Mechanics Lab & Problem Sheet 2: Structures ( )

Size: px
Start display at page:

Download "Mechanics Lab & Problem Sheet 2: Structures ( )"

Transcription

1 Mechanics Lab & Problem Sheet 2: Structures ( ) Name (please print): P/1 Tutor (please print): Lab group Notes In the session you will be divided into small groups (about five per group). For the experiments you will be using small model structures mounted on a board. The structures can be loaded by hanging weights on different parts of the structure. The structures are simple, pin-jointed trusses, and one (or more) of the members can be replaced by a force meter to allow you to measure the force in that member. The force meters should be zeroed before adding the load. The force meters are designed so that they can measure tension and compression - remember to note which type of force it is. Once you have made a measurement, the structure can be partly disassembled and the force meter moved to a new position and the experiment repeated. ontinue moving the force meter around the structure until you have found the force in each member. e careful when dismantling the trusses, especially the connections with the force meters. Use black connectors where three members meet, white for four and use the short threaded lengths of tube with nuts at each end for more than four. fter the laboratory session, complete the problems at the end of the booklet (which include calculations for the structures in the laboratory experiments). Space has been left on some of the sheets for your working - use the blank facing pages if you run out of space on the main sheets. For the final questions you will need to use extra sheets for working, please staple them to the back of the booklet.

2 Structure 1 force meter X Y The structure is supported at each end. It is arranged so that a load (weight) can be put in one of two positions: X - symmetric load Y - asymmetric load Keeping the force meter in one place, apply a 150g load to the position X and then to position Y. Record your results on the diagrams below, remembering to note whether the force is compression or tension. Move the force meter to a new position and repeat. (You can make use of symmetries to reduce the number of moves.) Tension ompression m = = m g = m = = m g =

3 Structures 2a and 2b 2a) force meter These two similar structures differ only in the position of the diagonal members. They are supported at the top-left and top-right, and loaded with three equal masses (simultaneously). There are two types of members made up with force meters: one for the diagonals and one for all the other members. You can make use of symmetry to reduce the amount of moving of force meters you have to do. Remember to record whether the member is in tension or compression. 2b) Tension ompression

4 Structure Problems 1) The simple truss shown is supported by a roller at, a pin at and has a 150 gram mass applied at. hat is magnitude of the force acting at? Force acting at = N 150 g omplete the free body diagram above by adding all the external forces acting on the truss. rite down equations for (i) the sum of the horizontal forces acting on the truss, (ii) the sum of vertical forces acting on the truss and (iii) the sum of the moments of the external forces about the point. Thus calculate all the external forces acting on the truss. Mark the external forces on the diagram below.

5 Joint ssume the members meeting at point are under compression, complete the sketch of the forces acting on joint, marking on angles and known values. Sum the vertical components of the forces acting on to find the value of. = N Then sum the horizontal components of the forces acting on to find. (Hint: if the value is negative then the member is under tension, not compression). = N ecause the truss and loading are symmetric, the force in will be the same as in, and the force in the same as in. Mark all the known forces on the diagram at the bottom of the previous page, using the convention that a compressive force is marked by tension by. Joint Now sketch the forces acting on joint. Sum the vertical components to find the force in the member, then the horizontal components to find the force in the member. gain the force in must be the same as the force in. Mark all the forces on the diagram on the previous page. Joint (heck) heck that the sum of the horizontal forces acting on is equal to zero, and check that sum of the vertical forces acting on is zero.

6 For the following simple trusses, use the same procedure (with clearly laid out working) as in question 1 to find the external forces and all the forces in the members of each truss. ll the working should be done on separate sheets stapled to the back of this booklet but please put your final answers on the diagrams on the next page (external forces and forces in the members). Remember to check calculations where possible. 2) Unlike question 1, the loading isn't symmetric, so you will have to go through each joint. 150 g 3) Treat the truss as pinned at joint, with a vertical cable at, and ram weights at each of, and F. You can use symmetry to simplify some of the calculations. F 4) Similar to (3), but with the diagonal members in the other direction. omment on the differences between this truss and the truss in (3). F

7 nswers 2) 3) 4) omment:

Calculating Truss Forces Unit 2 Lesson 2.1 Statics

Calculating Truss Forces Unit 2 Lesson 2.1 Statics alculating Truss Forces alculating Truss Forces Principles of Engineering 22 Forces ompression body being squeezed Tension body being stretched Truss truss is composed of slender members joined together

More information

Structural Analysis. Method of Joints. Method of Pins

Structural Analysis. Method of Joints. Method of Pins Structural nalysis / Method of Pins I m reading a book about an1gravity. It s impossible to put down. Pop Quiz What is today s date? 2 1 Trusses Trusses are common means of transferring loads from their

More information

== Delft University of Technology == Give on the upper right. Exam STATICS /

== Delft University of Technology == Give on the upper right. Exam STATICS / == elft University of Technology == Give on the upper right University ourse pplied Mechanics corner of each sheet your NME STUY NUMER and ISIPLINE Exam STTIS 2003.08.26 / 09.00-12.00 The work of a student

More information

Calculating Truss Forces. Method of Joints

Calculating Truss Forces. Method of Joints Calculating Truss Forces Method of Joints Forces Compression body being squeezed Tension body being stretched Truss truss is composed of slender members joined together at their end points. They are usually

More information

ME 201 Engineering Mechanics: Statics

ME 201 Engineering Mechanics: Statics ME 201 Engineering Mechanics: Statics Unit 7.1 Simple Trusses Method of Joints Zero Force Members Simple Truss structure composed of slender members joined together at their end points Planar Truss Simple

More information

Truss Analysis Method of Joints. Steven Vukazich San Jose State University

Truss Analysis Method of Joints. Steven Vukazich San Jose State University Truss nalysis Method of Joints Steven Vukazich San Jose State University General Procedure for the nalysis of Simple Trusses using the Method of Joints 1. raw a Free Body iagram (FB) of the entire truss

More information

Physics 8 Wednesday, October 28, 2015

Physics 8 Wednesday, October 28, 2015 Physics 8 Wednesday, October 8, 015 HW7 (due this Friday will be quite easy in comparison with HW6, to make up for your having a lot to read this week. For today, you read Chapter 3 (analyzes cables, trusses,

More information

ME C85 / CE C30 Midterm 1 Exam Monday October 4, 2010

ME C85 / CE C30 Midterm 1 Exam Monday October 4, 2010 Name: SID: ME C85 / CE C30 Midterm 1 Exam Monday October 4, 2010 Please 1. Read through the test before starting. 2. If you re out of space, write on back side and add a note in your solution referring

More information

MEE224: Engineering Mechanics Lecture 4

MEE224: Engineering Mechanics Lecture 4 Lecture 4: Structural Analysis Part 1: Trusses So far we have only analysed forces and moments on a single rigid body, i.e. bars. Remember that a structure is a formed by and this lecture will investigate

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. Signature: INSTRUCTIONS Begin each problem in the space provided

More information

6.6 FRAMES AND MACHINES APPLICATIONS. Frames are commonly used to support various external loads.

6.6 FRAMES AND MACHINES APPLICATIONS. Frames are commonly used to support various external loads. 6.6 FRAMES AND MACHINES APPLICATIONS Frames are commonly used to support various external loads. How is a frame different than a truss? How can you determine the forces at the joints and supports of a

More information

8 ft. 5 k 5 k 5 k 5 k. F y = 36 ksi F t = 21 ksi F c = 10 ksi. 6 ft. 10 k 10 k

8 ft. 5 k 5 k 5 k 5 k. F y = 36 ksi F t = 21 ksi F c = 10 ksi. 6 ft. 10 k 10 k E 331, Fall 2004 HW 2.0 Solution 1 / 7 We need to make several decisions when designing a truss. First, we need to determine the truss shape. Then we need to determine the height of the truss and the member

More information

Framed Structures PLANE FRAMES. Objectives:

Framed Structures PLANE FRAMES. Objectives: Framed Structures 2 Objectives: ifferentiate between perfect, imperfect and redundant frames. To compute the member forces in a frame by graphical method. To compute the forces in a truss by method of

More information

0.3 m. 0.4 m. 0.3 m. A 2 kn. 0.4 m. tan γ = 7. (BC = kn) γ = Fx = BC cos θ + AC cos γ =0

0.3 m. 0.4 m. 0.3 m. A 2 kn. 0.4 m. tan γ = 7. (BC = kn) γ = Fx = BC cos θ + AC cos γ =0 Problem 6.4 etermine the aial forces in the members of the truss. kn 0.3 m 0.4 m 0.6 m 1. m Solution: irst, solve for the support reactions at and, and then use the method of joints to solve for the forces

More information

The analysis of trusses Mehrdad Negahban (1999)

The analysis of trusses Mehrdad Negahban (1999) The analysis of trusses Mehrdad Negahban (1999) A truss: A truss is a structure made of two force members all pin connected to each other. The method of joints: This method uses the free-body-diagram of

More information

Exam 04: Chapters 08 and 09

Exam 04: Chapters 08 and 09 Name: Exam 04: Chapters 08 and 09 Select and solve four of the following problems to the best of your ability. You must choose two problem from each column. Please notice that it is possible to select

More information

Name (Print) ME Mechanics of Materials Exam # 2 Date: March 29, 2017 Time: 8:00 10:00 PM - Location: WTHR 200

Name (Print) ME Mechanics of Materials Exam # 2 Date: March 29, 2017 Time: 8:00 10:00 PM - Location: WTHR 200 Name (Print) (Last) (First) Instructions: ME 323 - Mechanics of Materials Exam # 2 Date: Time: 8:00 10:00 PM - Location: WTHR 200 Circle your lecturer s name and your class meeting time. Koslowski Zhao

More information

Framed Structures PLANE FRAMES. Objectives:

Framed Structures PLANE FRAMES. Objectives: Framed Structures 2 Objectives: ifferentiate between perfect, imperfect and redundant frames. To compute the member forces in a frame by graphical method. To compute the forces in a truss by method of

More information

and F NAME: ME rd Sample Final Exam PROBLEM 1 (25 points) Prob. 1 questions are all or nothing. PROBLEM 1A. (5 points)

and F NAME: ME rd Sample Final Exam PROBLEM 1 (25 points) Prob. 1 questions are all or nothing. PROBLEM 1A. (5 points) ME 270 3 rd Sample inal Exam PROBLEM 1 (25 points) Prob. 1 questions are all or nothing. PROBLEM 1A. (5 points) IND: In your own words, please state Newton s Laws: 1 st Law = 2 nd Law = 3 rd Law = PROBLEM

More information

The centroid of an area is defined as the point at which (12-2) The distance from the centroid of a given area to a specified axis may be found by

The centroid of an area is defined as the point at which (12-2) The distance from the centroid of a given area to a specified axis may be found by Unit 12 Centroids Page 12-1 The centroid of an area is defined as the point at which (12-2) The distance from the centroid of a given area to a specified axis may be found by (12-5) For the area shown

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 23

ENGR-1100 Introduction to Engineering Analysis. Lecture 23 ENGR-1100 Introduction to Engineering Analysis Lecture 23 Today s Objectives: Students will be able to: a) Draw the free body diagram of a frame and its members. FRAMES b) Determine the forces acting at

More information

Figure Two. Then the two vector equations of equilibrium are equivalent to three scalar equations:

Figure Two. Then the two vector equations of equilibrium are equivalent to three scalar equations: 2004- v 10/16 2. The resultant external torque (the vector sum of all external torques) acting on the body must be zero about any origin. These conditions can be written as equations: F = 0 = 0 where the

More information

Continuing Education Course #207 What Every Engineer Should Know About Structures Part B Statics Applications

Continuing Education Course #207 What Every Engineer Should Know About Structures Part B Statics Applications 1 of 6 Continuing Education Course #207 What Every Engineer Should Know About Structures Part B Statics Applications 1. As a practical matter, determining design loads on structural members involves several

More information

Delft Applied Mechanics Course: Statics AE1-914-I. 18 August 2004, 9:00 12:00

Delft Applied Mechanics Course: Statics AE1-914-I. 18 August 2004, 9:00 12:00 Delft pplied Mechanics Course: Statics E1-914-I 18 ugust 2004, 9:00 12:00 This is the English exam. Only the answer forms will be collected ny other sheets will be rejected. Write down your name and student

More information

Lecture 23. ENGR-1100 Introduction to Engineering Analysis FRAMES S 1

Lecture 23. ENGR-1100 Introduction to Engineering Analysis FRAMES S 1 ENGR-1100 Introduction to Engineering Analysis Lecture 23 Today s Objectives: Students will be able to: a) Draw the free body diagram of a frame and its members. FRAMES b) Determine the forces acting at

More information

NAME: Section: RIN: Tuesday, May 19, :00 11:00. Problem Points Score Total 100

NAME: Section: RIN: Tuesday, May 19, :00 11:00. Problem Points Score Total 100 RENSSELAER POLYTECHNIC INSTITUTE TROY, NY FINAL EXAM INTRODUCTION TO ENGINEERING ANALYSIS (ENGR-1100) NAME: Section: RIN: Tuesday, May 19, 2015 8:00 11:00 Problem Points Score 1 20 2 20 3 20 4 20 5 20

More information

t IFBE-[(-=- "Z- tj ..e:::: /1 0s6 (I :::-13N -p11 /(1 196 /If: t3 (Z3':::+ </6;+9 2 J)~ ltt 6 ~= f(3~-+-2bl.,ls2~)iij :.llrj

t IFBE-[(-=- Z- tj ..e:::: /1 0s6 (I :::-13N -p11 /(1 196 /If: t3 (Z3':::+ </6;+9 2 J)~ ltt 6 ~= f(3~-+-2bl.,ls2~)iij :.llrj Na me So..., 270 Fall 2011 Problem #2 (20 points) A uniform rod AB is 6 meters long, weighs 52 N and is in static equilibrium The 52N weight, W, is depicted as acting Yo way along the length of the rod

More information

three Equilibrium 1 and planar trusses ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2015 lecture ARCH 614

three Equilibrium 1 and planar trusses ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2015 lecture ARCH 614 ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2015 lecture three equilibrium and planar trusses Equilibrium 1 Equilibrium balanced steady resultant of forces

More information

Method of Sections for Truss Analysis

Method of Sections for Truss Analysis RH 331 Note Set 5.2 F2013abn Method of Sections for Truss nalysis Notation: () = shorthand for compression = name for load or axial force vector (T) = shorthand for tension Joint onfigurations (special

More information

Name ME 270 Summer 2006 Examination No. 1 PROBLEM NO. 3 Given: Below is a Warren Bridge Truss. The total vertical height of the bridge is 10 feet and each triangle has a base of length, L = 8ft. Find:

More information

three Point Equilibrium 1 and planar trusses ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture

three Point Equilibrium 1 and planar trusses ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture three point equilibrium http:// nisee.berkeley.edu/godden and planar trusses Point Equilibrium 1 Equilibrium balanced

More information

Pin-Jointed Frame Structures (Frameworks)

Pin-Jointed Frame Structures (Frameworks) Pin-Jointed rame Structures (rameworks) 1 Pin Jointed rame Structures (rameworks) A pin-jointed frame is a structure constructed from a number of straight members connected together at their ends by frictionless

More information

IDE 110 Mechanics of Materials Spring 2006 Final Examination FOR GRADING ONLY

IDE 110 Mechanics of Materials Spring 2006 Final Examination FOR GRADING ONLY Spring 2006 Final Examination STUDENT S NAME (please print) STUDENT S SIGNATURE STUDENT NUMBER IDE 110 CLASS SECTION INSTRUCTOR S NAME Do not turn this page until instructed to start. Write your name on

More information

The case where there is no net effect of the forces acting on a rigid body

The case where there is no net effect of the forces acting on a rigid body The case where there is no net effect of the forces acting on a rigid body Outline: Introduction and Definition of Equilibrium Equilibrium in Two-Dimensions Special cases Equilibrium in Three-Dimensions

More information

Example: 5-panel parallel-chord truss. 8 ft. 5 k 5 k 5 k 5 k. F yield = 36 ksi F tension = 21 ksi F comp. = 10 ksi. 6 ft.

Example: 5-panel parallel-chord truss. 8 ft. 5 k 5 k 5 k 5 k. F yield = 36 ksi F tension = 21 ksi F comp. = 10 ksi. 6 ft. CE 331, Spring 2004 Beam Analogy for Designing Trusses 1 / 9 We need to make several decisions in designing trusses. First, we need to choose a truss. Then we need to determine the height of the truss

More information

READING QUIZ. 2. When using the method of joints, typically equations of equilibrium are applied at every joint. A) Two B) Three C) Four D) Six

READING QUIZ. 2. When using the method of joints, typically equations of equilibrium are applied at every joint. A) Two B) Three C) Four D) Six READING QUIZ 1. One of the assumptions used when analyzing a simple truss is that the members are joined together by. A) Welding B) Bolting C) Riveting D) Smooth pins E) Super glue 2. When using the method

More information

Physics 8 Friday, November 8, 2013

Physics 8 Friday, November 8, 2013 Physics 8 Friday, November 8, 2013 Turn in HW10 today. I ll put HW11 online tomorrow. Today & Monday: mainly trusses. Some beams next week. Monday reading: from Vossoughi ch5+8 (centroids + second moment

More information

Newton s Third Law Newton s Third Law: For each action there is an action and opposite reaction F

Newton s Third Law Newton s Third Law: For each action there is an action and opposite reaction F FRAMES AND MACHINES Learning Objectives 1). To evaluate the unknown reactions at the supports and the interaction forces at the connection points of a rigid frame in equilibrium by solving the equations

More information

TYPES OF STRUCUTRES. HD in Civil Engineering Page 1-1

TYPES OF STRUCUTRES. HD in Civil Engineering Page 1-1 E2027 Structural nalysis I TYPES OF STRUUTRES H in ivil Engineering Page 1-1 E2027 Structural nalysis I SUPPORTS Pin or Hinge Support pin or hinge support is represented by the symbol H or H V V Prevented:

More information

Name. ME 270 Fall 2005 Final Exam PROBLEM NO. 1. Given: A distributed load is applied to the top link which is, in turn, supported by link AC.

Name. ME 270 Fall 2005 Final Exam PROBLEM NO. 1. Given: A distributed load is applied to the top link which is, in turn, supported by link AC. Name ME 270 Fall 2005 Final Exam PROBLEM NO. 1 Given: A distributed load is applied to the top link which is, in turn, supported by link AC. Find: a) Draw a free body diagram of link BCDE and one of link

More information

Method of Sections for Truss Analysis

Method of Sections for Truss Analysis Method of Sections for Truss Analysis Notation: (C) = shorthand for compression P = name for load or axial force vector (T) = shorthand for tension Joint Configurations (special cases to recognize for

More information

Chapter 5: Equilibrium of a Rigid Body

Chapter 5: Equilibrium of a Rigid Body Chapter 5: Equilibrium of a Rigid Body Chapter Objectives To develop the equations of equilibrium for a rigid body. To introduce the concept of a free-body diagram for a rigid body. To show how to solve

More information

If the solution does not follow a logical thought process, it will be assumed in error.

If the solution does not follow a logical thought process, it will be assumed in error. Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. If I detect cheating I will write a note on my exam and raise

More information

Physics 8, Fall 2017, Practice Exam.

Physics 8, Fall 2017, Practice Exam. Physics 8, Fall 2017, Practice Exam. Name: This open-book take-home exam is 10% of your course grade. (The in-class final exam will be 20% of your course grade. For the in-class exam, you can bring one

More information

Phy211: General Physics I Lab page 1 of 5 PCC-Cascade

Phy211: General Physics I Lab page 1 of 5 PCC-Cascade Phy11: General Physics I Lab page 1 of 5 Experiment: The Ballistic Pendulum Objectives: Apply the Law of Conservation of Momentum to an inelastic collision Apply the Law of Conservation of Mechanical Energy

More information

Engineering Mechanics Department of Mechanical Engineering Dr. G. Saravana Kumar Indian Institute of Technology, Guwahati

Engineering Mechanics Department of Mechanical Engineering Dr. G. Saravana Kumar Indian Institute of Technology, Guwahati Engineering Mechanics Department of Mechanical Engineering Dr. G. Saravana Kumar Indian Institute of Technology, Guwahati Module 3 Lecture 6 Internal Forces Today, we will see analysis of structures part

More information

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS Today s Objectives: Students will be able to: a) Apply equations of equilibrium to solve for unknowns, and, b) Recognize two-force members. In-Class

More information

General Physics I Lab. M1 The Atwood Machine

General Physics I Lab. M1 The Atwood Machine Purpose General Physics I Lab In this experiment, you will learn the basic operation of computer interfacing and use it in an experimental study of Newton s second law. Equipment and components Science

More information

θ Beam Pivot F r Figure 1. Figure 2. STATICS (Force Vectors, Tension & Torque) MBL-32 (Ver. 3/20/2006) Name: Lab Partner: Lab Partner:

θ Beam Pivot F r Figure 1. Figure 2. STATICS (Force Vectors, Tension & Torque) MBL-32 (Ver. 3/20/2006) Name: Lab Partner: Lab Partner: Please Circle Your Lab day: M T W T F Name: Lab Partner: Lab Partner: Project #1: Kinesthetic experiences with force vectors and torque. Project #2: How does torque depend on the lever arm? Project #1:

More information

Introduction Aim To introduce the basic concepts in mechanics, especially as they apply to civil engineering.

Introduction Aim To introduce the basic concepts in mechanics, especially as they apply to civil engineering. Mechanics Introduction im To introduce the basic concepts in mechanics, especially as they apply to civil engineering. Mechanics Mathematical models describing the effects of forces and motion on objects

More information

PHYSICS 220 LAB #3: STATIC EQUILIBRIUM FORCES

PHYSICS 220 LAB #3: STATIC EQUILIBRIUM FORCES Lab Section M / T / W / Th /24 pts Name: Partners: PHYSICS 220 LAB #3: STATIC EQUILIBRIUM FORCES OBJECTIVES 1. To verify the conditions for static equilibrium. 2. To get practice at finding components

More information

REVIEW. Final Exam. Final Exam Information. Final Exam Information. Strategy for Studying. Test taking strategy. Sign Convention Rules

REVIEW. Final Exam. Final Exam Information. Final Exam Information. Strategy for Studying. Test taking strategy. Sign Convention Rules Final Exam Information REVIEW Final Exam (Print notes) DATE: WEDNESDAY, MAY 12 TIME: 1:30 PM - 3:30 PM ROOM ASSIGNMENT: Toomey Hall Room 199 1 2 Final Exam Information Comprehensive exam covers all topics

More information

SRSD 2093: Engineering Mechanics 2SRRI SECTION 19 ROOM 7, LEVEL 14, MENARA RAZAK

SRSD 2093: Engineering Mechanics 2SRRI SECTION 19 ROOM 7, LEVEL 14, MENARA RAZAK SRSD 2093: Engineering Mechanics 2SRRI SECTION 19 ROOM 7, LEVEL 14, MENARA RAZAK SIMPLE TRUSSES, THE METHOD OF JOINTS, & ZERO-FORCE MEMBERS Today s Objectives: Students will be able to: a) Define a simple

More information

If the solution does not follow a logical thought process, it will be assumed in error.

If the solution does not follow a logical thought process, it will be assumed in error. Please indicate your group number (If applicable) Circle Your Instructor s Name and Section: MWF 8:30-9:20 AM Prof. Kai Ming Li MWF 2:30-3:20 PM Prof. Fabio Semperlotti MWF 9:30-10:20 AM Prof. Jim Jones

More information

11.1 Virtual Work Procedures and Strategies, page 1 of 2

11.1 Virtual Work Procedures and Strategies, page 1 of 2 11.1 Virtual Work 11.1 Virtual Work rocedures and Strategies, page 1 of 2 rocedures and Strategies for Solving roblems Involving Virtual Work 1. Identify a single coordinate, q, that will completely define

More information

Determinate portal frame

Determinate portal frame eterminate portal frame onsider the frame shown in the figure below with the aim of calculating the bending moment diagram (M), shear force diagram (SF), and axial force diagram (F). P H y R x x R y L

More information

I B.TECH EXAMINATIONS, JUNE ENGINEERING MECHANICS (COMMON TO CE, ME, CHEM, MCT, MMT, AE, AME, MIE, MIM)

I B.TECH EXAMINATIONS, JUNE ENGINEERING MECHANICS (COMMON TO CE, ME, CHEM, MCT, MMT, AE, AME, MIE, MIM) Code.No: 09A1BS05 R09 SET-1 I B.TECH EXAMINATIONS, JUNE - 2011 ENGINEERING MECHANICS (COMMON TO CE, ME, CHEM, MCT, MMT, AE, AME, MIE, MIM) Time: 3 hours Max. Marks: 75 Answer any FIVE questions All questions

More information

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft. ME 323 - Final Exam Name December 15, 2015 Instructor (circle) PROEM NO. 4 Part A (2 points max.) Krousgrill 11:30AM-12:20PM Ghosh 2:30-3:20PM Gonzalez 12:30-1:20PM Zhao 4:30-5:20PM M (x) y 20 kip ft 0.2

More information

Theory of structure I 2006/2013. Chapter one DETERMINACY & INDETERMINACY OF STRUCTURES

Theory of structure I 2006/2013. Chapter one DETERMINACY & INDETERMINACY OF STRUCTURES Chapter one DETERMINACY & INDETERMINACY OF STRUCTURES Introduction A structure refers to a system of connected parts used to support a load. Important examples related to civil engineering include buildings,

More information

IMPORTANT. Read these directions carefully: You do not need to show work for the Multiple Choice questions.

IMPORTANT. Read these directions carefully: You do not need to show work for the Multiple Choice questions. Physics 208: Electricity and Magnetism Common Exam 3, November 14 th 2016 Print your name neatly: First name: Last name: Sign your name: Please fill in your Student ID number (UIN): _ - - Your classroom

More information

Ishik University / Sulaimani Architecture Department. Structure. ARCH 214 Chapter -5- Equilibrium of a Rigid Body

Ishik University / Sulaimani Architecture Department. Structure. ARCH 214 Chapter -5- Equilibrium of a Rigid Body Ishik University / Sulaimani Architecture Department 1 Structure ARCH 214 Chapter -5- Equilibrium of a Rigid Body CHAPTER OBJECTIVES To develop the equations of equilibrium for a rigid body. To introduce

More information

Lecture 20. ENGR-1100 Introduction to Engineering Analysis THE METHOD OF SECTIONS

Lecture 20. ENGR-1100 Introduction to Engineering Analysis THE METHOD OF SECTIONS ENGR-1100 Introduction to Engineering Analysis Lecture 20 THE METHOD OF SECTIONS Today s Objectives: Students will be able to determine: 1. Forces in truss members using the method of sections. In-Class

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 20

ENGR-1100 Introduction to Engineering Analysis. Lecture 20 ENGR-1100 Introduction to Engineering Analysis Lecture 20 Today s Objectives: THE METHOD OF SECTIONS Students will be able to determine: 1. Forces in truss members using the method of sections. In-Class

More information

5.2 Rigid Bodies and Two-Dimensional Force Systems

5.2 Rigid Bodies and Two-Dimensional Force Systems 5.2 Rigid odies and Two-Dimensional Force Systems 5.2 Rigid odies and Two-Dimensional Force Systems Procedures and Strategies, page 1 of 1 Procedures and Strategies for Solving Problems Involving Equilibrium

More information

Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method

Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method 9210-203 Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method You should have the following for this examination one answer book No additional data is attached

More information

3.032 Problem Set 1 Fall 2007 Due: Start of Lecture,

3.032 Problem Set 1 Fall 2007 Due: Start of Lecture, 3.032 Problem Set 1 Fall 2007 Due: Start of Lecture, 09.14.07 1. The I35 bridge in Minneapolis collapsed in Summer 2007. The failure apparently occurred at a pin in the gusset plate of the truss supporting

More information

Lab Exercise #5: Tension and Bending with Strain Gages

Lab Exercise #5: Tension and Bending with Strain Gages Lab Exercise #5: Tension and Bending with Strain Gages Pre-lab assignment: Yes No Goals: 1. To evaluate tension and bending stress models and Hooke s Law. a. σ = Mc/I and σ = P/A 2. To determine material

More information

I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. Examination No. 2 Please review the following statement: Group Number: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. Signature: INSTRUCTIONS Begin

More information

Section Downloads. Design Process. Design Principles Outline. Basic Design Principles. Design Process. Section 06: Design Principles.

Section Downloads. Design Process. Design Principles Outline. Basic Design Principles. Design Process. Section 06: Design Principles. Section Downloads Section 06: Design Principles 1 Download & Print TTT I Sec 06 Slides TTT I Sec 06 Handout Section 05 Truss Materials Design Values PS 20 Section 01 TPI 1-2007 Selection 6.4.2 Repetitive

More information

Experiment 1: Measurement of Variables. Units of Measurement

Experiment 1: Measurement of Variables. Units of Measurement Experiment 1: Measurement of Variables Units of Measurement 1. Obtain the balance apparatus (meter stick with holes, small cup with holes, hanger, paper clips, and small binder clip), and assemble it so

More information

ENSC387: Introduction to Electromechanical Sensors and Actuators LAB 3: USING STRAIN GAUGES TO FIND POISSON S RATIO AND YOUNG S MODULUS

ENSC387: Introduction to Electromechanical Sensors and Actuators LAB 3: USING STRAIN GAUGES TO FIND POISSON S RATIO AND YOUNG S MODULUS ENSC387: Introduction to Electromechanical Sensors and Actuators LAB 3: USING STRAIN GAUGES TO FIND POISSON S RATIO AND YOUNG S MODULUS 1 Introduction... 3 2 Objective... 3 3 Supplies... 3 4 Theory...

More information

To show how to determine the forces in the members of a truss using the method of joints and the method of sections.

To show how to determine the forces in the members of a truss using the method of joints and the method of sections. 5 Chapter Objectives To show how to determine the forces in the members of a truss using the method of joints and the method of sections. To analyze the forces acting on the members of frames and machines

More information

If the number of unknown reaction components are equal to the number of equations, the structure is known as statically determinate.

If the number of unknown reaction components are equal to the number of equations, the structure is known as statically determinate. 1 of 6 EQUILIBRIUM OF A RIGID BODY AND ANALYSIS OF ETRUCTURAS II 9.1 reactions in supports and joints of a two-dimensional structure and statically indeterminate reactions: Statically indeterminate structures

More information

ENG1001 Engineering Design 1

ENG1001 Engineering Design 1 ENG1001 Engineering Design 1 Structure & Loads Determine forces that act on structures causing it to deform, bend, and stretch Forces push/pull on objects Structures are loaded by: > Dead loads permanent

More information

Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras

Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Module - 4.3 Lecture - 24 Matrix Analysis of Structures with Axial Elements (Refer

More information

Announcements. Trusses Method of Joints

Announcements. Trusses Method of Joints Announcements Mountain Dew is an herbal supplement Today s Objectives Define a simple truss Trusses Method of Joints Determine the forces in members of a simple truss Identify zero-force members Class

More information

Physics 106 Common Exam 2: March 5, 2004

Physics 106 Common Exam 2: March 5, 2004 Physics 106 Common Exam 2: March 5, 2004 Signature Name (Print): 4 Digit ID: Section: Instructions: nswer all questions. Questions 1 through 10 are multiple choice questions worth 5 points each. You may

More information

Supplement: Statically Indeterminate Trusses and Frames

Supplement: Statically Indeterminate Trusses and Frames : Statically Indeterminate Trusses and Frames Approximate Analysis - In this supplement, we consider an approximate method of solving statically indeterminate trusses and frames subjected to lateral loads

More information

2. a) Explain the equilibrium of i) Concurrent force system, and ii) General force system.

2. a) Explain the equilibrium of i) Concurrent force system, and ii) General force system. Code No: R21031 R10 SET - 1 II B. Tech I Semester Supplementary Examinations Dec 2013 ENGINEERING MECHANICS (Com to ME, AE, AME, MM) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions

More information

Preface Acknowledgements

Preface Acknowledgements Contents Preface cknowledgements vi viii 1 Equilibrium of rigid structures 1 1.1 Contents 1 1.2 The fact sheet 1 1.3 Symbols, units and sign conventions 5 1.4 Worked examples 5 1.5 Problems 27 1.6 nswers

More information

Force Vectors and Static Equilibrium

Force Vectors and Static Equilibrium Force Vectors 1 Force Vectors and Static Equilibrium Overview: In this experiment you will hang weights from pulleys over the edge of a small round force table, to exert various forces on a metal ring

More information

Investigating Springs (Simple Harmonic Motion)

Investigating Springs (Simple Harmonic Motion) Investigating Springs (Simple Harmonic Motion) INTRODUCTION The purpose of this lab is to study the well-known force exerted by a spring The force, as given by Hooke s Law, is a function of the amount

More information

EMA 545 Final Exam - Prof. M. S. Allen Spring 2011

EMA 545 Final Exam - Prof. M. S. Allen Spring 2011 EMA 545 Final Exam - Prof. M. S. Allen Spring 2011 Honor Pledge: On my honor, I pledge that this exam represents my own work, and that I have neither given nor received inappropriate aid in the preparation

More information

ASSOCIATE DEGREE IN ENGINEERING EXAMINATIONS SEMESTER /13

ASSOCIATE DEGREE IN ENGINEERING EXAMINATIONS SEMESTER /13 ASSOCIATE DEGREE IN ENGINEERING EXAMINATIONS SEMESTER 2 2012/13 COURSE NAME: ENGINEERING MECHANICS - STATICS CODE: ENG 2008 GROUP: AD ENG II DATE: May 2013 TIME: DURATION: 2 HOURS INSTRUCTIONS: 1. This

More information

PORTMORE COMMUNITY COLLEGE ASSOCIATE DEGREE IN ENGINEERING TECHNOLOGY

PORTMORE COMMUNITY COLLEGE ASSOCIATE DEGREE IN ENGINEERING TECHNOLOGY PORTMORE COMMUNITY COLLEGE ASSOCIATE DEGREE IN ENGINEERING TECHNOLOGY RESIT EXAMINATIONS SEMESTER 2 JUNE 2011 COURSE NAME: Mechanical Engineering Science CODE: GROUP: ADET 1 DATE: JUNE 28 TIME: DURATION:

More information

PHY 2048 Exam 3 Review Summer Private-Appointment, one-on-one tutoring at Broward Hall

PHY 2048 Exam 3 Review Summer Private-Appointment, one-on-one tutoring at Broward Hall Summer 2017 Walk-In tutoring at Broward Hall Private-Appointment, one-on-one tutoring at Broward Hall Walk-In tutoring in LIT 215 Supplemental Instruction Video resources for Math and Science classes at

More information

F R. + F 3x. + F 2y. = (F 1x. j + F 3x. i + F 2y. i F 3y. i + F 1y. j F 2x. ) i + (F 1y. ) j. F 2x. F 3y. = (F ) i + (F ) j. ) j

F R. + F 3x. + F 2y. = (F 1x. j + F 3x. i + F 2y. i F 3y. i + F 1y. j F 2x. ) i + (F 1y. ) j. F 2x. F 3y. = (F ) i + (F ) j. ) j General comments: closed book and notes but optional one page crib sheet allowed. STUDY: old exams, homework and power point lectures! Key: make sure you can solve your homework problems and exam problems.

More information

E 490 FE Exam Prep. Engineering Mechanics

E 490 FE Exam Prep. Engineering Mechanics E 490 FE Exam Prep Engineering Mechanics 2008 E 490 Course Topics Statics Newton s Laws of Motion Resultant Force Systems Moment of Forces and Couples Equilibrium Pulley Systems Trusses Centroid of an

More information

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *3251965538* PHYSICS 0625/62 Paper 6 Alternative to Practical February/March 2016 1 hour Candidates

More information

Work and Energy. chapter 7

Work and Energy. chapter 7 chapter 7 Work and Energy Work Work in one dimension: (Section 7.1, part 1) The following two problems involve pulleys and may be used after Example 2 in Section 7.1: 1. twood machine 2. Raising m by a

More information

1. Adjust your marble launcher to zero degrees. Place your marble launcher on a table or other flat surface or on the ground.

1. Adjust your marble launcher to zero degrees. Place your marble launcher on a table or other flat surface or on the ground. Conceptual Physics Mrs. Mills Your Name: Group members: Lab: Marble Launcher Purpose: In this lab you will be using the marble launchers in order to examine the path of a projectile. You will be using

More information

The University of Melbourne Engineering Mechanics

The University of Melbourne Engineering Mechanics The University of Melbourne 436-291 Engineering Mechanics Tutorial Four Poisson s Ratio and Axial Loading Part A (Introductory) 1. (Problem 9-22 from Hibbeler - Statics and Mechanics of Materials) A short

More information

Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on Exam 3.

Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on Exam 3. ES230 STRENGTH OF MTERILS Exam 3 Study Guide Exam 3: Wednesday, March 8 th in-class Updated 3/3/17 Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on

More information

three point equilibrium and planar trusses Equilibrium Equilibrium on a Point Equilibrium on a Point

three point equilibrium and planar trusses Equilibrium Equilibrium on a Point Equilibrium on a Point RHITETURL STRUTURES: FORM, EHVIOR, N ESIGN R. NNE NIHOLS SUMMER 2014 lecture three Equilibrium balanced steady resultant of forces on a particle is 0 X point equilibrium and planar trusses http:// nisee.berkeley.edu/godden

More information

The bending moment diagrams for each span due to applied uniformly distributed and concentrated load are shown in Fig.12.4b.

The bending moment diagrams for each span due to applied uniformly distributed and concentrated load are shown in Fig.12.4b. From inspection, it is assumed that the support moments at is zero and support moment at, 15 kn.m (negative because it causes compression at bottom at ) needs to be evaluated. pplying three- Hence, only

More information

Part IB EXPERIMENTAL ENGINEERING MODEL STRUCTURES. 1. To compare the behaviour of various different linear-elastic structures with simple theory.

Part IB EXPERIMENTAL ENGINEERING MODEL STRUCTURES. 1. To compare the behaviour of various different linear-elastic structures with simple theory. Part IB EXPERIMENTAL ENGINEERING SUBJECT: INTEGRATED COURSEWORK LOCATION: STRUCTURES TEACHING LAB EXPERIMENT: A2 (SHORT) MODEL STRUCTURES OBJECTIVES 1. To compare the behaviour of various different linear-elastic

More information

Eng Sample Test 4

Eng Sample Test 4 1. An adjustable tow bar connecting the tractor unit H with the landing gear J of a large aircraft is shown in the figure. Adjusting the height of the hook F at the end of the tow bar is accomplished by

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA FURTHER MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 11 - NQF LEVEL 3 OUTCOME 1 - FRAMES AND BEAMS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA FURTHER MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 11 - NQF LEVEL 3 OUTCOME 1 - FRAMES AND BEAMS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA FURTHER MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 11 - NQF LEVEL 3 OUTCOME 1 - FRAMES AND BEAMS TUTORIAL 2 - BEAMS CONTENT Be able to determine the forces acting

More information

Physics 8 Wednesday, October 25, 2017

Physics 8 Wednesday, October 25, 2017 Physics 8 Wednesday, October 25, 2017 HW07 due Friday. It is mainly rotation, plus a couple of basic torque questions. And there are only 8 problems this week. For today, you read (in Perusall) Onouye/Kane

More information

TUTORIAL SHEET 1. magnitude of P and the values of ø and θ. Ans: ø =74 0 and θ= 53 0

TUTORIAL SHEET 1. magnitude of P and the values of ø and θ. Ans: ø =74 0 and θ= 53 0 TUTORIAL SHEET 1 1. The rectangular platform is hinged at A and B and supported by a cable which passes over a frictionless hook at E. Knowing that the tension in the cable is 1349N, determine the moment

More information