Innovation and Development of Study Field. nano.tul.cz

Size: px
Start display at page:

Download "Innovation and Development of Study Field. nano.tul.cz"

Transcription

1 Innovation and Development of Study Field Nanomaterials at the Technical University of Liberec nano.tul.cz These materials have been developed within the ESF project: Innovation and development of study field Nanomaterials at the Technical University of Liberec

2 Miroslav Šulc

3 Outline Incident, transmitted, and reflected beams at interfaces Reflection and transmission coefficients The Fresnel Equations Brewster's Angle Total internal reflection Power reflectance and transmittance Phase shifts in reflection The mysterious evanescent wave 3

4 Definitions: Planes of Incidence and the Interface and the polarizations Perpendicular ( S ) polarization sticks out of or into the plane of incidence. ki Incident medium kr Plane of incidence (here the xy plane) is the plane that contains the incident and reflected k- vectors. Parallel ( P ) polarization lies parallel to the plane of incidence. E i q i q r Interface Plane of the interface (here the yz plane) y (perpendicular to page) z x q t E r E t Transmitting medium k t n i n t 4

5 Shorthand notation for the polarizations Perpendicular (S) polarization sticks up out of the plane of incidence. Parallel (P) polarization lies parallel to the plane of incidence. 5

6 Fresnel Equations E i E r We would like to compute the fraction of a light wave reflected and transmitted by a flat interface between two media with different refractive indices. E t r E / E 0r 0i 0r 0i perpendicular 0t / 0i polarization t E0t / E0i t E E for the r E / E for the parallel polarization where E 0i, E 0r, and E 0t are the field complex amplitudes. We consider the boundary conditions at the interface for the electric and magnetic fields of the light waves. We ll do the perpendicular polarization first. 6

7 Boundary Condition for the Electric Field at an Interface In other words: The total E-field in the plane of the interface is continuous. Here, all E-fields are in the z-direction, which is in the plane of the interface (xz), so: The Tangential Electric Field is Continuous E i (x, y = 0, z, t) + E r (x, y = 0, z, t) = E t (x, y = 0, z, t) ki B i Interface E i q i q r q t B t E r E t kr k t B r z y x n i n t 7

8 Boundary Condition for the Magnetic Field at an Interface Reflection and refraction of light The Tangential Magnetic Field* is Continuous In other words: The total B-field in the plane of the interface is continuous. ki q i B i q i E i q i q r E r kr B r y n i Here, all B-fields are in the xy-plane, so we take the x-components: Interface B i (x, y=0, z, t) cos(q i ) + B r (x, y=0, z, t) cos(q r ) = B t (x, y=0, z, t) cos(q t ) q t B t E t k t z x n t 8 *It's really the tangential B/m, but we're using m m 0

9 Reflection and Transmission for Perpendicularly (S) Polarized Light Canceling the rapidly varying parts of the light wave and keeping only the complex amplitudes: E E E 0i 0r 0t B cos( q ) B cos( q ) B cos( q ) 0i i 0r r 0t t But B E /( c / n) ne / c and q q : 0 0 r i n ( E E )cos( q ) n E cos( q ) i 0r 0i i t 0t t Substituting for E E E E : 0t using 0i 0r 0 t n ( E E )cos( q ) n ( E E )cos( q ) i 0r 0i i t 0r 0i t 9

10 Reflection & Transmission Coefficients for Perpendicularly Polarized Light Rearranging n ( E E )cos( q ) n ( E E )cos( q ) yields: i 0r 0i i t 0r 0i t cos( q ) cos( q ) cos( q ) cos( q ) E n n E n n 0r i i t t 0i i i t t Solving for E / E yields the reflection coefficient : 0r 0i q q q q r E0r / E 0i n cos( ) i i nt cos( t ) / ni cos( i) nt cos( t ) Analogously, the transmission coefficient, E / E 0t t E / E n cos( q ) / n cos( q ) n cos( q ) t i i i i i t t i, is 10

11 Simpler expressions for r and t Recall the magnification at an interface, m: wt cos( qt) m w cos( q ) i i wi n i n t q i q t w t Also let r be the ratio of the refractive indices, n t / n i. Dividing numerator and denominator of r and t by n i cos(q i ): i cos( qi) t cos( qt ) / i cos( qi) t cos( qt ) 1 r / 1 r t n cos( q ) / n cos( q ) n cos( q ) / 1 rm r n n n n m m i i i i t t r 1 rm t 1 rm 1 rm 11

12 Fresnel Equations Parallel electric field ki B i E i q i q r B r kr E r This B-field points into the page. n i z y x Interface Beam geometry for light with its electric field parallel to the plane of incidence (i.e., in the page) q t B t E t k t n t Note that Hecht uses a different notation for the reflected field, which is confusing! Ours is better! Note that the reflected magnetic field must point into the screen to achieve E B. kthe x means into the screen. 1

13 Reflection & Transmission Coefficients for Parallel (P) Polarized Light For parallel polarized light, B 0i - B 0r = B 0t and E 0i cos(q i ) + E 0r cos(q r ) = E 0t cos(q t ) Solving for E 0r / E 0i yields the reflection coefficient, r : q q q q r E / E n cos( ) n cos( ) / n cos( ) n cos( ) 0r 0i i t t i i t t i Analogously, the transmission coefficient, t = E 0t / E 0i, is t E / E n cos( q ) / n cos( q ) n cos( q ) 0t 0i i i i t t i These equations are called the Fresnel Equations for parallel polarized light. 13

14 Simpler expressions for r and t q q q q r E / E n cos( ) n cos( ) / n cos( ) n cos( ) 0r 0i i t t i i t t i t E / E n cos( q ) / n cos( q ) n cos( q ) 0t 0i i i i t t i Again, use the magnification, m, and the refractive-index ratio, r. And again dividing numerator and denominator of r and t by n i cos(q i ): r/ r r m m t /mr r m r m r t m r 14

15 Reflection coefficient, r Reflection and refraction of light Reflection Coefficients for an Air-to-Glass Interface n air 1 < n glass Note that: Total reflection at q = 90 for both polarizations.5 Brewster s angle r =0! r Zero reflection for parallel polarization at Brewster's angle (56.3 for these values of n i and n t ) r (We ll delay a derivation of a formula for Brewster s angle until we do dipole emission and polarization.) Incidence angle, q i 15

16 Reflection coefficient, r Reflection and refraction of light Reflection Coefficients for a Glass-to-Air Interface n glass 1.5 > n air Critical angle Note that:.5 r Total internal reflection above the critical angle 0 Total internal reflection q crit arcsin(n t /n i ) (The sine in Snell's Law can't be > 1!): -.5 Brewster s angle Critical angle r sin(q crit ) n t /n i sin(90) Incidence angle, q i

17 Transmittance (T) T Transmitted Power / Incident Power IA t t IA i i c 0 0 I n E0 A = Area Compute the ratio of the beam areas: wi 1D beam expansion n i n t q i q t w t A A w cos( q ) w cos( q ) t t t i i i m T The beam expands in one dimension on refraction. c I A w n I A w n 0 0 nt 0 E t t t nt E t 0t wt t t t 0c 0 i i i ni E0i wi i i ni E 0i nt cos qt) ) n cos q ) T t r mt i i ) E E cos( q ) cos( q ) 0t 0i The Transmittance is also called the Transmissivity. t 17

18 Reflectance (R) R Reflected Power / Incident Power IA r IA i 0 0 I n E0 r i c A = Area w i ni n t q i q r w i Because the angle of incidence = the angle of reflection, the beam area doesn t change on reflection. Also, n is the same for both incident and reflected beams. So: R r The Reflectance is also called the Reflectivity. 18

19 Reflectance and Transmittance for an Air-to-Glass Interface Perpendicular polarization Parallel polarization 1.0 T 1.0 T R R Incidence angle, q i Incidence angle, q i Note that R + T = 1 19

20 Reflectance and Transmittance for a Glass-to-Air Interface Perpendicular polarization Parallel polarization 1.0 R 1.0 R.5.5 T T Incidence angle, q i Incidence angle, q i Note that R + T = 1 0

21 Reflection at normal incidence When q i = 0, R n n t i nt ni and T 4nn t i n n ) t i For an air-glass interface (n i = 1 and n t = 1.5), R = 4% and T = 96% The values are the same, whichever direction the light travels, from air to glass or from glass to air. The 4% has big implications for photography lenses. 1

22 Practical Applications of Fresnel s Equations Windows look like mirrors at night (when you re in the brightly lit room) One-way mirrors (used by police to interrogate bad guys) are just partial reflectors (actually, aluminum-coated). Disneyland puts ghouls next to you in the haunted house using partial reflectors (also aluminum-coated). Lasers use Brewster s angle components to avoid reflective losses: R = 100% 0% reflection! Laser medium R = 90% 0% reflection! Optical fibers use total internal reflection. Hollow fibers use highincidence-angle near-unity reflections.

23 Reflection coefficient, r Phase shifts in reflection (air to glass) p 180 phase shift for all angles Brewster s angle r 0 p Incidence angle -1.0 r Incidence angle, q i Incidence angle 180 phase shift for angles below Brewster's angle; 0 for larger angles 5

24 Reflection coefficient, r Phase shifts in reflection (glass to air) p 0 p Incidence angle Interesting phase above the critical angle Critical angle Brewster s angle Critical angle r r Total internal reflection Incidence angle, q i Incidence angle 180 phase shift for angles below Brewster's angle; 0 for larger angles 6

25 Phase shifts vs. incidence angle and n i Note the general behavior above and below the various interesting angles /n t n i /n t q i Li Li, OPN, vol. 14, #9, pp. 4-30, Sept. 003 n i /n t q i 7

26 If you slowly turn up a laser intensity incident on a piece of glass, where does damage happen first, the front or the back? The obvious answer is the front of the object, which sees the higher intensity first. But constructive interference happens at the back surface between the incident light and the reflected wave. This yields an irradiance that is 44% higher just inside the back surface! 8 (1 0.) 1.44

27 Phase shifts with coated optics Reflections with different magnitudes can be generated using partial metallization or coatings. We ll see these later. But the phase shifts on reflection are the same! For near-normal incidence: 180 if low-index-to-high and 0 if high-index-to-low. Example: Laser Mirror Highly reflecting coating on this surface Phase shift of 180 9

28 Total Internal Reflection occurs when sin(q t ) > 1, and no transmitted beam can occur. Note that the irradiance of the transmitted beam goes to zero (i.e., TIR occurs) as it grazes the surface. Brewster s angle Total Internal Reflection Total internal reflection is 100% efficient, that is, all the light is reflected. 30

29 Applications of Total Internal Reflection Beam steerers Beam steerers used to compress the path inside binoculars 31

30 Three bounces: The Corner Cube Corner cubes involve three reflections and also displace the return beam in space. Even better, they always yield a parallel return beam: If the beam propagates in the z direction, it emerges in the z direction, with each point in the beam (x,y) reflected to the (-x,-y) position. Hollow corner cubes avoid propagation through glass and don t use TIR. 3

31 Fiber Optics Optical fibers use TIR to transmit light long distances. They play an ever-increasing role in our lives! 33

32 Design of optical fibers Core: Thin glass center of the fiber that carries the light Cladding: Surrounds the core and reflects the light back into the core Buffer coating: Plastic protective coating n core > n cladding 34

33 Propagation of light in an optical fiber Light travels through the core bouncing from the reflective walls. The walls absorb very little light from the core allowing the light wave to travel large distances. Some signal degradation occurs due to imperfectly constructed glass used in the cable. The best optical fibers show very little light loss -- less than 10%/km at 1,550 nm. Maximum light loss occurs at the points of maximum curvature.

34 Microstructure fiber In microstructure fiber, air holes act as the cladding surrounding a glass core. Such fibers have different dispersion properties. Air holes Core Such fiber has many applications, from medical imaging to optical clocks. 36

35 Frustrated Total Internal Reflection By placing another surface in contact with a totally internally reflecting one, total internal reflection can be frustrated. Total internal reflection Frustrated total internal reflection n=1 n=1 n n n n How close do the prisms have to be before TIR is frustrated? This effect provides evidence for evanescent fields fields that leak through the TIR surface and is the basis for a variety of spectroscopic techniques. 37

36 FTIR and fingerprinting See TIR from a fingerprint valley and FTIR from a ridge. 38

37 The Evanescent Wave The evanescent wave is the "transmitted wave" when total internal reflection occurs. A mystical quantity! So we'll do a mystical derivation: Since sin( q ) 1, q doesn't exist, so computing r is impossible. t r t E n cos( ) cos( ) 0 i qi n r t qt E n cos( q ) n cos( q ) 0i i i t t Let's check the reflectivity, R, anyway. Use Snell's Law to eliminate q : n i cos( qt ) 1 sin ( qt ) 1 sin ( qi) Neg. Number nt Substituting this expression into the above one for r and * a bi a bi redefining R yields: R rr 1 a bi a bi So all power is reflected; the Reflection evanescent and refraction wave of light contains no 39 power. k i y x q i q t kr k t n i n t t

38 The Evanescent-Wave k-vector The evanescent wave k-vector must have x and y components: Along surface: k tx = k t sin(q t ) Perpendicular to it: k ty = k t cos(q t ) k i y x q i q t kr k t n i n t Using Snell's Law, sin(q t ) = (n i /n t ) sin(q i ), so k tx is meaningful. And again: cos(q t ) = [1 sin (q t )] 1/ = [1 (n i /n t ) sin (q i )] 1/ = ± ib Neglecting the unphysical -ib solution, we have: E t (x,y,t) = E 0 exp[ kb y] exp i [ k (n i /n t ) sin(q i ) x w t ] 40 The evanescent wave decays exponentially in the transverse direction.

39 Optical Properties of Metals A simple model of a metal is a gas of free electrons (the Drude model). These free electrons and their accompanying positive nuclei can undergo "plasma oscillations" at frequency, w p. where: w p Ne m ) 0 e The refractive index for a metal is : n w p 1 w When n 0, nis imaginary, and absorption is strong. So for w w metals absorb strongly. For w w meta ls are transparent. p p 41

40 Reflection from metals At normal incidence in air: R ( n 1) ( n 1) Generalizing to complex refractive indices: R * ( n1)( n 1) * ( n1)( n 1) 4

41 On-line measurement of thickness of foil for safety windows Important polarization of beams n 1 = 1 n = 1,51 n 3 = 1,48 n 1 = 1,51 43

42 Elipsometry 44

43 elipsometer 45

44 References/Further reading HECHT E., ZAJAC A.,Optics. Addison-Wesley Publishing Company, 1979 SALEH, B. E. A., TEICH, M.C. Fundamentals of Photonics, John Wiley & Sons, 1991 On the Web Source text Polarization of light, reflection and refraction, Fresnel law Reflection and refraction, Huygens principle refraction.htm 46

45 THANK YOU FOR YOUR ATTENTION 47

Fresnel Equations cont.

Fresnel Equations cont. Lecture 11 Chapter 4 Fresnel quations cont. Total internal reflection and evanescent waves Optical properties of metals Familiar aspects of the interaction of light and matter Fresnel quations: phases

More information

Total Internal Reflection & Metal Mirrors

Total Internal Reflection & Metal Mirrors Phys 531 Lecture 7 15 September 2005 Total Internal Reflection & Metal Mirrors Last time, derived Fresnel relations Give amplitude of reflected, transmitted waves at boundary Focused on simple boundaries:

More information

Phys 570. Lab 1: Refractive index and fluorescence of rare earth ions in borate glasses

Phys 570. Lab 1: Refractive index and fluorescence of rare earth ions in borate glasses Phys 570 Lab 1: Refractive index and fluorescence of rare earth ions in borate glasses Measurement of refractive index by Brewster s Angle method Fresnel s equations and Brewster s angle Electromagnetic

More information

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces Lecture 5: Crystal Optics Outline 1 Homogeneous, Anisotropic Media 2 Crystals 3 Plane Waves in Anisotropic Media 4 Wave Propagation in Uniaxial Media 5 Reflection and Transmission at Interfaces Christoph

More information

16. More About Polarization

16. More About Polarization 16. More About Polarization Polarization control Wave plates Circular polarizers Reflection & polarization Scattering & polarization Birefringent materials have more than one refractive index A special

More information

Electromagnetic fields and waves

Electromagnetic fields and waves Electromagnetic fields and waves Maxwell s rainbow Outline Maxwell s equations Plane waves Pulses and group velocity Polarization of light Transmission and reflection at an interface Macroscopic Maxwell

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 32 Electromagnetic Waves Spring 2016 Semester Matthew Jones Electromagnetism Geometric optics overlooks the wave nature of light. Light inconsistent with longitudinal

More information

Summary of Beam Optics

Summary of Beam Optics Summary of Beam Optics Gaussian beams, waves with limited spatial extension perpendicular to propagation direction, Gaussian beam is solution of paraxial Helmholtz equation, Gaussian beam has parabolic

More information

Dispersion and how to control it

Dispersion and how to control it Dispersion and how to control it Group velocity versus phase velocity Angular dispersion Prism sequences Grating pairs Chirped mirrors Intracavity and extra-cavity examples 1 Pulse propagation and broadening

More information

Brewster's angle (3)

Brewster's angle (3) Aim: Subjects: Diagram: To investigate the reflection and transmission of p- and s-polarized light at different angles of incidence at the surface of an acrylic block. Also the critical angle is shown.

More information

Wave Phenomena Physics 15c. Lecture 15 Reflection and Refraction

Wave Phenomena Physics 15c. Lecture 15 Reflection and Refraction Wave Phenomena Physics 15c Lecture 15 Reflection and Refraction What We (OK, Brian) Did Last Time Discussed EM waves in vacuum and in matter Maxwell s equations Wave equation Plane waves E t = c E B t

More information

CHAPTER 9 ELECTROMAGNETIC WAVES

CHAPTER 9 ELECTROMAGNETIC WAVES CHAPTER 9 ELECTROMAGNETIC WAVES Outlines 1. Waves in one dimension 2. Electromagnetic Waves in Vacuum 3. Electromagnetic waves in Matter 4. Absorption and Dispersion 5. Guided Waves 2 Skip 9.1.1 and 9.1.2

More information

Light as a Transverse Wave.

Light as a Transverse Wave. Waves and Superposition (Keating Chapter 21) The ray model for light (i.e. light travels in straight lines) can be used to explain a lot of phenomena (like basic object and image formation and even aberrations)

More information

Physics 214 Course Overview

Physics 214 Course Overview Physics 214 Course Overview Lecturer: Mike Kagan Course topics Electromagnetic waves Optics Thin lenses Interference Diffraction Relativity Photons Matter waves Black Holes EM waves Intensity Polarization

More information

Solutions: Homework 7

Solutions: Homework 7 Solutions: Homework 7 Ex. 7.1: Frustrated Total Internal Reflection a) Consider light propagating from a prism, with refraction index n, into air, with refraction index 1. We fix the angle of incidence

More information

Speed of Light in Glass

Speed of Light in Glass Experiment (1) Speed of Light in Glass Objective:- This experiment is used to determine the speed of propagation of light waves in glass. Apparatus:- Prism, spectrometer, Halogen lamp source. Theory:-

More information

POLARIZATION OF LIGHT

POLARIZATION OF LIGHT POLARIZATION OF LIGHT OVERALL GOALS The Polarization of Light lab strongly emphasizes connecting mathematical formalism with measurable results. It is not your job to understand every aspect of the theory,

More information

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle LECTURE 23: LIGHT Propagation of Light Reflection & Refraction Internal Reflection Propagation of Light Huygen s Principle Each point on a primary wavefront serves as the source of spherical secondary

More information

βi β r medium 1 θ i θ r y θ t β t

βi β r medium 1 θ i θ r y θ t β t W.C.Chew ECE 350 Lecture Notes Date:November 7, 997 0. Reections and Refractions of Plane Waves. Hr Ei Hi βi β r Er medium θ i θ r μ, ε y θ t μ, ε medium x z Ht β t Et Perpendicular Case (Transverse Electric

More information

Polarized Light. Nikki Truss. Abstract:

Polarized Light. Nikki Truss. Abstract: Polarized Light Nikki Truss 9369481 Abstract: In this experiment, the properties of linearly polarised light were examined. Malus Law was verified using the apparatus shown in Fig. 1. Reflectance of s-polarised

More information

Module 5 : Plane Waves at Media Interface. Lecture 36 : Reflection & Refraction from Dielectric Interface (Contd.) Objectives

Module 5 : Plane Waves at Media Interface. Lecture 36 : Reflection & Refraction from Dielectric Interface (Contd.) Objectives Objectives In this course you will learn the following Reflection and Refraction with Parallel Polarization. Reflection and Refraction for Normal Incidence. Lossy Media Interface. Reflection and Refraction

More information

PH 222-2C Fall Electromagnetic Waves Lectures Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 222-2C Fall Electromagnetic Waves Lectures Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-2C Fall 2012 Electromagnetic Waves Lectures 21-22 Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 33 Electromagnetic Waves Today s information age is based almost

More information

Polarization of Light and Birefringence of Materials

Polarization of Light and Birefringence of Materials Polarization of Light and Birefringence of Materials Ajit Balagopal (Team Members Karunanand Ogirala, Hui Shen) ECE 614- PHOTONIC INFORMATION PROCESSING LABORATORY Abstract-- In this project, we study

More information

Fresnel s law, theory of reflection

Fresnel s law, theory of reflection Fresnel s law, theory of reflection LP Used concepts Electromagnetic theory of light, reflection coefficient, reflection factor, Brewster s law, law of refraction, polarisation, degree of polarisation.

More information

Innovation and Development of Study Field. nano.tul.cz

Innovation and Development of Study Field. nano.tul.cz Innovation and Development of Study Field Nanomaterials at the Technical University of Liberec nano.tul.cz These materials have been developed within the ESF project: Innovation and development of study

More information

Introduction to Spectroscopic methods

Introduction to Spectroscopic methods Introduction to Spectroscopic methods Spectroscopy: Study of interaction between light* and matter. Spectrometry: Implies a quantitative measurement of intensity. * More generally speaking electromagnetic

More information

POLARISATION. We have not really discussed the direction of the Electric field other that that it is perpendicular to the direction of motion.

POLARISATION. We have not really discussed the direction of the Electric field other that that it is perpendicular to the direction of motion. POLARISATION Light is a transverse electromagnetic wave. We have not really discussed the direction of the Electric field other that that it is perpendicular to the direction of motion. If the E field

More information

ECE 604, Lecture 17. October 30, In this lecture, we will cover the following topics: Reflection and Transmission Single Interface Case

ECE 604, Lecture 17. October 30, In this lecture, we will cover the following topics: Reflection and Transmission Single Interface Case ECE 604, Lecture 17 October 30, 2018 In this lecture, we will cover the following topics: Duality Principle Reflection and Transmission Single Interface Case Interesting Physical Phenomena: Total Internal

More information

PHYSICS. Ray Optics. Mr Rishi Gopie

PHYSICS. Ray Optics. Mr Rishi Gopie Ray Optics Mr Rishi Gopie Ray Optics Nature of light Light is a form of energy which affects the human eye in such a way as to cause the sensation of sight. Visible light is a range of electromagnetic

More information

Laser Optics-II. ME 677: Laser Material Processing Instructor: Ramesh Singh 1

Laser Optics-II. ME 677: Laser Material Processing Instructor: Ramesh Singh 1 Laser Optics-II 1 Outline Absorption Modes Irradiance Reflectivity/Absorption Absorption coefficient will vary with the same effects as the reflectivity For opaque materials: reflectivity = 1 - absorptivity

More information

Chapter 33. Electromagnetic Waves

Chapter 33. Electromagnetic Waves Chapter 33 Electromagnetic Waves Today s information age is based almost entirely on the physics of electromagnetic waves. The connection between electric and magnetic fields to produce light is own of

More information

OPSE FINAL EXAM Fall 2015 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

OPSE FINAL EXAM Fall 2015 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. CLOSED BOOK. Equation Sheet is provided. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED. (Except dimensionless units like

More information

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION Instructor: Kazumi Tolich Lecture 11 2 25.5 Electromagnetic waves Induced fields Properties of electromagnetic waves Polarization Energy of electromagnetic

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , 1 O P T I C S 1. Define resolving power of a telescope & microscope and give the expression for its resolving power. 2. Explain briefly the formation of mirage in deserts. 3. The radii of curvature of

More information

Electromagnetic Waves

Electromagnetic Waves Physics 102: Lecture 15 Electromagnetic Waves Energy & Polarization Physics 102: Lecture 15, Slide 1 Checkpoint 1.1, 1.2 y E x loop in xy plane loop in xz plane A B C Physics 102: Lecture 15, Slide 2 Propagation

More information

Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi

Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi Lecture No. # 09 Electromagnetic Wave Propagation Inhomogeneous Plasma (Refer Slide Time: 00:33) Today, I

More information

Lecture 36 Date:

Lecture 36 Date: Lecture 36 Date: 5.04.04 Reflection of Plane Wave at Oblique Incidence (Snells Law, Brewster s Angle, Parallel Polarization, Perpendicular Polarization etc.) Introduction to RF/Microwave Introduction One

More information

UNIT-5 EM WAVES UNIT-6 RAY OPTICS

UNIT-5 EM WAVES UNIT-6 RAY OPTICS UNIT-5 EM WAVES 2 Marks Question 1. To which regions of electromagnetic spectrum do the following wavelengths belong: (a) 250 nm (b) 1500 nm 2. State any one property which is common to all electromagnetic

More information

Lab #13: Polarization

Lab #13: Polarization Lab #13: Polarization Introduction In this experiment we will investigate various properties associated with polarized light. We will study both its generation and application. Real world applications

More information

Today in Physics 218: Fresnel s equations

Today in Physics 218: Fresnel s equations Today in Physics 8: Fresnel s equations Transmission and reflection with E parallel to the incidence plane The Fresnel equations Total internal reflection Polarization on reflection nterference R 08 06

More information

Problem 8.0 Make Your Own Exam Problem for Midterm II by April 13

Problem 8.0 Make Your Own Exam Problem for Midterm II by April 13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.007 Electromagnetic Energy: From Motors to Lasers Spring 2011 Problem Set 8: Electromagnetic Waves at Boundaries

More information

Electromagnetic Waves. Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

Electromagnetic Waves. Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-3A Spring 2007 Electromagnetic Waves Lecture 22 Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 33 Electromagnetic Waves Today s information age is based almost

More information

Problem set 3. Electromagnetic waves

Problem set 3. Electromagnetic waves Second Year Electromagnetism Michaelmas Term 2017 Caroline Terquem Problem set 3 Electromagnetic waves Problem 1: Poynting vector and resistance heating This problem is not about waves but is useful to

More information

Light matter interaction. Ground state spherical electron cloud. Excited state : 4 quantum numbers n principal (energy)

Light matter interaction. Ground state spherical electron cloud. Excited state : 4 quantum numbers n principal (energy) Light matter interaction Hydrogen atom Ground state spherical electron cloud Excited state : 4 quantum numbers n principal (energy) L angular momentum, 2,3... L L z projection of angular momentum S z projection

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 25 Propagation of Light Spring 2013 Semester Matthew Jones Midterm Exam: Date: Wednesday, March 6 th Time: 8:00 10:00 pm Room: PHYS 203 Material: French, chapters

More information

Week 7: Interference

Week 7: Interference Week 7: Interference Superposition: Till now we have mostly discusssed single waves. While discussing group velocity we did talk briefly about superposing more than one wave. We will now focus on superposition

More information

Constructive vs. destructive interference; Coherent vs. incoherent interference

Constructive vs. destructive interference; Coherent vs. incoherent interference Constructive vs. destructive interference; Coherent vs. incoherent interference Waves that combine in phase add up to relatively high irradiance. = Constructive interference (coherent) Waves that combine

More information

Core Concept. PowerPoint Lectures to accompany Physical Science, 8e. Chapter 7 Light. New Symbols for this Chapter 3/29/2011

Core Concept. PowerPoint Lectures to accompany Physical Science, 8e. Chapter 7 Light. New Symbols for this Chapter 3/29/2011 PowerPoint Lectures to accompany Physical Science, 8e Chapter 7 Light Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Core Concept Light is electromagnetic radiation

More information

Physics 6C. Final Practice Solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6C. Final Practice Solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physics 6C Final Practice Solutions Use the following information for problems 1 and. A beam of white light with frequency between 4.00 x 10 14 Hz and 7.90 x 10 14 Hz is incident on a sodium surface, which

More information

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle LECTURE 23: LIGHT Propagation of Light Reflection & Refraction Internal Reflection Propagation of Light Huygen s Principle Each point on a primary wavefront serves as the source of spherical secondary

More information

Lecture 19 Optical MEMS (1)

Lecture 19 Optical MEMS (1) EEL6935 Advanced MEMS (Spring 5) Instructor: Dr. Huikai Xie Lecture 19 Optical MEMS (1) Agenda: Optics Review EEL6935 Advanced MEMS 5 H. Xie 3/8/5 1 Optics Review Nature of Light Reflection and Refraction

More information

Innovation and Development of Study Field. nano.tul.cz

Innovation and Development of Study Field. nano.tul.cz Innovation and Development of Study Field Nanomaterials at the Technical University of Liberec nano.tul.cz These materials have been developed within the ESF project: Innovation and development of study

More information

Some Topics in Optics

Some Topics in Optics Some Topics in Optics The HeNe LASER The index of refraction and dispersion Interference The Michelson Interferometer Diffraction Wavemeter Fabry-Pérot Etalon and Interferometer The Helium Neon LASER A

More information

Reflection/Refraction

Reflection/Refraction Reflection/Refraction Page Reflection/Refraction Boundary Conditions Interfaces between different media imposed special boundary conditions on Maxwell s equations. It is important to understand what restrictions

More information

Waves, the Wave Equation, and Phase Velocity. We ll start with optics. The one-dimensional wave equation. What is a wave? Optional optics texts: f(x)

Waves, the Wave Equation, and Phase Velocity. We ll start with optics. The one-dimensional wave equation. What is a wave? Optional optics texts: f(x) We ll start with optics Optional optics texts: Waves, the Wave Equation, and Phase Velocity What is a wave? f(x) f(x-) f(x-) f(x-3) Eugene Hecht, Optics, 4th ed. J.F. James, A Student's Guide to Fourier

More information

REFLECTION AND REFRACTION AT A SINGLE INTERFACE

REFLECTION AND REFRACTION AT A SINGLE INTERFACE REFLECTION AND REFRACTION AT A SINGLE INTERFACE 5.1 THE BEHAVIOUR OF LIGHT AT A DIELECTRIC INTERFACE The previous Chapters have been concerned with the propagation of waves in empty space or in uniform,

More information

Electromagnetic Waves Across Interfaces

Electromagnetic Waves Across Interfaces Lecture 1: Foundations of Optics Outline 1 Electromagnetic Waves 2 Material Properties 3 Electromagnetic Waves Across Interfaces 4 Fresnel Equations 5 Brewster Angle 6 Total Internal Reflection Christoph

More information

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. CLOSED BOOK. Equation Sheet is provided. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED. (Except dimensionless units like

More information

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Chapter 1 - The Nature of Light

Chapter 1 - The Nature of Light David J. Starling Penn State Hazleton PHYS 214 Electromagnetic radiation comes in many forms, differing only in wavelength, frequency or energy. Electromagnetic radiation comes in many forms, differing

More information

PHYS 4400, Principles and Varieties of Solar Energy Instructor: Randy J. Ellingson The University of Toledo

PHYS 4400, Principles and Varieties of Solar Energy Instructor: Randy J. Ellingson The University of Toledo Light and Photons PHYS 4400, Principles and Varieties of Solar Energy Instructor: Randy J. Ellingson The University of Toledo January 16, 2014 Light What is light? Electromagnetic wave direction of the

More information

Waves, the Wave Equation, and Phase Velocity

Waves, the Wave Equation, and Phase Velocity Waves, the Wave Equation, and Phase Velocity What is a wave? The one-dimensional wave equation Wavelength, frequency, period, etc. Phase velocity Complex numbers and exponentials Plane waves, laser beams,

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves As the chart shows, the electromagnetic spectrum covers an extremely wide range of wavelengths and frequencies. Though the names indicate that these waves have a number of sources,

More information

Lecture Outline. Scattering at an Interface Sunrises & Sunsets Rainbows Polarized Sunglasses 8/9/2018. EE 4347 Applied Electromagnetics.

Lecture Outline. Scattering at an Interface Sunrises & Sunsets Rainbows Polarized Sunglasses 8/9/2018. EE 4347 Applied Electromagnetics. Course Instructor Dr. Raymond C. Rumpf Office: A 337 Phone: (915) 747 6958 E Mail: rcrumpf@utep.edu EE 4347 Applied Electromagnetics Topic 3i Scattering at an Interface: Examples Examples These notes may

More information

Spectroscopy in frequency and time domains

Spectroscopy in frequency and time domains 5.35 Module 1 Lecture Summary Fall 1 Spectroscopy in frequency and time domains Last time we introduced spectroscopy and spectroscopic measurement. I. Emphasized that both quantum and classical views of

More information

EE485 Introduction to Photonics. Introduction

EE485 Introduction to Photonics. Introduction EE485 Introduction to Photonics Introduction Nature of Light They could but make the best of it and went around with woebegone faces, sadly complaining that on Mondays, Wednesdays, and Fridays, they must

More information

Calculating Thin Film Stack Properties

Calculating Thin Film Stack Properties Lecture 5: Thin Films Outline 1 Thin Films 2 Calculating Thin Film Stack Properties 3 Fabry-Perot Tunable Filter 4 Anti-Reflection Coatings 5 Interference Filters Christoph U. Keller, Leiden University,

More information

Doppler echocardiography & Magnetic Resonance Imaging. Doppler echocardiography. History: - Langevin developed sonar.

Doppler echocardiography & Magnetic Resonance Imaging. Doppler echocardiography. History: - Langevin developed sonar. 1 Doppler echocardiography & Magnetic Resonance Imaging History: - Langevin developed sonar. - 1940s development of pulse-echo. - 1950s development of mode A and B. - 1957 development of continuous wave

More information

Fizeau s Interference Experiment with Moving Water Contradicts the Special Theory of Relativity.

Fizeau s Interference Experiment with Moving Water Contradicts the Special Theory of Relativity. Fizeau s Interference Experiment with Moving Water Contradicts the Special Theory of Relativity. Gennady Sokolov, Vitali Sokolov gennadiy@vtmedicalstaffing.com The interference experiment with moving water

More information

Chapter 5. Photonic Crystals, Plasmonics, and Metamaterials

Chapter 5. Photonic Crystals, Plasmonics, and Metamaterials Chapter 5. Photonic Crystals, Plasmonics, and Metamaterials Reading: Saleh and Teich Chapter 7 Novotny and Hecht Chapter 11 and 12 1. Photonic Crystals Periodic photonic structures 1D 2D 3D Period a ~

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wave Phenomena Physics 5c Lecture 6 eflection and efraction (&L Sections. 3) Administravia! Laser safety video at the end of this lecture! Because you ll be doing take-home lab using a laser pointer! Lecture

More information

1. Consider the biconvex thick lens shown in the figure below, made from transparent material with index n and thickness L.

1. Consider the biconvex thick lens shown in the figure below, made from transparent material with index n and thickness L. Optical Science and Engineering 2013 Advanced Optics Exam Answer all questions. Begin each question on a new blank page. Put your banner ID at the top of each page. Please staple all pages for each individual

More information

Lecture 2: Basic Astronomical Optics. Prisms, Lenses, and Mirrors

Lecture 2: Basic Astronomical Optics. Prisms, Lenses, and Mirrors Lecture 2: Basic Astronomical Optics Prisms, Lenses, and Mirrors Basic Optical Elements Refraction (Lenses) No longer used for large telescopes Widely used for instrument optics Reflection (mirrors) Widely

More information

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter 1 Announcements Add to your notes of Chapter 1 Analytical sensitivity γ=m/s s Homework Problems 1-9, 1-10 Challenge

More information

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter Announcements Add to your notes of Chapter 1 Analytical sensitivity γ=m/s s Homework Problems 1-9, 1-10 Challenge

More information

Experiment 8. Fresnel Coefficients. 8.1 Introduction. References

Experiment 8. Fresnel Coefficients. 8.1 Introduction. References Experiment 8 Fresnel Coefficients References Optics by Eugene Hecht, Chapter 4 Introduction to Modern Optics by Grant Fowles, Chapter 2 Principles of Optics by Max Born and Emil Wolf, Chapter 1 Optical

More information

Session 8 Maxwell s Equations

Session 8 Maxwell s Equations Session 8 Maxwell s Equations Emma Bunce Physics Innovations Centre for Excellence in Learning and Teaching CETL (Leicester) Department of Physics and Astronomy University of Leicester 1 Contents Welcome...

More information

Chapter 33: ELECTROMAGNETIC WAVES 559

Chapter 33: ELECTROMAGNETIC WAVES 559 Chapter 33: ELECTROMAGNETIC WAVES 1 Select the correct statement: A ultraviolet light has a longer wavelength than infrared B blue light has a higher frequency than x rays C radio waves have higher frequency

More information

Ruby crystals and the first laser A spectroscopy experiment

Ruby crystals and the first laser A spectroscopy experiment Introduction: In this experiment you will be studying a ruby crystal using spectroscopy. Ruby is made from sapphire (Al 2 O 3 ) which has been doped with chromium ions, Cr(3+). There are three sets of

More information

Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Electro Dynamic

Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Electro Dynamic Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Name Electro Dynamic Instructions: Use SI units. Short answers! No derivations here, just state your responses clearly. 1. (2) Write an

More information

: Imaging Systems Laboratory II. Laboratory 6: The Polarization of Light April 16 & 18, 2002

: Imaging Systems Laboratory II. Laboratory 6: The Polarization of Light April 16 & 18, 2002 151-232: Imaging Systems Laboratory II Laboratory 6: The Polarization of Light April 16 & 18, 22 Abstract. In this lab, we will investigate linear and circular polarization of light. Linearly polarized

More information

Vector diffraction theory of refraction of light by a spherical surface

Vector diffraction theory of refraction of light by a spherical surface S. Guha and G. D. Gillen Vol. 4, No. 1/January 007/J. Opt. Soc. Am. B 1 Vector diffraction theory of refraction of light by a spherical surface Shekhar Guha and Glen D. Gillen* Materials and Manufacturing

More information

PHYS 102 Exams. PHYS 102 Exam 3 PRINT (A)

PHYS 102 Exams. PHYS 102 Exam 3 PRINT (A) PHYS 102 Exams PHYS 102 Exam 3 PRINT (A) The next two questions pertain to the situation described below. A metal ring, in the page, is in a region of uniform magnetic field pointing out of the page as

More information

Light propagation. Ken Intriligator s week 7 lectures, Nov.12, 2013

Light propagation. Ken Intriligator s week 7 lectures, Nov.12, 2013 Light propagation Ken Intriligator s week 7 lectures, Nov.12, 2013 What is light? Old question: is it a wave or a particle? Quantum mechanics: it is both! 1600-1900: it is a wave. ~1905: photons Wave:

More information

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters Disclaimer: Chapter 29 Alternating-Current Circuits (1) This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters 29-33. LC circuit: Energy stored LC

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 2 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 2 Course Objectives correlated to the College Board AP Physics 2 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring Understanding 1.A:

More information

Lecture 2: Thin Films. Thin Films. Calculating Thin Film Stack Properties. Jones Matrices for Thin Film Stacks. Mueller Matrices for Thin Film Stacks

Lecture 2: Thin Films. Thin Films. Calculating Thin Film Stack Properties. Jones Matrices for Thin Film Stacks. Mueller Matrices for Thin Film Stacks Lecture 2: Thin Films Outline Thin Films 2 Calculating Thin Film Stack Properties 3 Jones Matrices for Thin Film Stacks 4 Mueller Matrices for Thin Film Stacks 5 Mueller Matrix for Dielectrica 6 Mueller

More information

The Interaction of Light and Matter: α and n

The Interaction of Light and Matter: α and n The Interaction of Light and Matter: α and n The interaction of light and matter is what makes life interesting. Everything we see is the result of this interaction. Why is light absorbed or transmitted

More information

B.Tech. First Semester Examination Physics-1 (PHY-101F)

B.Tech. First Semester Examination Physics-1 (PHY-101F) B.Tech. First Semester Examination Physics-1 (PHY-101F) Note : Attempt FIVE questions in all taking least two questions from each Part. All questions carry equal marks Part-A Q. 1. (a) What are Newton's

More information

18. Standing Waves, Beats, and Group Velocity

18. Standing Waves, Beats, and Group Velocity 18. Standing Waves, Beats, and Group Velocity Superposition again Standing waves: the sum of two oppositely traveling waves Beats: the sum of two different frequencies Group velocity: the speed of information

More information

BANNARI AMMAN INSTITUTE OF TECHNOLOGY SATHYAMANGALAM DEPARTMENT OF PHYSICAL SCIENCES. UNIT II Applied Optics

BANNARI AMMAN INSTITUTE OF TECHNOLOGY SATHYAMANGALAM DEPARTMENT OF PHYSICAL SCIENCES. UNIT II Applied Optics BANNAI AMMAN INSTITTE OF TECHNOLOGY SATHYAMANGALAM DEPATMENT OF PHYSICAL SCIENCES NIT II Applied Optics PAT A A1 The superimposition of one light wave over another is called as a) interference b) Diffraction

More information

Classical electric dipole radiation

Classical electric dipole radiation B Classical electric dipole radiation In Chapter a classical model was used to describe the scattering of X-rays by electrons. The equation relating the strength of the radiated to incident X-ray electric

More information

PHYSICS nd TERM Outline Notes (continued)

PHYSICS nd TERM Outline Notes (continued) PHYSICS 2800 2 nd TERM Outline Notes (continued) Section 6. Optical Properties (see also textbook, chapter 15) This section will be concerned with how electromagnetic radiation (visible light, in particular)

More information

Experiment 6: Interferometers

Experiment 6: Interferometers Experiment 6: Interferometers Nate Saffold nas2173@columbia.edu Office Hour: Mondays, 5:30PM-6:30PM @ Pupin 1216 INTRO TO EXPERIMENTAL PHYS-LAB 1493/1494/2699 NOTE: No labs and no lecture next week! Outline

More information

Lecture 20 Optical Characterization 2

Lecture 20 Optical Characterization 2 Lecture 20 Optical Characterization 2 Schroder: Chapters 2, 7, 10 1/68 Announcements Homework 5/6: Is online now. Due Wednesday May 30th at 10:00am. I will return it the following Wednesday (6 th June).

More information

II Theory Of Surface Plasmon Resonance (SPR)

II Theory Of Surface Plasmon Resonance (SPR) II Theory Of Surface Plasmon Resonance (SPR) II.1 Maxwell equations and dielectric constant of metals Surface Plasmons Polaritons (SPP) exist at the interface of a dielectric and a metal whose electrons

More information

PRINCIPLES OF PHYSICAL OPTICS

PRINCIPLES OF PHYSICAL OPTICS PRINCIPLES OF PHYSICAL OPTICS C. A. Bennett University of North Carolina At Asheville WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS Preface 1 The Physics of Waves 1 1.1 Introduction

More information

1. Reminder: E-Dynamics in homogenous media and at interfaces

1. Reminder: E-Dynamics in homogenous media and at interfaces 0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2. Photonic Crystals 2.1 Introduction 2.2 1D Photonic Crystals 2.3 2D and 3D Photonic Crystals 2.4 Numerical Methods 2.5 Fabrication

More information

Electromagnetic waves in free space

Electromagnetic waves in free space Waveguide notes 018 Electromagnetic waves in free space We start with Maxwell s equations for an LIH medum in the case that the source terms are both zero. = =0 =0 = = Take the curl of Faraday s law, then

More information

Homework 1. Nano Optics, Fall Semester 2018 Photonics Laboratory, ETH Zürich

Homework 1. Nano Optics, Fall Semester 2018 Photonics Laboratory, ETH Zürich Homework 1 Contact: mfrimmer@ethz.ch Due date: Friday 12 October 2018; 10:00 a.m. Nano Optics, Fall Semester 2018 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch The goal of this homework is to

More information