The regression equation for the gain bears a striking resemblance to the regression equation for the estimate X t : -1k -1 P t t = Ctr tt 7.

Size: px
Start display at page:

Download "The regression equation for the gain bears a striking resemblance to the regression equation for the estimate X t : -1k -1 P t t = Ctr tt 7."

Transcription

1 7.8 The Kalman Filter 307 Yt Figure 7.14 Network for implementing sequential Bayes estimate. The regression equation for the gain bears a striking resemblance to the regression equation for the estimate X t : -1k -1 P t t = Ctr tt P -l~ - H TR-1 t Xt - t t Yt In fact, the gain kt is just the impulse response of the regression equation for Xt: P -Ik HTR-l t t = t t et; This property can also be illustrated with the network of Figure If X-I is set to zero and Yo = 0, Yl = 0,..., Yt-l = 0, Yt = 1, then xt = k t. 7.8 THE KALMAN FILTER The Kalman filter is an algorithm for recursively estimating dynamical state vectors Xt that evolve according to the difference equation Xt+l = AXt + but. In this difference equation, the initial state Xo is drawn from an N[O, Ro1 distribution. From there on, the difference equation is driven by a sequence of independent and identically distributed random variables {u t }, each of which is independent of Xo and distributed as U t : N[O, 0'~1. Because of the way Xt is constructed from a linear combination of normal random vectors, we know that it is a p X 1 normal random vector with mean zero and covariance matrix R t = Extxi: Xt : N[O, R t ]. The recursion for R t is obtained from the difference equation : Rt+1 = ARtA T + O':bb T. The measurements available to us take the form Yt = CTXt + nt, ~/\ where the noise sequence {nt} is a sequence of independent and identically distributed 'I, '0 (( f.( ~.

2 308 7 Bayes Estimators N[O, O"~] random variables, each independent of the sequence {Ut} and the state Xt. The measurement Yt is normally distributed with mean zero and covariance O"t: Yt : N [0,0";] "; = ctrtc + O"~. A block diagram that illustrates how the variables Xt and Yt are generated is given in Figure Kalman posed for himself the problem of estimating the state Xt from the sequence of measurements Yt = [Yo Yl yd T. We shall derive the Kalman filter by using the Gauss-Markov theorem. We begin by noting that the conditional distribution of Xt> given Yt> will be normal: The problem, of course, is to find the a posteriori mean Xtlt and the covariance Ptlt. Suppose we had measurements only up to time t - 1, namely Yt-l = [Yo Yl Yt_d T. The conditional distribution of XI> given Yt-l, would also be normal: While we do not know yet what form the "predictor" Xtlt-l and prediction error covariance matrix P1lt-l will take, we do know two important things about the predictor Xtlt-l and prediction error Otlt-l = Xt - Xtlt-l: 1. The predictor Xtlt-l is a sufficient statistic for Xt. That is,!(xtiyt-l) =!(Xtlx t-l) : N[Xtit-l, Ptlt-d, meaning the measurements Yt-l may be replaced by the predictor Xtlt The predictor Xtl t -l and prediction error Otlt-l = Xt - Xtlt-l orthogonally decompose Xt. That is, Xt = Xtlt-l + Ollt-l Xtlt-l : N[O, RI - Ptlt-d 0t!t-l : N[O, Ptit-Il E Xtit-l A Dllt-l AT =. These results are illustrated in the lower two branches of Figure u, X, y, Figure 7.15 Block diagram for generating the state and the measurement.

3 7.8 The Kalman Filter 309 n, , Yt Xt ,.-- -~-_.-- ~-----4X, -/ G.--_ ~-_.--..._.---_4 X'lt_J Yt-J Figure 7.16 The state X"~ predictor Xtlt-I, and measurement Y t. Now let's suppose a new measurement Yt is obtained. This measurement is related to the state Xt by Yt = CTXt +n" but this may be written Yt = c T (Xtlt-l + fitlt- 1 ) + n t and illustrated with the top branch of Figure With the aid of Figure 7.16 we may write down a linear model for the state Xr, the predictor Xtlt-l, and the new measurement Yt, all in terms of the orthogonal variables fitlt-i> Xtlt-l, and nt:.. I I 0 fi t lt - 1 o I 0 Xtlt-l c T c T 1 nt The covariance matrix for the variables fitl t- I, Xtlt-l, and ntis n; 1 = 0 [ Ptlt-I o When combined with the linear transformation of Equation 7.147, this diagonal covariance structure produces the following covariance matrix for Xt, Xtlt-l, and Yt: +'HIX) [ ~T Xtl t- I R, ~tlt-i Rtc Yt 1 = Ptlt- 1 Ptlt- 1 Pdt-IC T~ ctrt c Ptlt- d'2 1 t R t Ptlt-I Rtc Ptlt-1 ctrt St This is a foreboding result, but it contains all of the information we need to compute

4 310 7 Bayes Estimators the conditional distribution of Xt, given Xtlt-I and Yt: xt/(xtlt-i, Yt) : N[xtlt, Ptjt] ~ [P~ R ]S-I[Xtlt-l] Xtlt = tlt-l t C t Yt The inverse of the patterned matrix St is P R [P~ RclS-l[Ptlt-I] tit = t - t!t-i t t ctr t ' S-l = [P~/-I 0] + -I [ -c) t OT 0 Y t Yt = if; - ct(rt - Ptlt-I)c = ctptlt_lc + if~. When this result is substituted into the formulas for Xtlt and Pt!t, the equations simplify as follows: Xtlt = Xtlt-l + Pt!t-ICy;1 (Yt - CTXrjt-d 1 T Ptlt = Ptlt Ptlt-ICC Ptlt-I' Yt These equations can be written a little more elegantly by defining the Kalman gain k t = Ptlt-IcYt Then the Kalman recursions are Yt = CTptlt-1c + if~. Xrjt = Xtlt-I + kt (Yt - CTXtlt-tl Pt!t = Pt!t-I - ktctptlt-1 = (I - ktct)ptlt-1 = Pt!t-I - Ytktk; These recursions are complete, except for the definitions of Xtlt-I and Pt!t-I. The predictor Xtlt-l is the conditional mean ofxt, given Yt-l. It may be written as Xt!t-l = E[xtIYt-IJ = E[Axt-1 + but-dyt-ij = AXt-llt-l + O. The error covariance Ptjt-I is defined as follows: Ptlt- I = E[xt - xtlt-d[xt - Xtlt-d T = E[Axt-I + but-i - AXt-1It-d[Axt-1 + but-l - AXt-Ilt-Il T = E [A(Xt-l - Xt-Ilt-I) + but-d [A(Xt-I - Xt-Ilt-d + but_dt = APt-llt-l AT + if~bbt

5 7.8 The Kalman Filter 311 y, + Figure 7.17 The Kalman filter. So now we may summarize the celebrated equations of the Kalman filter: xtjt = Xtlt-I + kt (Yt - CTXtlt-d Xtlt-I = AXt-Ilt-1 kt = Ptlt-IcYt Yt = ctptlt_ 1 C + (T~ Ptlt = Ptlt- I - Ytkt k; Pt+llt = APtltA T + (T~bbT. From the prediction error covariance Ptlt- I we compute the Kalman gain kt and the estimator error covariance Ptlt. From Ptlt, Pt+llt is computed, and the recursion continues. The filter is depicted in Figure There is one final wrinkle to this story. From the Kalman recursion for the estimate Xtlt, we may construct the following error equation: Xt - Xtlt = Xt - Xtlt-I - kt(ct(xt - Xtlt-I) + nt) From this equation, we compute the covariance matrix Ptlt: Ptlt = PtIt-1 + Ytktk; - Ptlt-Ick; - ktctptit-1 = Ptlt- I - YtktkJ This reproduces our previously derived recursion and shows that the cross-covariance between the prediction error Xt - Xtlt-I and the residual term Yt - ctxtlt-1 is, in fact, the product of the variance Yt and the Kalman gain k t : E(xt - Xtlt-I)(Yt - CTXtlt_I)T = E[xt - Xtlt-d[cT(xt - Xtlt-I) + nt]t = Ptll-Ic = ytkt

Kalman Filter and Parameter Identification. Florian Herzog

Kalman Filter and Parameter Identification. Florian Herzog Kalman Filter and Parameter Identification Florian Herzog 2013 Continuous-time Kalman Filter In this chapter, we shall use stochastic processes with independent increments w 1 (.) and w 2 (.) at the input

More information

14 - Gaussian Stochastic Processes

14 - Gaussian Stochastic Processes 14-1 Gaussian Stochastic Processes S. Lall, Stanford 211.2.24.1 14 - Gaussian Stochastic Processes Linear systems driven by IID noise Evolution of mean and covariance Example: mass-spring system Steady-state

More information

Kalman Filter. Predict: Update: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q

Kalman Filter. Predict: Update: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q Kalman Filter Kalman Filter Predict: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q Update: K = P k k 1 Hk T (H k P k k 1 Hk T + R) 1 x k k = x k k 1 + K(z k H k x k k 1 ) P k k =(I

More information

Lecture 6: Bayesian Inference in SDE Models

Lecture 6: Bayesian Inference in SDE Models Lecture 6: Bayesian Inference in SDE Models Bayesian Filtering and Smoothing Point of View Simo Särkkä Aalto University Simo Särkkä (Aalto) Lecture 6: Bayesian Inference in SDEs 1 / 45 Contents 1 SDEs

More information

Statistical Techniques in Robotics (16-831, F12) Lecture#17 (Wednesday October 31) Kalman Filters. Lecturer: Drew Bagnell Scribe:Greydon Foil 1

Statistical Techniques in Robotics (16-831, F12) Lecture#17 (Wednesday October 31) Kalman Filters. Lecturer: Drew Bagnell Scribe:Greydon Foil 1 Statistical Techniques in Robotics (16-831, F12) Lecture#17 (Wednesday October 31) Kalman Filters Lecturer: Drew Bagnell Scribe:Greydon Foil 1 1 Gauss Markov Model Consider X 1, X 2,...X t, X t+1 to be

More information

Notes on Time Series Modeling

Notes on Time Series Modeling Notes on Time Series Modeling Garey Ramey University of California, San Diego January 17 1 Stationary processes De nition A stochastic process is any set of random variables y t indexed by t T : fy t g

More information

Statistics 910, #15 1. Kalman Filter

Statistics 910, #15 1. Kalman Filter Statistics 910, #15 1 Overview 1. Summary of Kalman filter 2. Derivations 3. ARMA likelihoods 4. Recursions for the variance Kalman Filter Summary of Kalman filter Simplifications To make the derivations

More information

A Tutorial on Recursive methods in Linear Least Squares Problems

A Tutorial on Recursive methods in Linear Least Squares Problems A Tutorial on Recursive methods in Linear Least Squares Problems by Arvind Yedla 1 Introduction This tutorial motivates the use of Recursive Methods in Linear Least Squares problems, specifically Recursive

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond January 18, 2017 Contents 1 Batch and Recursive Estimation 2 Towards Bayesian Filtering 3 Kalman Filter and Bayesian Filtering and Smoothing

More information

Name of the Student: Problems on Discrete & Continuous R.Vs

Name of the Student: Problems on Discrete & Continuous R.Vs Engineering Mathematics 05 SUBJECT NAME : Probability & Random Process SUBJECT CODE : MA6 MATERIAL NAME : University Questions MATERIAL CODE : JM08AM004 REGULATION : R008 UPDATED ON : Nov-Dec 04 (Scan

More information

2 Introduction of Discrete-Time Systems

2 Introduction of Discrete-Time Systems 2 Introduction of Discrete-Time Systems This chapter concerns an important subclass of discrete-time systems, which are the linear and time-invariant systems excited by Gaussian distributed stochastic

More information

State Variable Analysis of Linear Dynamical Systems

State Variable Analysis of Linear Dynamical Systems Chapter 6 State Variable Analysis of Linear Dynamical Systems 6 Preliminaries In state variable approach, a system is represented completely by a set of differential equations that govern the evolution

More information

Lessons in Estimation Theory for Signal Processing, Communications, and Control

Lessons in Estimation Theory for Signal Processing, Communications, and Control Lessons in Estimation Theory for Signal Processing, Communications, and Control Jerry M. Mendel Department of Electrical Engineering University of Southern California Los Angeles, California PRENTICE HALL

More information

Particle Filters. Outline

Particle Filters. Outline Particle Filters M. Sami Fadali Professor of EE University of Nevada Outline Monte Carlo integration. Particle filter. Importance sampling. Degeneracy Resampling Example. 1 2 Monte Carlo Integration Numerical

More information

CS 532: 3D Computer Vision 6 th Set of Notes

CS 532: 3D Computer Vision 6 th Set of Notes 1 CS 532: 3D Computer Vision 6 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Lecture Outline Intro to Covariance

More information

Vlad Estivill-Castro. Robots for People --- A project for intelligent integrated systems

Vlad Estivill-Castro. Robots for People --- A project for intelligent integrated systems 1 Vlad Estivill-Castro Robots for People --- A project for intelligent integrated systems V. Estivill-Castro 2 Probabilistic Map-based Localization (Kalman Filter) Chapter 5 (textbook) Based on textbook

More information

Least Squares. Ken Kreutz-Delgado (Nuno Vasconcelos) ECE 175A Winter UCSD

Least Squares. Ken Kreutz-Delgado (Nuno Vasconcelos) ECE 175A Winter UCSD Least Squares Ken Kreutz-Delgado (Nuno Vasconcelos) ECE 75A Winter 0 - UCSD (Unweighted) Least Squares Assume linearity in the unnown, deterministic model parameters Scalar, additive noise model: y f (

More information

3. Frequency-Domain Analysis of Continuous- Time Signals and Systems

3. Frequency-Domain Analysis of Continuous- Time Signals and Systems 3. Frequency-Domain Analysis of Continuous- ime Signals and Systems 3.. Definition of Continuous-ime Fourier Series (3.3-3.4) 3.2. Properties of Continuous-ime Fourier Series (3.5) 3.3. Definition of Continuous-ime

More information

EECE Adaptive Control

EECE Adaptive Control EECE 574 - Adaptive Control Recursive Identification Algorithms Guy Dumont Department of Electrical and Computer Engineering University of British Columbia January 2012 Guy Dumont (UBC EECE) EECE 574 -

More information

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3.0 INTRODUCTION The purpose of this chapter is to introduce estimators shortly. More elaborated courses on System Identification, which are given

More information

Lydia J Price* and Wilfried R Vanhonacker**

Lydia J Price* and Wilfried R Vanhonacker** "RECURSIVE LEAST-SQUARES APPROACH TO DM A TRANSFERABILITY: EXPOSITION ANVNUMERICAL RESULTS" by Lydia J Price* and Wilfried R Vanhonacker** N 92/38/MKT * Assistant Professor of Marketing at INSEAD, Boulevard

More information

Dynamic measurement: application of system identification in metrology

Dynamic measurement: application of system identification in metrology 1 / 25 Dynamic measurement: application of system identification in metrology Ivan Markovsky Dynamic measurement takes into account the dynamical properties of the sensor 2 / 25 model of sensor as dynamical

More information

Sensor Tasking and Control

Sensor Tasking and Control Sensor Tasking and Control Sensing Networking Leonidas Guibas Stanford University Computation CS428 Sensor systems are about sensing, after all... System State Continuous and Discrete Variables The quantities

More information

Sequential State Estimation (Crassidas and Junkins, Chapter 5)

Sequential State Estimation (Crassidas and Junkins, Chapter 5) Sequential State Estimation (Crassidas and Junkins, Chapter 5) Please read: 5.1, 5.3-5.6 5.3 The Discrete-Time Kalman Filter The discrete-time Kalman filter is used when the dynamics and measurements are

More information

APPROXIMATIONS FOR NONLINEAR FILTERING

APPROXIMATIONS FOR NONLINEAR FILTERING October, 1982 LIDS-P-1244 APPROXIMATIONS FOR NONLINEAR FILTERING Sanjoy K. Mitter Department of Electrical Engiieering and Computer Science and Laboratory for Information and Decision Systems Massachusetts

More information

Chapter 6. Random Processes

Chapter 6. Random Processes Chapter 6 Random Processes Random Process A random process is a time-varying function that assigns the outcome of a random experiment to each time instant: X(t). For a fixed (sample path): a random process

More information

Stochastic Processes

Stochastic Processes Elements of Lecture II Hamid R. Rabiee with thanks to Ali Jalali Overview Reading Assignment Chapter 9 of textbook Further Resources MIT Open Course Ware S. Karlin and H. M. Taylor, A First Course in Stochastic

More information

CS 4495 Computer Vision Principle Component Analysis

CS 4495 Computer Vision Principle Component Analysis CS 4495 Computer Vision Principle Component Analysis (and it s use in Computer Vision) Aaron Bobick School of Interactive Computing Administrivia PS6 is out. Due *** Sunday, Nov 24th at 11:55pm *** PS7

More information

Dynamic System Identification using HDMR-Bayesian Technique

Dynamic System Identification using HDMR-Bayesian Technique Dynamic System Identification using HDMR-Bayesian Technique *Shereena O A 1) and Dr. B N Rao 2) 1), 2) Department of Civil Engineering, IIT Madras, Chennai 600036, Tamil Nadu, India 1) ce14d020@smail.iitm.ac.in

More information

Hidden Markov Models (recap BNs)

Hidden Markov Models (recap BNs) Probabilistic reasoning over time - Hidden Markov Models (recap BNs) Applied artificial intelligence (EDA132) Lecture 10 2016-02-17 Elin A. Topp Material based on course book, chapter 15 1 A robot s view

More information

A Kalman Filter Primer

A Kalman Filter Primer Book Summary RK November 3, 2013 Abstract The purpose of this document is to summarize the main points of the book. 1 1 Preface The author is a professor at the statistics department of Arizona State university

More information

X t = a t + r t, (7.1)

X t = a t + r t, (7.1) Chapter 7 State Space Models 71 Introduction State Space models, developed over the past 10 20 years, are alternative models for time series They include both the ARIMA models of Chapters 3 6 and the Classical

More information

Time Series Analysis

Time Series Analysis Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture State space models, 1st part: Model: Sec. 10.1 The

More information

NONLINEAR STATISTICAL SIGNAL PROCESSING: A PARTI- CLE FILTERING APPROACH

NONLINEAR STATISTICAL SIGNAL PROCESSING: A PARTI- CLE FILTERING APPROACH NONLINEAR STATISTICAL SIGNAL PROCESSING: A PARTI- CLE FILTERING APPROACH J. V. Candy (tsoftware@aol.com) University of California, Lawrence Livermore National Lab. & Santa Barbara Livermore CA 94551 USA

More information

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept,

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, Linear Regression In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, y = Xβ + ɛ, where y t = (y 1,..., y n ) is the column vector of target values,

More information

Quantitative Analysis of Financial Markets. Summary of Part II. Key Concepts & Formulas. Christopher Ting. November 11, 2017

Quantitative Analysis of Financial Markets. Summary of Part II. Key Concepts & Formulas. Christopher Ting. November 11, 2017 Summary of Part II Key Concepts & Formulas Christopher Ting November 11, 2017 christopherting@smu.edu.sg http://www.mysmu.edu/faculty/christophert/ Christopher Ting 1 of 16 Why Regression Analysis? Understand

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 12: Gaussian Belief Propagation, State Space Models and Kalman Filters Guest Kalman Filter Lecture by

More information

5 Kalman filters. 5.1 Scalar Kalman filter. Unit delay Signal model. System model

5 Kalman filters. 5.1 Scalar Kalman filter. Unit delay Signal model. System model 5 Kalman filters 5.1 Scalar Kalman filter 5.1.1 Signal model System model {Y (n)} is an unobservable sequence which is described by the following state or system equation: Y (n) = h(n)y (n 1) + Z(n), n

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

Fundamental Probability and Statistics

Fundamental Probability and Statistics Fundamental Probability and Statistics "There are known knowns. These are things we know that we know. There are known unknowns. That is to say, there are things that we know we don't know. But there are

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 6.2: Kalman Filter Jürgen Sturm Technische Universität München Motivation Bayes filter is a useful tool for state

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

LECTURE 2 LINEAR REGRESSION MODEL AND OLS

LECTURE 2 LINEAR REGRESSION MODEL AND OLS SEPTEMBER 29, 2014 LECTURE 2 LINEAR REGRESSION MODEL AND OLS Definitions A common question in econometrics is to study the effect of one group of variables X i, usually called the regressors, on another

More information

Control Systems (ECE411) Lectures 7 & 8

Control Systems (ECE411) Lectures 7 & 8 (ECE411) Lectures 7 & 8, Professor Department of Electrical and Computer Engineering Colorado State University Fall 2016 Signal Flow Graph Examples Example 3: Find y6 y 1 and y5 y 2. Part (a): Input: y

More information

1 Kalman Filter Introduction

1 Kalman Filter Introduction 1 Kalman Filter Introduction You should first read Chapter 1 of Stochastic models, estimation, and control: Volume 1 by Peter S. Maybec (available here). 1.1 Explanation of Equations (1-3) and (1-4) Equation

More information

Lecture 16: State Space Model and Kalman Filter Bus 41910, Time Series Analysis, Mr. R. Tsay

Lecture 16: State Space Model and Kalman Filter Bus 41910, Time Series Analysis, Mr. R. Tsay Lecture 6: State Space Model and Kalman Filter Bus 490, Time Series Analysis, Mr R Tsay A state space model consists of two equations: S t+ F S t + Ge t+, () Z t HS t + ɛ t (2) where S t is a state vector

More information

Principal Component Analysis-I Geog 210C Introduction to Spatial Data Analysis. Chris Funk. Lecture 17

Principal Component Analysis-I Geog 210C Introduction to Spatial Data Analysis. Chris Funk. Lecture 17 Principal Component Analysis-I Geog 210C Introduction to Spatial Data Analysis Chris Funk Lecture 17 Outline Filters and Rotations Generating co-varying random fields Translating co-varying fields into

More information

5.2 The Levi-Civita Connection on Surfaces. 1 Parallel transport of vector fields on a surface M

5.2 The Levi-Civita Connection on Surfaces. 1 Parallel transport of vector fields on a surface M 5.2 The Levi-Civita Connection on Surfaces In this section, we define the parallel transport of vector fields on a surface M, and then we introduce the concept of the Levi-Civita connection, which is also

More information

E190Q Lecture 11 Autonomous Robot Navigation

E190Q Lecture 11 Autonomous Robot Navigation E190Q Lecture 11 Autonomous Robot Navigation Instructor: Chris Clark Semester: Spring 013 1 Figures courtesy of Siegwart & Nourbakhsh Control Structures Planning Based Control Prior Knowledge Operator

More information

Observability and state estimation

Observability and state estimation EE263 Autumn 2015 S Boyd and S Lall Observability and state estimation state estimation discrete-time observability observability controllability duality observers for noiseless case continuous-time observability

More information

MIT Spring 2015

MIT Spring 2015 Regression Analysis MIT 18.472 Dr. Kempthorne Spring 2015 1 Outline Regression Analysis 1 Regression Analysis 2 Multiple Linear Regression: Setup Data Set n cases i = 1, 2,..., n 1 Response (dependent)

More information

Computer Vision Group Prof. Daniel Cremers. 3. Regression

Computer Vision Group Prof. Daniel Cremers. 3. Regression Prof. Daniel Cremers 3. Regression Categories of Learning (Rep.) Learnin g Unsupervise d Learning Clustering, density estimation Supervised Learning learning from a training data set, inference on the

More information

PROBABILISTIC REASONING OVER TIME

PROBABILISTIC REASONING OVER TIME PROBABILISTIC REASONING OVER TIME In which we try to interpret the present, understand the past, and perhaps predict the future, even when very little is crystal clear. Outline Time and uncertainty Inference:

More information

STATISTICAL ORBIT DETERMINATION

STATISTICAL ORBIT DETERMINATION STATISTICAL ORBIT DETERMINATION Satellite Tracking Example of SNC and DMC ASEN 5070 LECTURE 6 4.08.011 1 We will develop a simple state noise compensation (SNC) algorithm. This algorithm adds process noise

More information

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Maximilian Kasy Department of Economics, Harvard University 1 / 37 Agenda 6 equivalent representations of the

More information

Categorical Predictor Variables

Categorical Predictor Variables Categorical Predictor Variables We often wish to use categorical (or qualitative) variables as covariates in a regression model. For binary variables (taking on only 2 values, e.g. sex), it is relatively

More information

6 Systems Represented by Differential and Difference Equations

6 Systems Represented by Differential and Difference Equations 6 Systems Represented by Differential and Difference Equations Recommended Problems P6.1 Suppose that y 1 (t) and y 2 (t) both satisfy the homogeneous linear constant-coefficient differential equation

More information

Data Fusion Kalman Filtering Self Localization

Data Fusion Kalman Filtering Self Localization Data Fusion Kalman Filtering Self Localization Armando Jorge Sousa http://www.fe.up.pt/asousa asousa@fe.up.pt Faculty of Engineering, University of Porto, Portugal Department of Electrical and Computer

More information

Differential and Difference LTI systems

Differential and Difference LTI systems Signals and Systems Lecture: 6 Differential and Difference LTI systems Differential and difference linear time-invariant (LTI) systems constitute an extremely important class of systems in engineering.

More information

Optimal Kernel Shapes for Local Linear Regression

Optimal Kernel Shapes for Local Linear Regression Optimal Kernel Shapes for Local Linear Regression Dirk Ormoneit Trevor Hastie Department of Statistics Stanford University Stanford, CA 94305-4065 ormoneit@stat.stanjord.edu Abstract Local linear regression

More information

SRI VIDYA COLLEGE OF ENGINEERING AND TECHNOLOGY UNIT 3 RANDOM PROCESS TWO MARK QUESTIONS

SRI VIDYA COLLEGE OF ENGINEERING AND TECHNOLOGY UNIT 3 RANDOM PROCESS TWO MARK QUESTIONS UNIT 3 RANDOM PROCESS TWO MARK QUESTIONS 1. Define random process? The sample space composed of functions of time is called a random process. 2. Define Stationary process? If a random process is divided

More information

Name of the Student: Problems on Discrete & Continuous R.Vs

Name of the Student: Problems on Discrete & Continuous R.Vs Engineering Mathematics 08 SUBJECT NAME : Probability & Random Processes SUBJECT CODE : MA645 MATERIAL NAME : University Questions REGULATION : R03 UPDATED ON : November 07 (Upto N/D 07 Q.P) (Scan the

More information

Ocean Inverse Problem D. Stammer

Ocean Inverse Problem D. Stammer Ocean Inverse Problem D. Stammer August 16, 2004 1 Outline: 1. Review 2. Level of no (known) motion and box inversion 3. Mapping/objective analysis 4. Simple Least Squares 5. Filtering 6. Smoothing and

More information

Chapter 3 : Linear Differential Eqn. Chapter 3 : Linear Differential Eqn.

Chapter 3 : Linear Differential Eqn. Chapter 3 : Linear Differential Eqn. 1.0 Introduction Linear differential equations is all about to find the total solution y(t), where : y(t) = homogeneous solution [ y h (t) ] + particular solution y p (t) General form of differential equation

More information

Linear regression methods

Linear regression methods Linear regression methods Most of our intuition about statistical methods stem from linear regression. For observations i = 1,..., n, the model is Y i = p X ij β j + ε i, j=1 where Y i is the response

More information

Nonlinear State Estimation! Extended Kalman Filters!

Nonlinear State Estimation! Extended Kalman Filters! Nonlinear State Estimation! Extended Kalman Filters! Robert Stengel! Optimal Control and Estimation, MAE 546! Princeton University, 2017!! Deformation of the probability distribution!! Neighboring-optimal

More information

UCSD ECE250 Handout #27 Prof. Young-Han Kim Friday, June 8, Practice Final Examination (Winter 2017)

UCSD ECE250 Handout #27 Prof. Young-Han Kim Friday, June 8, Practice Final Examination (Winter 2017) UCSD ECE250 Handout #27 Prof. Young-Han Kim Friday, June 8, 208 Practice Final Examination (Winter 207) There are 6 problems, each problem with multiple parts. Your answer should be as clear and readable

More information

INTRODUCTORY ECONOMETRICS

INTRODUCTORY ECONOMETRICS INTRODUCTORY ECONOMETRICS Lesson 2b Dr Javier Fernández etpfemaj@ehu.es Dpt. of Econometrics & Statistics UPV EHU c J Fernández (EA3-UPV/EHU), February 21, 2009 Introductory Econometrics - p. 1/192 GLRM:

More information

Regression Models - Introduction

Regression Models - Introduction Regression Models - Introduction In regression models, two types of variables that are studied: A dependent variable, Y, also called response variable. It is modeled as random. An independent variable,

More information

A one-dimensional Kalman filter for the correction of near surface temperature forecasts

A one-dimensional Kalman filter for the correction of near surface temperature forecasts Meteorol. Appl. 9, 437 441 (2002) DOI:10.1017/S135048270200401 A one-dimensional Kalman filter for the correction of near surface temperature forecasts George Galanis 1 & Manolis Anadranistakis 2 1 Greek

More information

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno Stochastic Processes M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno 1 Outline Stochastic (random) processes. Autocorrelation. Crosscorrelation. Spectral density function.

More information

ADAPTIVE FILTER THEORY

ADAPTIVE FILTER THEORY ADAPTIVE FILTER THEORY Fourth Edition Simon Haykin Communications Research Laboratory McMaster University Hamilton, Ontario, Canada Front ice Hall PRENTICE HALL Upper Saddle River, New Jersey 07458 Preface

More information

Factor Analysis and Kalman Filtering (11/2/04)

Factor Analysis and Kalman Filtering (11/2/04) CS281A/Stat241A: Statistical Learning Theory Factor Analysis and Kalman Filtering (11/2/04) Lecturer: Michael I. Jordan Scribes: Byung-Gon Chun and Sunghoon Kim 1 Factor Analysis Factor analysis is used

More information

2D Image Processing. Bayes filter implementation: Kalman filter

2D Image Processing. Bayes filter implementation: Kalman filter 2D Image Processing Bayes filter implementation: Kalman filter Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de

More information

Mathematical Formulation of Our Example

Mathematical Formulation of Our Example Mathematical Formulation of Our Example We define two binary random variables: open and, where is light on or light off. Our question is: What is? Computer Vision 1 Combining Evidence Suppose our robot

More information

Networked Sensing, Estimation and Control Systems

Networked Sensing, Estimation and Control Systems Networked Sensing, Estimation and Control Systems Vijay Gupta University of Notre Dame Richard M. Murray California Institute of echnology Ling Shi Hong Kong University of Science and echnology Bruno Sinopoli

More information

12/20/2017. Lectures on Signals & systems Engineering. Designed and Presented by Dr. Ayman Elshenawy Elsefy

12/20/2017. Lectures on Signals & systems Engineering. Designed and Presented by Dr. Ayman Elshenawy Elsefy //7 ectures on Signals & systems Engineering Designed and Presented by Dr. Ayman Elshenawy Elsefy Dept. of Systems & Computer Eng. Al-Azhar University Email : eaymanelshenawy@yahoo.com aplace Transform

More information

A general filter for measurements with any probability

A general filter for measurements with any probability A general filter for measurements with any probability distribution Yoav Rosenberg Michael Werman Institute of Computer Science Institute of Computer Science The Hebrew University The Hebrew University

More information

ECE 301: Signals and Systems Homework Assignment #5

ECE 301: Signals and Systems Homework Assignment #5 ECE 30: Signals and Systems Homework Assignment #5 Due on November, 205 Professor: Aly El Gamal TA: Xianglun Mao Aly El Gamal ECE 30: Signals and Systems Homework Assignment #5 Problem Problem Compute

More information

Introduction to System Identification and Adaptive Control

Introduction to System Identification and Adaptive Control Introduction to System Identification and Adaptive Control A. Khaki Sedigh Control Systems Group Faculty of Electrical and Computer Engineering K. N. Toosi University of Technology May 2009 Introduction

More information

Improved diffusion Monte Carlo

Improved diffusion Monte Carlo Improved diffusion Monte Carlo Jonathan Weare University of Chicago with Martin Hairer (U of Warwick) October 4, 2012 Diffusion Monte Carlo The original motivation for DMC was to compute averages with

More information

Module 02 Control Systems Preliminaries, Intro to State Space

Module 02 Control Systems Preliminaries, Intro to State Space Module 02 Control Systems Preliminaries, Intro to State Space Ahmad F. Taha EE 5143: Linear Systems and Control Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha August 28, 2017 Ahmad

More information

Linear Models for Regression

Linear Models for Regression Linear Models for Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Extreme Values and Positive/ Negative Definite Matrix Conditions

Extreme Values and Positive/ Negative Definite Matrix Conditions Extreme Values and Positive/ Negative Definite Matrix Conditions James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 8, 016 Outline 1

More information

Parameter Estimation in a Moving Horizon Perspective

Parameter Estimation in a Moving Horizon Perspective Parameter Estimation in a Moving Horizon Perspective State and Parameter Estimation in Dynamical Systems Reglerteknik, ISY, Linköpings Universitet State and Parameter Estimation in Dynamical Systems OUTLINE

More information

Lecture 6: Multiple Model Filtering, Particle Filtering and Other Approximations

Lecture 6: Multiple Model Filtering, Particle Filtering and Other Approximations Lecture 6: Multiple Model Filtering, Particle Filtering and Other Approximations Department of Biomedical Engineering and Computational Science Aalto University April 28, 2010 Contents 1 Multiple Model

More information

Summary of lecture 8. FIR Wiener filter: computed by solving a finite number of Wiener-Hopf equations, h(i)r yy (k i) = R sy (k); k = 0; : : : ; m

Summary of lecture 8. FIR Wiener filter: computed by solving a finite number of Wiener-Hopf equations, h(i)r yy (k i) = R sy (k); k = 0; : : : ; m Summar of lecture 8 FIR Wiener filter: computed b solving a finite number of Wiener-Hopf equations, mx i= h(i)r (k i) = R s (k); k = ; : : : ; m Whitening filter: A filter that removes the correlation

More information

Schrodinger Bridges classical and quantum evolution

Schrodinger Bridges classical and quantum evolution .. Schrodinger Bridges classical and quantum evolution Tryphon Georgiou University of Minnesota! Joint work with Michele Pavon and Yongxin Chen! LCCC Workshop on Dynamic and Control in Networks Lund, October

More information

6.435, System Identification

6.435, System Identification SET 6 System Identification 6.435 Parametrized model structures One-step predictor Identifiability Munther A. Dahleh 1 Models of LTI Systems A complete model u = input y = output e = noise (with PDF).

More information

Linear Methods for Regression. Lijun Zhang

Linear Methods for Regression. Lijun Zhang Linear Methods for Regression Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Linear Regression Models and Least Squares Subset Selection Shrinkage Methods Methods Using Derived

More information

Need for Several Predictor Variables

Need for Several Predictor Variables Multiple regression One of the most widely used tools in statistical analysis Matrix expressions for multiple regression are the same as for simple linear regression Need for Several Predictor Variables

More information

arxiv: v1 [math.ds] 27 Jun 2008

arxiv: v1 [math.ds] 27 Jun 2008 MINIMAX STATE ESTIMATION FOR A DYNAMIC SYSTEM DESCRIBED BY AN EQUATION WITH CLOSED LINEAR MAPPING IN HILBERT SPACE arxiv:0806.4498v1 [math.ds] 27 Jun 2008 Serhiy M.Zhuk Cybernetics faculty Shevchenko National

More information

Lecture 32: Infinite-dimensional/Functionvalued. Functions and Random Regressions. Bruce Walsh lecture notes Synbreed course version 11 July 2013

Lecture 32: Infinite-dimensional/Functionvalued. Functions and Random Regressions. Bruce Walsh lecture notes Synbreed course version 11 July 2013 Lecture 32: Infinite-dimensional/Functionvalued Traits: Covariance Functions and Random Regressions Bruce Walsh lecture notes Synbreed course version 11 July 2013 1 Longitudinal traits Many classic quantitative

More information

1 Cricket chirps: an example

1 Cricket chirps: an example Notes for 2016-09-26 1 Cricket chirps: an example Did you know that you can estimate the temperature by listening to the rate of chirps? The data set in Table 1 1. represents measurements of the number

More information

A TERM PAPER REPORT ON KALMAN FILTER

A TERM PAPER REPORT ON KALMAN FILTER A TERM PAPER REPORT ON KALMAN FILTER By B. Sivaprasad (Y8104059) CH. Venkata Karunya (Y8104066) Department of Electrical Engineering Indian Institute of Technology, Kanpur Kanpur-208016 SCALAR KALMAN FILTER

More information

A primer on Structural VARs

A primer on Structural VARs A primer on Structural VARs Claudia Foroni Norges Bank 10 November 2014 Structural VARs 1/ 26 Refresh: what is a VAR? VAR (p) : where y t K 1 y t = ν + B 1 y t 1 +... + B p y t p + u t, (1) = ( y 1t...

More information

Lecture 7: Optimal Smoothing

Lecture 7: Optimal Smoothing Department of Biomedical Engineering and Computational Science Aalto University March 17, 2011 Contents 1 What is Optimal Smoothing? 2 Bayesian Optimal Smoothing Equations 3 Rauch-Tung-Striebel Smoother

More information

This examination consists of 11 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS

This examination consists of 11 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS THE UNIVERSITY OF BRITISH COLUMBIA Department of Electrical and Computer Engineering EECE 564 Detection and Estimation of Signals in Noise Final Examination 6 December 2006 This examination consists of

More information

Chapter 3. LQ, LQG and Control System Design. Dutch Institute of Systems and Control

Chapter 3. LQ, LQG and Control System Design. Dutch Institute of Systems and Control Chapter 3 LQ, LQG and Control System H 2 Design Overview LQ optimization state feedback LQG optimization output feedback H 2 optimization non-stochastic version of LQG Application to feedback system design

More information

Linear System Theory. Wonhee Kim Lecture 1. March 7, 2018

Linear System Theory. Wonhee Kim Lecture 1. March 7, 2018 Linear System Theory Wonhee Kim Lecture 1 March 7, 2018 1 / 22 Overview Course Information Prerequisites Course Outline What is Control Engineering? Examples of Control Systems Structure of Control Systems

More information