0 = 0 g( x) = i x e π 2 Gu ( ) = i u e π 2 g ( x ) cos(2 ) ( ) 1 ( ) ( ) 2 1 Gu ( ) = ( u u0) ( u u0) 2i δ δ + = π u 0 x Gu = δ u u 0 + δ u + u 0 g( x) = sin(2 π u x) 0 g( x) =Δ( x) δ ( x n) Gu ( ) = Δ( u) n= g( x) = rect( x) Gu ( ) = sinc( u) g( r) = circ( r) Gr ( ) = jincr ( ') sin( π u ) π u J (2 π r') 1 r '

6 (updated) Useful Fourier Transform pairs Space domain Fourier domain g( x) = δ ( x) Gu ( ) = 1 Plane wave w/ s.f. u 0 g( x) i2 u x e π Gx ( ) = δ ( u u) 0 = 0 Point source shifted by u 0 (diverging) Spherical wave g( x) = i x e π 2 Gu ( ) = i u e π 2 (converging) spherical wave = π u 0 x Gu = δ u u 0 + δ u + u 0 g ( x ) cos(2 ) g( x) = sin(2 π u x) 0 g( x) =Δ( x) δ ( x n) Gu ( ) = Δ( u) n= g( x) = rect( x) Gu ( ) = sinc( u) ( ) 1 ( ) ( ) 2 1 Gu ( ) = ( u u0) ( u u0) 2i δ δ + g( r) = circ( r) Gr ( ) = jincr ( ') sin( π u ) π u J (2 π r') 1 r '

7 Summary: Diffraction (2D) x X X l l y y' y'' gin ( x, y ) gout ( x ) Fresnel diffraction gout ( x ) Fraunhofer diffraction 2 2 x y i g ( x, y ) G ( u, v) x y ') π + g ( x, y g ( x, x) e λl l l out in (diverging) Spherical wave out in u, l v = = λ λl

8 Thin lens can perform Fourier transform x X y l y'' gin (, xy ) x g ( x, y ) G ( u, v ) x y out in u =, v = λl λl gout ( x ) X y f f y'' gin (, xy ) gout ( x ) g ( x, y ) G ( u, v) x y out in u=, v= λ f λ f

9 Monday Fourier Optics Overview of week 3 Transmission function, Diffraction 4f telescopic system PSF, OTF Wednesday Conjugate Plane Bih Bright field microscopy Illumination

10 Example #2: sinusoidal grating x X f f Λ

11 Example #3: sinusoidal grating + beam block x x x f f f f Λ

12 x Example #4: NA revisited (2D) x x f f Λ f f

13 x Example #5: NA revisited (3D) x x f f 1 f f circ () r circ () r jincj (')( r ) J 1 ') ( ') (2 π r jinc r r ' 1

14 x 4f imaging system and Fourier Optics x x f 1 f 1 f f 2 2 f 1 ( xy, ) f 2 ( x, y ) f 3 ( x, y ) Fourier Transform Relationship x' y' f2( x, y ) = F1, λ f1 λ f1 Fourier Transform Relationship x y f3( x, y ) = F2, λ f2 λ f2 f 1 f 1 f 1 f3( x, y ) = f1 x, y f2 f2 f2 FT( FT( f( x)) = f( x)

15 4f imaging system and Fourier Optics x x x f 1 f 1 f f 2 2 Object Plane f ( xy, ) F Fourier Plane x' λ f, y' λ f 1 1 Image Plane f2 f2 f x, y f1 f1

16 4f imaging system and Fourier Optics x x x f 1 f 1 f f 2 2 Object Plane f ( xy, ) F Fourier Plane x' λ f, y' λ f 1 1 Image Plane f2 f2 f x, y f1 f1

17 Impulse response in imaging system x Object Plane Image Plane x Arbitrary Imaging System A point source at the input plane... does not focused into a point image. But into a diffracted pattern δ ( xy, ) h( x, y )

18 Impulse response in imaging system x Object Plane Image Plane x Arbitrary Imaging System A point source at the input plane... ( xy, ) does not focused into a point image. But into a diffracted pattern δ h( x, y ) Then, any arbitrary wave, f ( xy, ) will have an output as: f h * For LSI (Linear Shift Invariant) system

19 Impulse response in imaging system x Object Plane Image Plane x Arbitrary Imaging System A point source at the input plane... ( xy, ) does not focused into a point image. But into a diffracted pattern δ h( x, y ) (, y ) h x : Impulse response of the imaging system (Coherent) Point Spread Function For a given input f(x,y), output field is f Huv (, ) = FThxy ( (, )) h is called Amplitude Transfer Function

20 4f imaging system and Spatial Filtering x (, ) H x y x Fourier Plane after filter x f 1 f 1 Λ f f 1 1 x Object Plane ( xy, ) Spatial Filter Image Plane δ H( x, y ) h( x, y ) * sign ignored (i.e. image inversion ignored)

21 4f imaging system and Spatial Filtering x x' F λ f y', λ f 1 1 Fourier Plane before filter x x' y' F, H x, y λ f 1 λ f 1 Fourier Plane after filter ( ) x f 1 f 1 Λ f f 1 1 x Image Plane Object Plane Spatial Filter f ( xy, ) H( x, y ) f ( x, y ) h( x, y ) x ATF * PSF * sign ignored (i.e. image inversion ignored)

22 (spatial (p domain) Optical Imaging System (Coherent) Input field output field Convolution f ( xy, ) f ( xy, ) hxy (, ) Point Spread Function hxy (, ) Fourier Transform Fourier Transform (spatial frequency domain) Multiplication F ( uv, ) F ( uv, ) Huv (, ) Amplitude Modulation Function Huv (, )

23 Coherent vs. Incoherent λ 1 i 1 A e φ Coherent waves: Superposition field = sum of field i φ 1 1 f = Ae + Ae iφ 1 1 λ 2 i 1 i 1 φ φ i 2 A 2e φ I = f = Ae 1 + Ae 1 2 λs λs I 1 I 2 (temporally) incoherent waves: Superposition Intensity = sum of Intensities I = I1+ I2 Phases of the individual id wavelength vary randomly w.r.t. each other; need statistical optics to describe it

24 (spatial domain) Optical Imaging System (Incoherent) Input Intensity output intensity Convolution 2 I( x, y) = f( x, y) I( x, y) h ( x, y) Incoherent PSF 2 * h ( xy, ) = h ( xy, ) = h h Fourier Transform Fourier Transform Multiplication Iuv ˆ(, ) = Fuv (, ) Fuv (, ) Iuv ˆ(, ) Huv (, ) Optical Transfer Function Huv (, ) = Huv (, ) Huv (, ) (spatial frequency domain) Huv (, ) : Modulation Transfer Function

25 summary (spatial domain) (spatial frequency domain) h( ( xy, ) : (coherent) Point Spread Function (PSF) Huv (, ) : Amplitude Modulation Function (AMF) hxy (, ) = hxy (, ) = hh : (incoherent) PSF 2 * H ( uv, ) = H ( uv, ) H ( uv, ) Optical Transfer Function (OTF) Huv (, ) = Huv (, ) Huv (, ) Modulation Transfer Function (MTF)

26 Spatial filtering x x x f f f f Λ Original pattern Filter at Fourier plane Low pass filtered image (High s.f. are blocked out)

27 Spatial filtering Original pattern Fourier filter image plane * Images are adapted from

28 Original pattern Spatial filtering Fourier filter image plane Blocking DC components ~ blocking non scattered light e.g. dark field microscopy

29 Conjugate planes in 4f telescopic system f f g ( x, y ) g ( x, y ) = 2 f3 f3 Fourier Conjugate planes g 2 ( ', ') g 4 (, ) x x x X f 1 f 1 f f 2 2 f 3 f 3 g 1 ( x, y) g 3 ( x, y ) Imaging forming Conjugate planes f1 f1 g3( x, y ) = g1( x, y) f f 2 2

30 Conjugate plane: example

31 Monday Fourier Optics Overview of week 3 Transmission function, Diffraction 4f telescopic system PSF, OTF Wednesday Conjugate Plane Bih Bright field microscopy Illumination

32 Optical trains in bright field microscopy

33 Imaging formation in microscopy # = a b f 4f imaging syst.

34 Accomodation (focusing) in eyes = z z f = cm cm ~3cm = 25cm 3cm 2.68cm ~25cm ~3cm Comfortable viewing up to 25cm away from the cornea

35 Imaging formation in microscopy # = a b f 4f imaging syst.

36 Conjugate planes in bright field microscopy Aperture or illuminating Conjugate planes Imaging forming Conjugate planes

37 Conjugate planes in bright field microscopy

38 Objective lens

39 Objective lens Manufacturer Tube Lens Focal Length (Millimeters) Parfocal Distance (Millimeters) Thread Type Leica M25 Nikon M25 Olympus RMS Zeiss RMS Parfocal distance f 2 f 2 When you have a tube lens with ihcorrect focal llength, M l =f2/f1=60x

40 Immersion oil NA = nsinθ max No immersion oil (n=1) Oil immersion objective lens (n~1.51, why?) * Water immersion (n=1.33) or glycerol immersion (n=1.473) * Solid immersion lens (n~2 or above, see the reading list)

41 Tungsten halogen Light sources Arc Lamps

42 Köhler Illumination

43 MTF

44 3D PSF 2D PSF for various focal plane (i.e. various z position) 3D PSF z x y x

45 Deconvolution * z x BioTechniques 31: (November 2001)

46 Reading List (wk 3 day 2) 1. Davidson, M. W. and Fellers, T. J. Understanding conjugate planes and Köhler illumination. Nikon MicroscopyU Whitepaper 4 pages (2003). 2. Mansfield, S. M. and Kino, G.S.. Solid immersion microscopy, App. Phys. Lett. 72, 2778 (1998) 3. Agard, D. A. Optical Sectioning Microscopy: cellular architecture in three dimensions. Annual Review of Biophysics and Bioengineering 13: (1984). 4. Sibarita, J. B. Deconvolution microscopy. Advances in Biochemical Engineering and Biotechnology 95: (2005). 5. Carrington, W. A., Lynch, R. M., Moore, E. E. W., Isenberg, G., Fogarty, K. E. and Fay, F.S. Superresolution three dimensional images of fluorescence in cells with minimal light exposure. Science 268: (1995).

Today. MIT 2.71/2.710 Optics 11/10/04 wk10-b-1

Today. MIT 2.71/2.710 Optics 11/10/04 wk10-b-1 Today Review of spatial filtering with coherent illumination Derivation of the lens law using wave optics Point-spread function of a system with incoherent illumination The Modulation Transfer Function

More information

MIT 2.71/2.710 Optics 10/31/05 wk9-a-1. The spatial frequency domain

MIT 2.71/2.710 Optics 10/31/05 wk9-a-1. The spatial frequency domain 10/31/05 wk9-a-1 The spatial frequency domain Recall: plane wave propagation x path delay increases linearly with x λ z=0 θ E 0 x exp i2π sinθ + λ z i2π cosθ λ z plane of observation 10/31/05 wk9-a-2 Spatial

More information

Optics for Engineers Chapter 11

Optics for Engineers Chapter 11 Optics for Engineers Chapter 11 Charles A. DiMarzio Northeastern University Nov. 212 Fourier Optics Terminology Field Plane Fourier Plane C Field Amplitude, E(x, y) Ẽ(f x, f y ) Amplitude Point Spread

More information

Nature of Light Part 2

Nature of Light Part 2 Nature of Light Part 2 Fresnel Coefficients From Helmholts equation see imaging conditions for Single lens 4F system Diffraction ranges Rayleigh Range Diffraction limited resolution Interference Newton

More information

Optics for Engineers Chapter 11

Optics for Engineers Chapter 11 Optics for Engineers Chapter 11 Charles A. DiMarzio Northeastern University Apr. 214 Fourier Optics Terminology Apr. 214 c C. DiMarzio (Based on Optics for Engineers, CRC Press) slides11r1 1 Fourier Optics

More information

GBS765 Electron microscopy

GBS765 Electron microscopy GBS765 Electron microscopy Lecture 1 Waves and Fourier transforms 10/14/14 9:05 AM Some fundamental concepts: Periodicity! If there is some a, for a function f(x), such that f(x) = f(x + na) then function

More information

Lecture 9: Indirect Imaging 2. Two-Element Interferometer. Van Cittert-Zernike Theorem. Aperture Synthesis Imaging. Outline

Lecture 9: Indirect Imaging 2. Two-Element Interferometer. Van Cittert-Zernike Theorem. Aperture Synthesis Imaging. Outline Lecture 9: Indirect Imaging 2 Outline 1 Two-Element Interferometer 2 Van Cittert-Zernike Theorem 3 Aperture Synthesis Imaging Cygnus A at 6 cm Image courtesy of NRAO/AUI Very Large Array (VLA), New Mexico,

More information

Interference, Diffraction and Fourier Theory. ATI 2014 Lecture 02! Keller and Kenworthy

Interference, Diffraction and Fourier Theory. ATI 2014 Lecture 02! Keller and Kenworthy Interference, Diffraction and Fourier Theory ATI 2014 Lecture 02! Keller and Kenworthy The three major branches of optics Geometrical Optics Light travels as straight rays Physical Optics Light can be

More information

2.710 Optics Spring 09 Problem Set #6 Posted Monday, Apr. 6, 2009 Due Wednesday, Apr. 15, 2009

2.710 Optics Spring 09 Problem Set #6 Posted Monday, Apr. 6, 2009 Due Wednesday, Apr. 15, 2009 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 2.710 Optics Spring 09 Problem Set #6 Posted Monday, Apr. 6, 2009 Due Wednesday, Apr. 15, 2009 1. Grating with tilted plane wave illumination Consider a sinusoidal

More information

2.710 Optics Spring 09 Solutions to Problem Set #6 Due Wednesday, Apr. 15, 2009

2.710 Optics Spring 09 Solutions to Problem Set #6 Due Wednesday, Apr. 15, 2009 MASSACHUSETTS INSTITUTE OF TECHNOLOGY.710 Optics Spring 09 Solutions to Problem Set #6 Due Wednesday, Apr. 15, 009 Problem 1: Grating with tilted plane wave illumination 1. a) In this problem, one dimensional

More information

5. LIGHT MICROSCOPY Abbe s theory of imaging

5. LIGHT MICROSCOPY Abbe s theory of imaging 5. LIGHT MICROSCOPY. We use Fourier optics to describe coherent image formation, imaging obtained by illuminating the specimen with spatially coherent light. We define resolution, contrast, and phase-sensitive

More information

(i.e. what you should be able to answer at end of lecture)

(i.e. what you should be able to answer at end of lecture) Today s Announcements 1. Test given back next Wednesday 2. HW assigned next Wednesday. 3. Next Monday 1 st discussion about Individual Projects. Today s take-home lessons (i.e. what you should be able

More information

The spatial frequency domain

The spatial frequency domain The spatial frequenc /3/5 wk9-a- Recall: plane wave propagation λ z= θ path dela increases linearl with E ep i2π sinθ + λ z i2π cosθ λ z plane of observation /3/5 wk9-a-2 Spatial frequenc angle of propagation?

More information

Course Syllabus. OSE6211 Imaging & Optical Systems, 3 Cr. Instructor: Bahaa Saleh Term: Fall 2017

Course Syllabus. OSE6211 Imaging & Optical Systems, 3 Cr. Instructor: Bahaa Saleh Term: Fall 2017 Course Syllabus OSE6211 Imaging & Optical Systems, 3 Cr Instructor: Bahaa Saleh Term: Fall 2017 Email: besaleh@creol.ucf.edu Class Meeting Days: Tuesday, Thursday Phone: 407 882-3326 Class Meeting Time:

More information

Chapter 6 SCALAR DIFFRACTION THEORY

Chapter 6 SCALAR DIFFRACTION THEORY Chapter 6 SCALAR DIFFRACTION THEORY [Reading assignment: Hect 0..4-0..6,0..8,.3.3] Scalar Electromagnetic theory: monochromatic wave P : position t : time : optical frequency u(p, t) represents the E or

More information

Finite Apertures, Interfaces

Finite Apertures, Interfaces 1 Finite Apertures, Interfaces & Point Spread Functions (PSF) & Convolution Tutorial by Jorge Márquez Flores 2 Figure 1. Visual acuity (focus) depends on aperture (iris), lenses, focal point location,

More information

Imaging Metrics. Frequency response Coherent systems Incoherent systems MTF OTF Strehl ratio Other Zemax Metrics. ECE 5616 Curtis

Imaging Metrics. Frequency response Coherent systems Incoherent systems MTF OTF Strehl ratio Other Zemax Metrics. ECE 5616 Curtis Imaging Metrics Frequenc response Coherent sstems Incoherent sstems MTF OTF Strehl ratio Other Zema Metrics Where we are going with this Use linear sstems concept of transfer function to characterize sstem

More information

On the FPA infrared camera transfer function calculation

On the FPA infrared camera transfer function calculation On the FPA infrared camera transfer function calculation (1) CERTES, Université Paris XII Val de Marne, Créteil, France (2) LTM, Université de Bourgogne, Le Creusot, France by S. Datcu 1, L. Ibos 1,Y.

More information

2.71. Final examination. 3 hours (9am 12 noon) Total pages: 7 (seven) PLEASE DO NOT TURN OVER UNTIL EXAM STARTS PLEASE RETURN THIS BOOKLET

2.71. Final examination. 3 hours (9am 12 noon) Total pages: 7 (seven) PLEASE DO NOT TURN OVER UNTIL EXAM STARTS PLEASE RETURN THIS BOOKLET 2.71 Final examination 3 hours (9am 12 noon) Total pages: 7 (seven) PLEASE DO NOT TURN OVER UNTIL EXAM STARTS Name: PLEASE RETURN THIS BOOKLET WITH YOUR SOLUTION SHEET(S) MASSACHUSETTS INSTITUTE OF TECHNOLOGY

More information

High-Resolution. Transmission. Electron Microscopy

High-Resolution. Transmission. Electron Microscopy Part 4 High-Resolution Transmission Electron Microscopy 186 Significance high-resolution transmission electron microscopy (HRTEM): resolve object details smaller than 1nm (10 9 m) image the interior of

More information

Chapter 5. Diffraction Part 2

Chapter 5. Diffraction Part 2 EE 430.43.00 06. nd Semester Chapter 5. Diffraction Part 06. 0. 0. Changhee Lee School of Electrical and Computer Engineering Seoul National niv. chlee7@snu.ac.kr /7 Changhee Lee, SN, Korea 5.5 Fresnel

More information

Topics. Example. Modulation. [ ] = G(k x. ] = 1 2 G ( k % k x 0) G ( k + k x 0) ] = 1 2 j G ( k x

Topics. Example. Modulation. [ ] = G(k x. ] = 1 2 G ( k % k x 0) G ( k + k x 0) ] = 1 2 j G ( k x Topics Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2008 CT/Fourier Lecture 3 Modulation Modulation Transfer Function Convolution/Multiplication Revisit Projection-Slice Theorem Filtered

More information

31. Diffraction: a few important illustrations

31. Diffraction: a few important illustrations 31. Diffraction: a few important illustrations Babinet s Principle Diffraction gratings X-ray diffraction: Bragg scattering and crystal structures A lens transforms a Fresnel diffraction problem into a

More information

Physical Optics. Lecture 3: Fourier optics Herbert Gross.

Physical Optics. Lecture 3: Fourier optics Herbert Gross. Phsical Optics Lecture 3: Fourier optics 8-4-5 Herbert Gross www.iap.uni-jena.de Phsical Optics: Content No Date Subject Ref Detailed Content.4. Wave optics G Comple fields, wave equation, k-vectors, interference,

More information

Linear Systems. : object : image. Describes the output of a linear system. input. output. Impulse response function

Linear Systems. : object : image. Describes the output of a linear system. input. output. Impulse response function Linear Systems Describes the output of a linear system Gx FxHx- xdx FxHx F x G x x output input Impulse response function H x xhx- xdx x If the microscope is a linear system: : object : image G x S F x

More information

Modulation Transfert Function

Modulation Transfert Function Modulation Transfert Function Summary Reminders : coherent illumination Incoherent illumination Measurement of the : Sine-wave and square-wave targets Some examples Reminders : coherent illumination We

More information

Optics.

Optics. Optics www.optics.rochester.edu/classes/opt100/opt100page.html Course outline Light is a Ray (Geometrical Optics) 1. Nature of light 2. Production and measurement of light 3. Geometrical optics 4. Matrix

More information

Fourier Optics - Exam #1 Review

Fourier Optics - Exam #1 Review Fourier Optics - Exam #1 Review Ch. 2 2-D Linear Systems A. Fourier Transforms, theorems. - handout --> your note sheet B. Linear Systems C. Applications of above - sampled data and the DFT (supplement

More information

Laser Speckle and Applications in Optics

Laser Speckle and Applications in Optics Laser Speckle and Applications in Optics M. FRANCON Optics Laboratory Faculty of Sciences University of Paris Paris, France Translated by HENRI H. ARSENAULT Department of Physics Laval University Quebec,

More information

SIMG Optics for Imaging Solutions to Final Exam

SIMG Optics for Imaging Solutions to Final Exam SIMG-733-009 Optics for Imaging Solutions to Final Exam. An imaging system consists of two identical thin lenses each with focal length f = f = +300 mm and diameter d = d =50mm. The lenses are separated

More information

PRINCIPLES OF PHYSICAL OPTICS

PRINCIPLES OF PHYSICAL OPTICS PRINCIPLES OF PHYSICAL OPTICS C. A. Bennett University of North Carolina At Asheville WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS Preface 1 The Physics of Waves 1 1.1 Introduction

More information

Plane waves and spatial frequency. A plane wave

Plane waves and spatial frequency. A plane wave Plane waves and spatial frequency A plane wave Complex representation E(,) zt Ecos( tkz) E cos( tkz) o Ezt (,) Ee Ee j( tkz) j( tkz) o 1 cos(2 ) cos( ) 2 A B t Re atbt () () ABcos(2 t ) Complex representation

More information

Design and Correction of Optical Systems

Design and Correction of Optical Systems Design and Correction of Optical Systems Lecture 7: PSF and Optical transfer function 017-05-0 Herbert Gross Summer term 017 www.iap.uni-jena.de Preliminary Schedule - DCS 017 1 07.04. Basics 1.04. Materials

More information

Lecture 19 Optical MEMS (1)

Lecture 19 Optical MEMS (1) EEL6935 Advanced MEMS (Spring 5) Instructor: Dr. Huikai Xie Lecture 19 Optical MEMS (1) Agenda: Optics Review EEL6935 Advanced MEMS 5 H. Xie 3/8/5 1 Optics Review Nature of Light Reflection and Refraction

More information

Introduction to aberrations OPTI518 Lecture 5

Introduction to aberrations OPTI518 Lecture 5 Introduction to aberrations OPTI518 Lecture 5 Second-order terms 1 Second-order terms W H W W H W H W, cos 2 2 000 200 111 020 Piston Change of image location Change of magnification 2 Reference for OPD

More information

The science of light. P. Ewart

The science of light. P. Ewart The science of light P. Ewart Lecture notes: On web site NB outline notes! Textbooks: Hecht, Optics Lipson, Lipson and Lipson, Optical Physics Further reading: Brooker, Modern Classical Optics Problems:

More information

Week 7: Interference

Week 7: Interference Week 7: Interference Superposition: Till now we have mostly discusssed single waves. While discussing group velocity we did talk briefly about superposing more than one wave. We will now focus on superposition

More information

Light Propagation in Free Space

Light Propagation in Free Space Intro Light Propagation in Free Space Helmholtz Equation 1-D Propagation Plane waves Plane wave propagation Light Propagation in Free Space 3-D Propagation Spherical Waves Huygen s Principle Each point

More information

Physical Optics. Lecture 7: Coherence Herbert Gross.

Physical Optics. Lecture 7: Coherence Herbert Gross. Physical Optics Lecture 7: Coherence 07-05-7 Herbert Gross www.iap.uni-jena.de Physical Optics: Content No Date Subject Ref Detailed Content 05.04. Wave optics G Complex fields, wave equation, k-vectors,

More information

Fourier Transform. sin(n# x)), where! = 2" / L and

Fourier Transform. sin(n# x)), where! = 2 / L and Fourier Transform Henning Stahlberg Introduction The tools provided by the Fourier transform are helpful for the analysis of 1D signals (time and frequency (or Fourier) domains), as well as 2D/3D signals

More information

Design and Correction of optical Systems

Design and Correction of optical Systems Design and Correction of optical Systems Part 10: Performance criteria 1 Summer term 01 Herbert Gross Overview 1. Basics 01-04-18. Materials 01-04-5 3. Components 01-05-0 4. Paraxial optics 01-05-09 5.

More information

Topics. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2006 CT/Fourier Lecture 2

Topics. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2006 CT/Fourier Lecture 2 Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2006 CT/Fourier Lecture 2 Topics Modulation Modulation Transfer Function Convolution/Multiplication Revisit Projection-Slice Theorem Filtered

More information

DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY. Regents' Professor enzeritus Arizona State University

DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY. Regents' Professor enzeritus Arizona State University DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY Regents' Professor enzeritus Arizona State University 1995 ELSEVIER Amsterdam Lausanne New York Oxford Shannon Tokyo CONTENTS Preface to the first

More information

Spatial Frequency and Transfer Function. columns of atoms, where the electrostatic potential is higher than in vacuum

Spatial Frequency and Transfer Function. columns of atoms, where the electrostatic potential is higher than in vacuum Image Formation Spatial Frequency and Transfer Function consider thin TEM specimen columns of atoms, where the electrostatic potential is higher than in vacuum electrons accelerate when entering the specimen

More information

Where are the Fringes? (in a real system) Div. of Amplitude - Wedged Plates. Fringe Localisation Double Slit. Fringe Localisation Grating

Where are the Fringes? (in a real system) Div. of Amplitude - Wedged Plates. Fringe Localisation Double Slit. Fringe Localisation Grating Where are the Fringes? (in a real system) Fringe Localisation Double Slit spatial modulation transverse fringes? everywhere or well localised? affected by source properties: coherence, extension Plane

More information

2.710 Optics Spring 09 Solutions to Problem Set #7 Due Wednesday, Apr. 22, 2009

2.710 Optics Spring 09 Solutions to Problem Set #7 Due Wednesday, Apr. 22, 2009 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 2.710 Optics Spring 09 Solutions to Problem Set #7 Due Wednesday, Apr. 22, 2009 Problem 1: Zernicke phase mask For problem 1, general formulations for the 4 f system

More information

The science of light. P. Ewart

The science of light. P. Ewart The science of light P. Ewart Lecture notes: On web site NB outline notes! Textbooks: Hecht, Klein and Furtak, Lipson, Lipson and Lipson, Optical Physics Brooker, Modern Classical Problems: Material for

More information

Plane waves and spatial frequency. A plane wave

Plane waves and spatial frequency. A plane wave Plane waves and spatial frequency A plane wave Complex representation E(,) z t = E cos( ωt kz) = E cos( ωt kz) o Ezt (,) = Ee = Ee j( ωt kz) j( ωt kz) o = 1 2 A B t + + + [ cos(2 ω α β ) cos( α β )] {

More information

Electricity & Optics

Electricity & Optics Physics 24100 Electricity & Optics Lecture 26 Chapter 33 sec. 1-4 Fall 2017 Semester Professor Koltick Interference of Light Interference phenomena are a consequence of the wave-like nature of light Electric

More information

Analysis of second-harmonic generation microscopy under refractive index mismatch

Analysis of second-harmonic generation microscopy under refractive index mismatch Vol 16 No 11, November 27 c 27 Chin. Phys. Soc. 19-1963/27/16(11/3285-5 Chinese Physics and IOP Publishing Ltd Analysis of second-harmonic generation microscopy under refractive index mismatch Wang Xiang-Hui(

More information

Supplementary Figure 1: Example non-overlapping, binary probe functions P1 (~q) and P2 (~q), that add to form a top hat function A(~q).

Supplementary Figure 1: Example non-overlapping, binary probe functions P1 (~q) and P2 (~q), that add to form a top hat function A(~q). Supplementary Figures P(q) A(q) + Function Value P(q) qmax = Supplementary Figure : Example non-overlapping, binary probe functions P (~q) and P (~q), that add to form a top hat function A(~q). qprobe

More information

Final examination. 3 hours (9am 12 noon) Total pages: 7 (seven) PLEASE DO NOT TURN OVER UNTIL EXAM STARTS PLEASE RETURN THIS BOOKLET

Final examination. 3 hours (9am 12 noon) Total pages: 7 (seven) PLEASE DO NOT TURN OVER UNTIL EXAM STARTS PLEASE RETURN THIS BOOKLET 2.710 Final examination 3 hours (9am 12 noon) Total pages: 7 (seven) PLEASE DO NOT TURN OVER UNTIL EXAM STARTS Name: PLEASE RETURN THIS BOOKLET WITH YOUR SOLUTION SHEET(S) MASSACHUSETTS INSTITUTE OF TECHNOLOGY

More information

F. Elohim Becerra Chavez

F. Elohim Becerra Chavez F. Elohim Becerra Chavez Email:fbecerra@unm.edu Office: P&A 19 Phone: 505 277-2673 Lectures: Monday and Wednesday, 5:30-6:45 pm P&A Room 184. Textbook: Many good ones (see webpage) Lectures follow order

More information

Phase Contrast. Zernike Phase Contrast (PC) Nomarski Differential Interference Contrast (DIC) J Mertz Boston University

Phase Contrast. Zernike Phase Contrast (PC) Nomarski Differential Interference Contrast (DIC) J Mertz Boston University Phase Contrast Zernike Phase Contrast (PC) Nomarski Differential Interference Contrast (DIC) J Mertz Boston University Absorption Scattering / n wave-number k 2 n = index of refraction / n wave-number

More information

Microscopy. Lecture 3: Physical optics of widefield microscopes Herbert Gross. Winter term

Microscopy. Lecture 3: Physical optics of widefield microscopes Herbert Gross. Winter term Microscopy Lecture 3: Physical optics of widefield microscopes --9 Herbert Gross Winter term www.iap.uni-jena.de Preliminary time schedule No Date Main subject Detailed topics Lecturer 5.. Optical system

More information

Lens Design II. Lecture 1: Aberrations and optimization Herbert Gross. Winter term

Lens Design II. Lecture 1: Aberrations and optimization Herbert Gross. Winter term Lens Design II Lecture 1: Aberrations and optimization 18-1-17 Herbert Gross Winter term 18 www.iap.uni-jena.de Preliminary Schedule Lens Design II 18 1 17.1. Aberrations and optimization Repetition 4.1.

More information

Errata for Robot Vision

Errata for Robot Vision Errata for Robot Vision This is a list of known nontrivial bugs in Robot Vision 1986) by B.K.P. Horn, MIT Press, Cambridge, MA ISBN 0-6-08159-8 and McGraw-Hill, New York, NY ISBN 0-07-030349-5. Thanks

More information

B.Tech. First Semester Examination Physics-1 (PHY-101F)

B.Tech. First Semester Examination Physics-1 (PHY-101F) B.Tech. First Semester Examination Physics-1 (PHY-101F) Note : Attempt FIVE questions in all taking least two questions from each Part. All questions carry equal marks Part-A Q. 1. (a) What are Newton's

More information

Errata for Robot Vision

Errata for Robot Vision Errata for Robot Vision This is a list of known nontrivial bugs in Robot Vision 1986 by B.K.P. Horn, MIT Press, Cambridge, MA ISBN 0-262-08159-8 and McGraw-Hill, New York, NY ISBN 0-07-030349-5. If you

More information

Phys 531 Lecture 27 6 December 2005

Phys 531 Lecture 27 6 December 2005 Phys 531 Lecture 27 6 December 2005 Final Review Last time: introduction to quantum field theory Like QM, but field is quantum variable rather than x, p for particle Understand photons, noise, weird quantum

More information

Chapter 13 Partially Coherent Imaging, continued

Chapter 13 Partially Coherent Imaging, continued Chapter 3 Partially Coherent Imaging, continued As an example, a common illuminator design is one in which the source is imaged onto the object. This is known as critical illumination source - source has

More information

* AIT-4: Aberrations. Copyright 2006, Regents of University of California

* AIT-4: Aberrations. Copyright 2006, Regents of University of California Advanced Issues and Technology (AIT) Modules Purpose: Explain the top advanced issues and concepts in optical projection printing and electron-beam lithography. AIT-: LER and Chemically Amplified Resists

More information

Empirical Mean and Variance!

Empirical Mean and Variance! Global Image Properties! Global image properties refer to an image as a whole rather than components. Computation of global image properties is often required for image enhancement, preceding image analysis.!

More information

Chapter 1 High-Resolution Optical and Confocal Microscopy

Chapter 1 High-Resolution Optical and Confocal Microscopy Chapter 1 High-Resolution Optical and Confocal Microscopy Olaf Hollricher and Wolfram Ibach Abstract In this chapter, the theory of optical image formation in an optical microscope is described, and the

More information

ECE 425. Image Science and Engineering

ECE 425. Image Science and Engineering ECE 425 Image Science and Engineering Spring Semester 2000 Course Notes Robert A. Schowengerdt schowengerdt@ece.arizona.edu (520) 62-2706 (voice), (520) 62-8076 (fa) ECE402 DEFINITIONS 2 Image science

More information

Errata for Robot Vision

Errata for Robot Vision Errata for Robot Vision This is a list of known nontrivial bugs in Robot Vision 1986) by B.K.P. Horn, MIT Press, Cambridge, MA ISBN 0-6-08159-8 and McGraw-Hill, New York, NY ISBN 0-07-030349-5. If you

More information

Spatial-Domain Convolution Filters

Spatial-Domain Convolution Filters Spatial-Domain Filtering 9 Spatial-Domain Convolution Filters Consider a linear space-invariant (LSI) system as shown: The two separate inputs to the LSI system, x 1 (m) and x 2 (m), and their corresponding

More information

Physical and mathematical model of the digital coherent optical spectrum analyzer

Physical and mathematical model of the digital coherent optical spectrum analyzer Optica Applicata, Vol. XLVII, No., 017 DOI: 10.577/oa17010 Physical and mathematical model of the digital coherent optical spectrum analyzer V.G. KOLOBRODOV, G.S. TYMCHYK, V.I. MYKYTENKO, M.S. KOLOBRODOV

More information

Introduction to Interferometer and Coronagraph Imaging

Introduction to Interferometer and Coronagraph Imaging Introduction to Interferometer and Coronagraph Imaging Wesley A. Traub NASA Jet Propulsion Laboratory and Harvard-Smithsonian Center for Astrophysics Michelson Summer School on Astrometry Caltech, Pasadena

More information

Transmission Electron Microscopy

Transmission Electron Microscopy L. Reimer H. Kohl Transmission Electron Microscopy Physics of Image Formation Fifth Edition el Springer Contents 1 Introduction... 1 1.1 Transmission Electron Microscopy... 1 1.1.1 Conventional Transmission

More information

Wigner distribution function of volume holograms

Wigner distribution function of volume holograms Wigner distribution function of volume holograms The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher S.

More information

Solutions For Homework #5

Solutions For Homework #5 Solutions For Homework #5 Problem :[5 pts] ( ) The function f(x, y) = e π x a +y has a Fourier Transform as follows f(x, y) a e π(a u +v ) () which is obtained by applying the Similarity Theorem to the

More information

1-D MATH REVIEW CONTINUOUS 1-D FUNCTIONS. Kronecker delta function and its relatives. x 0 = 0

1-D MATH REVIEW CONTINUOUS 1-D FUNCTIONS. Kronecker delta function and its relatives. x 0 = 0 -D MATH REVIEW CONTINUOUS -D FUNCTIONS Kronecker delta function and its relatives delta function δ ( 0 ) 0 = 0 NOTE: The delta function s amplitude is infinite and its area is. The amplitude is shown as

More information

Lecture 9: Introduction to Diffraction of Light

Lecture 9: Introduction to Diffraction of Light Lecture 9: Introduction to Diffraction of Light Lecture aims to explain: 1. Diffraction of waves in everyday life and applications 2. Interference of two one dimensional electromagnetic waves 3. Typical

More information

Image Enhancement in the frequency domain. GZ Chapter 4

Image Enhancement in the frequency domain. GZ Chapter 4 Image Enhancement in the frequency domain GZ Chapter 4 Contents In this lecture we will look at image enhancement in the frequency domain The Fourier series & the Fourier transform Image Processing in

More information

BioE Exam 1 10/9/2018 Answer Sheet - Correct answer is A for all questions. 1. The sagittal plane

BioE Exam 1 10/9/2018 Answer Sheet - Correct answer is A for all questions. 1. The sagittal plane BioE 1330 - Exam 1 10/9/2018 Answer Sheet - Correct answer is A for all questions 1. The sagittal plane A. is perpendicular to the coronal plane. B. is parallel to the top of the head. C. represents a

More information

An Example of Telescope Resolution

An Example of Telescope Resolution An Example of Telescope Resolution J. Kielkopf September 23, 2012 1 Principles Light leaves a distant source with the properties of a spherical wave. That is, the phase of the wave is constant on the surface

More information

Chapter 16 Holography

Chapter 16 Holography Chapter 16 Holography Virtually all recording devices for light respond to light intensity. Problem: How to record, and then later reconstruct both the amplitude and phase of an optical wave. [This question

More information

If the wavelength is larger than the aperture, the wave will spread out at a large angle. [Picture P445] . Distance l S

If the wavelength is larger than the aperture, the wave will spread out at a large angle. [Picture P445] . Distance l S Chapter 10 Diffraction 10.1 Preliminary Considerations Diffraction is a deviation of light from rectilinear propagation. t occurs whenever a portion of a wavefront is obstructed. Hecht; 11/8/010; 10-1

More information

Chapter (5) Matter Waves

Chapter (5) Matter Waves Chapter (5) Matter Waves De Broglie wavelength Wave groups Consider a one- dimensional wave propagating in the positive x- direction with a phase speed v p. Where v p is the speed of a point of constant

More information

GATE EE Topic wise Questions SIGNALS & SYSTEMS

GATE EE Topic wise Questions SIGNALS & SYSTEMS www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)

More information

Metrology and Sensing

Metrology and Sensing Metrology and Sensing Lecture 5: Interferometry I 06--09 Herbert Gross Winter term 06 www.iap.uni-jena.de Preliminary Schedule No Date Subject Detailed Content 8.0. Introduction Introduction, optical measurements,

More information

Metrology and Sensing

Metrology and Sensing Metrology and Sensing Lecture 5: Interferometry I 08--6 Herbert Gross Winter term 08 www.iap.uni-jena.de Schedule Optical Metrology and Sensing 08 No Date Subject Detailed Content 6.0. Introduction Introduction,

More information

Physical Optics. Lecture 4: Quality criteria and resolution Herbert Gross.

Physical Optics. Lecture 4: Quality criteria and resolution Herbert Gross. Physical Optics Lecture 4: Quality criteria and resolution 018-05-0 Herbert Gross www.iap.uni-jena.de Physical Optics: Content No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields,

More information

Waves Part III Electromagnetic waves

Waves Part III Electromagnetic waves Waves Part III Electromagnetic waves Electromagnetic (light) waves Transverse waves Transport energy (and momentum) Can travel through vacuum (!) and certain solids, liquids and gases Do not transport

More information

Lecture notes 5: Diffraction

Lecture notes 5: Diffraction Lecture notes 5: Diffraction Let us now consider how light reacts to being confined to a given aperture. The resolution of an aperture is restricted due to the wave nature of light: as light passes through

More information

1. Waves and Particles 2. Interference of Waves 3. Wave Nature of Light

1. Waves and Particles 2. Interference of Waves 3. Wave Nature of Light 1. Waves and Particles 2. Interference of Waves 3. Wave Nature of Light 1. Double-Slit Eperiment reading: Chapter 22 2. Single-Slit Diffraction reading: Chapter 22 3. Diffraction Grating reading: Chapter

More information

Chapter 35. Interference

Chapter 35. Interference Chapter 35 Interference The concept of optical interference is critical to understanding many natural phenomena, ranging from color shifting in butterfly wings to intensity patterns formed by small apertures.

More information

Optics Optical Testing and Testing Instrumentation Lab

Optics Optical Testing and Testing Instrumentation Lab Optics 513 - Optical Testing and Testing Instrumentation Lab Lab #6 - Interference Microscopes The purpose of this lab is to observe the samples provided using two different interference microscopes --

More information

Imaging Methods: Breath Patterns

Imaging Methods: Breath Patterns Imaging Methods: Breath Patterns Breath / condensation pattern: By cooling a substrate below the condensation temperature H 2 O will condense in different rates on the substrate with the nucleation rate

More information

IMAGING PHYSICS. Kjell Carlsson. Applied Physics Dept., KTH, Stockholm, 2009

IMAGING PHYSICS. Kjell Carlsson. Applied Physics Dept., KTH, Stockholm, 2009 IMAGING PHYSICS Kjell Carlsson Applied Physics Dept., KTH, Stockholm, 009 No part of this document may be copied and distributed without the express written consent of the author (kjell.carlsson@biox.kth.se).

More information

Lecture 11: Introduction to diffraction of light

Lecture 11: Introduction to diffraction of light Lecture 11: Introduction to diffraction of light Diffraction of waves in everyday life and applications Diffraction in everyday life Diffraction in applications Spectroscopy: physics, chemistry, medicine,

More information

Sta$s$cal Op$cs Speckle phenomena in Op$cs. Groupe d op$que atomique Bureau R2.21

Sta$s$cal Op$cs Speckle phenomena in Op$cs. Groupe d op$que atomique Bureau R2.21 Sta$s$cal Op$cs Speckle phenomena in Op$cs Vincent.josse@ins$tutop$que.fr Groupe d op$que atomique Bureau R2.21 Diffrac$on from a rough surface (Fourier speckle) Eample Star imaging through turbulence

More information

Chapter 12 Effects of Partial coherence on imaging systems

Chapter 12 Effects of Partial coherence on imaging systems Chapter 2 Effects of Partial coherence on imaging systems Coherence effects are described by the mutual intensity function J(x, y ; x 2. (under quasimonochromatic conditions We now have the tools to describe

More information

Chapter 7. Interference of Light

Chapter 7. Interference of Light Chapter 7. Interference of Light Last Lecture Superposition of waves Laser This Lecture Two-Beam Interference Young s Double Slit Experiment Virtual Sources Newton s Rings Film Thickness Measurement by

More information

DISCRETE FOURIER TRANSFORM

DISCRETE FOURIER TRANSFORM DD2423 Image Processing and Computer Vision DISCRETE FOURIER TRANSFORM Mårten Björkman Computer Vision and Active Perception School of Computer Science and Communication November 1, 2012 1 Terminology:

More information

PHY410 Optics Exam #3

PHY410 Optics Exam #3 PHY410 Optics Exam #3 NAME: 1 2 Multiple Choice Section - 5 pts each 1. A continuous He-Ne laser beam (632.8 nm) is chopped, using a spinning aperture, into 500 nanosecond pulses. Compute the resultant

More information

Notes on the point spread function and resolution for projection lens/corf. 22 April 2009 Dr. Raymond Browning

Notes on the point spread function and resolution for projection lens/corf. 22 April 2009 Dr. Raymond Browning Notes on the point spread function and resolution for projection lens/corf Abstract April 009 Dr. Raymond Browning R. Browning Consultants, 4 John Street, Shoreham, NY 786 Tel: (63) 8 348 This is a calculation

More information

Conventional Transmission Electron Microscopy. Introduction. Text Books. Text Books. EMSE-509 CWRU Frank Ernst

Conventional Transmission Electron Microscopy. Introduction. Text Books. Text Books. EMSE-509 CWRU Frank Ernst Text Books Conventional Transmission Electron Microscopy EMSE-509 CWRU Frank Ernst D. B. Williams and C. B. Carter: Transmission Electron Microscopy, New York: Plenum Press (1996). L. Reimer: Transmission

More information

Part 1 - Basic Interferometers for Optical Testing

Part 1 - Basic Interferometers for Optical Testing Part 1 - Basic Interferometers for Optical Testing Two Beam Interference Fizeau and Twyman-Green interferometers Basic techniques for testing flat and spherical surfaces Mach-Zehnder Zehnder,, Scatterplate

More information