Fourier Sin and Cos Series and Least Squares Convergence

Size: px
Start display at page:

Download "Fourier Sin and Cos Series and Least Squares Convergence"

Transcription

1 Fourier Sin and Cos Series and east Squares Convergence James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University December 4, 208 Outline Sin and Cos Series

2 et s look at the original Fourier sin series and Fourier Cosine Series. These are FSx = 2 f x, sin x sin x and FCx = < f, > + 2 f x, cos x cos x. To understand the convergence of the Fourier Sine Series on [0, ] we extend f from [0, ] to [0, 2] as an odd function and then use the convergence analysis we have already completed on the interval [0, 2] to infer convergence of the Fourier Sine Series on [0, ]. Then to understand the convergence of the Fourier Cosine Series on [0, ] we extend f from [0, ] to [0, 2] as an even function and then use the convergence analysis we have already completed on the interval [0, 2] to infer convergence of the Fourier Cosine Series on [0, ]. et f be defined only on the interval [0, ]. Extend f to be an odd function fo on [0, 2] as follows: fox = { f x, 0 x, f 2 x, < x 2. Then extend fo periodically as usual to ˆfo. The Fourier coefficient for the sin terms are then an fo,2 = 2 fot sin 0 t dt = f t sin 0 t dt + 2 f 2 t sin t dt. Consider the second integration. Making the change of variable y = 2 t, we find 2 f 2 t sin t dt = 0 f y sin 2 y dy

3 But 2 y = 2 y and since sin function is 2π periodic, we have 0 f y sin 2 y dy = 0 f y sin y dy = f y sin 0 y dy. This is the same as the first integral. Hence, we have shown an fo,2 = 2 0 fot sin t dt = 2 0 f t sin t dt = an f,. The terms corresponding to the cos parts will all then be zero. The argument is straightforward. For i > 0, bn f0,2 = 2 fot cos 0 t dt = f 2 t cos t dt. f t cos t dt Consider the second integration. Making the change of variable y = 2 t, we find 2 f 2 t cos t dt = 0 f y cos 2 y dy. Again, 2 y = 2 y and since cos term 2π periodic and cos is an even function, we have 2 f 2 t cos t dt = 0 f y cos 0 y dy f y cos y dy which is the negative of the first integral. So all of the coefficients bn fo,2 are zero. Also, b f0,2 0 = 2 fotdt = 0 because 0 f0 is odd on this interval.

4 Thus, all the cos based terms in the Fourier series vanish. The Fourier series on the interval [0, 2] of the odd extension fo becomes the standard Fourier sine series on the interval [0, ] of the function f. We know this converges to f x at each point x where f is differentiable and converges to the average 2 f x + + f x at each point x where f satisfies lim y x ± f y exists. Note because the sin functions are always 0 at the endpoints 0 and, this series must converge to 0 at those points. et s look at the Fourier cos series. et f be defined only on the interval [0, ]. Extend f to be an even function fe on [0, 2] as follows: fex = { f x, 0 x, f 2 x, < x 2. Then extend fe periodically as usual to ˆfe. The Fourier coefficient for the sin terms are now an fe,2 = 2 fet sin 0 t dt = f t sin 0 t dt + 2 f 2 t sin t dt. Consider the second integration. Making the change of variable y = 2 t, we find 2 f 2 t sin t dt = 0 f y sin 2 y dy = f y sin 0 y dy. However, sin is an odd function and thus the second integral is the negative of the first and these coefficients vanish.

5 Next, consider the first Fourier cos coefficient. This is b fe,2 0 = 2 fetdt = f tdt + 2 f 2 tdt = f tdt + 0 f y dy 2 0 = f tdt = b f, 0 0 Now let s look at the other cos based coefficients. We have bn fe,2 = 2 fet cos 0 t dt = f t cos 0 t dt + 2 f 2 t cos t dt. Consider the second integration. Making the change of variable y = 2 t, we find 2 f 2 t cos t dt = 0 f y cos = f y cos 0 2 y 2 y dy dy Again, 2 y = 2 y and since cos term 2π periodic and cos is an even function, we have 2 f 2 t cos t dt = 0 This is the same as the first integral. So b fe,2 0 = fetdt = 2 f y cos y dy f y cos 0 y dy = bn f,

6 Thus, the Fourier series on the interval [0, 2] of the even extension fe becomes the standard Fourier cosine series on the interval [0, ] of the function f < f, ˆvi > ˆvi = < f x, > + 2 f x, cos x cos x. i=0 We know this series converges to f x at each point x where f is differentiable and converges to the average 2 f x + + f x at each point x where f satisfies lim y x ± f y exists. et s do some estimates. Assume we have a function f extended periodically on the interval [0, 2] to ˆf as usual with Fourier series Sx = 2 < f, > + f x, sin x sin x + f x, cos x cos x and using b0 2 = 2 an 2 = f x, sin Sx = b < f, >, b2 n = f x, cos x and x as usual, we can write ai 2 sin x + bi 2 cos x. Now if we assume f exists in [0, 2], the Fourier series of f converges to f at each point and f x = b0 2 + ai 2 sin x + bi 2 cos x.

7 et Sn be the n th partial sum of the series above. Then assuming 2 0 f 2 xdx is finite, we have 0 < f b 2 0 f b 2 0 ai 2 sin x aj 2 sin x j= + bi 2 cos x, jπ + bj 2 cos x > As usual, we let uix = sin x and vix = cos x with v0x =. Then, we can rewrite this as 0 < f b 2 0 v0x f b 2 0 v0x ai 2 uix + bi 2 vi, aj 2 ujx + bj 2 vjx > j= Thus, we find, after a lot of manipulation 0 f b 2 0 v0x ai 2 uix + bi 2 vix 2 = < f, f > 2b0 2 < f, v0 > +b0 2 2 < v0, v0 > 2 + ai 2 < f, ui > 2 i=0 bi 2 2 < vi, vi > because all the cross terms vanish. b 2 i < f, vi > + Hence, since < f, vi >= bi and < f, ui >= ai we have 0 f b 2 0 v0x ai 2 uix + bi 2 vi 2 = < f, f > b0 2 2 ai 2 2 bi 2 2 a 2 i 2 < ui, ui >

8 We conclude that b ai bi 2 2 f 2 This tells us that the series of positive terms, b a2 i 2 + bi 2 2 converges. et s look at the derivative of this series next. et s assume f is differentiable on [0, 2] and we extend f periodically as well. We can calculate the Fourier series of f like usual. Now this series converges to f, if we assume f exists on [0, 2]. Then we know the Fourier series of f converges pointwise to f x at each point x. However, we can calculate the derivative Fourier series directly. et the Fourier series of f x be T x. Then The first coefficient is T x = 2 < f, > + f x, sin x + f x, cos x sin x cos 2 < f, > = f 2 f 0 2 x. Now let s consider the other Fourier coefficients carefully. We can rewrite each coefficient using integration by parts to find, f x, cos x = 2 f x, cos 0 x dx = 2 f x cos x + 2 f x sin 0 0 x dx

9 f x, sin x = 2 f x, sin 0 x dx = 2 f x sin x 2 f x cos 0 0 x dx A little thought shows we can rewrite this as f x, cos x = 2 f 2 cos = f 2 f 0 f x, sin x = 2 f 2 sin f 0 cos + a2 i f 0 sin 0 0π + a2 i b2 i Now if we assume f 2 = f 0, these reduce to ˆb 0 2 = 2 < f, > = f 2 f 0 = 0 2 ˆb n 2 = f x, cos x = f 2 f 0 + ai = a2 i ân 2 = f x, sin x = b2 i Hence, if f is periodic, we find T x = πi b2 i sin x + πi a2 i cos x. This is the same result we would have found if we differentiated the Fourier series for f term by term. So we conclude that the Fourier series of f can be found be differentiating the Fourier series for f term by term and we know it converges to f x at points where f exists.

10 We can apply the derivation we did above for f to the series expansion for f we have just found. Assuming f is integrable, we find ˆb âi ˆb i 2 2 f 2 where here ˆb 0 2 = 0, âi 2 = πi b2 i π 2 2 and ˆb i 2 = πi ai. Hence, we have i 2 ai bi 2 2 f 2 2 We are almost at the point where we can see circumstances where the Fourier series expansion of f converges uniformly to f on the interval [0, 2]. We assume f is continuous and periodic on [0, 2] and that f exists. Further assume f is integrable. Hence, we know the Fourier series of f exists and converges to f x. So if f is periodic on [0, 2] and f is integrable, the f has Fourier series f x = b0 2 + ai 2 sin x + bi 2 cos x. then we know for all n π 2 2 et s look at the partial sums b ai 2 sin x + = b i 2 ai bi 2 2 f 2 2 bi 2 cos x i ai 2 i sin x + i bi 2 i cos x.

11 et Tn denote the n th partial sum here. Then, the difference of the n th and m th partial sum for m > n gives Tmx Tnx = i ai 2 i sin x + i=n+ i=n+ i bi 2 i cos x. Now apply our analogue of the Cauchy - Schwartz inequality for series. Tmx Tnx = i ai 2 sin i x + i bi 2 x cos i i=n+ i=n+ i 2 ai i 2 sin x i=n+ i=n+ + i 2 bi i 2 cos x i=n+ i=n+ i 2 ai 2 2 i 2 + i 2 bi 2 2 i 2 i=n+ i=n+ i=n+ i=n+ Now each of the front pieces satisfy i 2 ai π 2 f 2 2, i 2 bi π 2 f 2 2 Hence, Tmx Tnx 2 f π i 2. i=n+ Since the series /i 2 converges, this says the sequence of partial Tn satisfies the UCC for series and so the sequence of partial sums converges to a function T which by uniqueness of limits must be f.

12 et s summarize this result. Theorem Given f on [0, 2], assume f is continuous with f 0 = f 2 and f exists. Further f is integrable on [0, 2]. Then the Fourier series of f converges uniformly to f on [0, 2]. Homework 3 3. Show the sequence of functions wnx = sin N + π 2 t are mutually orthogonal with length /2 on [, 2]. 3.2 Find the odd periodic extension ˆfo and even periodic externsion ˆfe for f t = t + 2 t 3 on [, 6]. Draw several cycles. 3.3 the function f is defined on [0, ] = [0, 3]. { 2, 0 x 2 f x = 0, 2 < x 3 Find its periodic extension to [0, 6], odd periodic extension to [0, 6] and its even periodic extension to [0, 6]. Find the first four terms of the Fourier sin series on [0, 3]. Find the first four terms of the Fourier cos series on [0, 3].

Fourier Sin and Cos Series and Least Squares Convergence

Fourier Sin and Cos Series and Least Squares Convergence Fourier and east Squares Convergence James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University May 7, 28 Outline et s look at the original Fourier sin

More information

More Series Convergence

More Series Convergence More Series Convergence James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University December 4, 218 Outline Convergence Analysis for Fourier Series Revisited

More information

More Least Squares Convergence and ODEs

More Least Squares Convergence and ODEs More east Squares Convergence and ODEs James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University April 12, 219 Outline Fourier Sine and Cosine Series

More information

Convergence of Fourier Series

Convergence of Fourier Series MATH 454: Analysis Two James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University April, 8 MATH 454: Analysis Two Outline The Cos Family MATH 454: Analysis

More information

Differentiating Series of Functions

Differentiating Series of Functions Differentiating Series of Functions James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 30, 017 Outline 1 Differentiating Series Differentiating

More information

Cable Convergence. James K. Peterson. May 7, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Cable Convergence. James K. Peterson. May 7, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Cable Convergence James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University May 7, 2018 Outline 1 Fourier Series Convergence Redux 2 Fourier Series

More information

MATH 124B: HOMEWORK 2

MATH 124B: HOMEWORK 2 MATH 24B: HOMEWORK 2 Suggested due date: August 5th, 26 () Consider the geometric series ( ) n x 2n. (a) Does it converge pointwise in the interval < x

More information

Geometric Series and the Ratio and Root Test

Geometric Series and the Ratio and Root Test Geometric Series and the Ratio and Root Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 5, 2017 Outline Geometric Series The

More information

Proofs Not Based On POMI

Proofs Not Based On POMI s Not Based On POMI James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 1, 018 Outline Non POMI Based s Some Contradiction s Triangle

More information

Proofs Not Based On POMI

Proofs Not Based On POMI s Not Based On POMI James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 12, 2018 Outline 1 Non POMI Based s 2 Some Contradiction s 3

More information

Geometric Series and the Ratio and Root Test

Geometric Series and the Ratio and Root Test Geometric Series and the Ratio and Root Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 5, 2018 Outline 1 Geometric Series

More information

Derivatives and the Product Rule

Derivatives and the Product Rule Derivatives and the Product Rule James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 28, 2014 Outline 1 Differentiability 2 Simple Derivatives

More information

Hölder s and Minkowski s Inequality

Hölder s and Minkowski s Inequality Hölder s and Minkowski s Inequality James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 1, 218 Outline Conjugate Exponents Hölder s

More information

General Power Series

General Power Series General Power Series James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 29, 2018 Outline Power Series Consequences With all these preliminaries

More information

Uniform Convergence Examples

Uniform Convergence Examples Uniform Convergence Examples James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 13, 2017 Outline More Uniform Convergence Examples Example

More information

Uniform Convergence and Series of Functions

Uniform Convergence and Series of Functions Uniform Convergence and Series of Functions James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 7, 017 Outline Uniform Convergence Tests

More information

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case.

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case. s of the Fourier Theorem (Sect. 1.3. The Fourier Theorem: Continuous case. : Using the Fourier Theorem. The Fourier Theorem: Piecewise continuous case. : Using the Fourier Theorem. The Fourier Theorem:

More information

Uniform Convergence Examples

Uniform Convergence Examples Uniform Convergence Examples James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 13, 2017 Outline 1 Example Let (x n ) be the sequence

More information

Dirchlet s Function and Limit and Continuity Arguments

Dirchlet s Function and Limit and Continuity Arguments Dirchlet s Function and Limit and Continuity Arguments James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 23, 2018 Outline 1 Dirichlet

More information

Hölder s and Minkowski s Inequality

Hölder s and Minkowski s Inequality Hölder s and Minkowski s Inequality James K. Peterson Deartment of Biological Sciences and Deartment of Mathematical Sciences Clemson University Setember 10, 2018 Outline 1 Conjugate Exonents 2 Hölder

More information

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 6, 203 Outline

More information

The First Derivative and Second Derivative Test

The First Derivative and Second Derivative Test The First Derivative and Second Derivative Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University April 9, 2018 Outline 1 Extremal Values 2

More information

The First Derivative and Second Derivative Test

The First Derivative and Second Derivative Test The First Derivative and Second Derivative Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 8, 2017 Outline Extremal Values The

More information

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 6, 2013 Outline

More information

Integration and Differentiation Limit Interchange Theorems

Integration and Differentiation Limit Interchange Theorems Integration and Differentiation Limit Interchange Theorems James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 11, 2018 Outline 1 A More

More information

Convergence of Sequences

Convergence of Sequences James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 5, 2018 Outline 1 2 Homework Definition Let (a n ) n k be a sequence of real numbers.

More information

Derivatives in 2D. Outline. James K. Peterson. November 9, Derivatives in 2D! Chain Rule

Derivatives in 2D. Outline. James K. Peterson. November 9, Derivatives in 2D! Chain Rule Derivatives in 2D James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 9, 2016 Outline Derivatives in 2D! Chain Rule Let s go back to

More information

1 A complete Fourier series solution

1 A complete Fourier series solution Math 128 Notes 13 In this last set of notes I will try to tie up some loose ends. 1 A complete Fourier series solution First here is an example of the full solution of a pde by Fourier series. Consider

More information

Defining Exponential Functions and Exponential Derivatives and Integrals

Defining Exponential Functions and Exponential Derivatives and Integrals Defining Exponential Functions and Exponential Derivatives and Integrals James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 19, 2014

More information

Mathematical Induction Again

Mathematical Induction Again Mathematical Induction Again James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 12, 2017 Outline Mathematical Induction Simple POMI Examples

More information

Convergence of Sequences

Convergence of Sequences Convergence of Sequences James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 12, 2018 Outline Convergence of Sequences Definition Let

More information

Mathematical Induction Again

Mathematical Induction Again Mathematical Induction Again James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 2, 207 Outline Mathematical Induction 2 Simple POMI Examples

More information

The Method of Laplace Transforms.

The Method of Laplace Transforms. The Method of Laplace Transforms. James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University May 25, 217 Outline 1 The Laplace Transform 2 Inverting

More information

Fourier Series Code. James K. Peterson. April 9, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Fourier Series Code. James K. Peterson. April 9, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Fourier Series Code James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University April 9, 2018 Outline 1 We will need to approximate Fourier series expansions

More information

Waves on 2 and 3 dimensional domains

Waves on 2 and 3 dimensional domains Chapter 14 Waves on 2 and 3 dimensional domains We now turn to the studying the initial boundary value problem for the wave equation in two and three dimensions. In this chapter we focus on the situation

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predator - Prey Model Trajectories and the nonlinear conservation law James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 28, 2013 Outline

More information

General Inner Product and The Fourier Series

General Inner Product and The Fourier Series A Linear Algebra Approach Department of Mathematics University of Puget Sound 4-20-14 / Spring Semester Outline 1 2 Inner Product The inner product is an algebraic operation that takes two vectors and

More information

Math 115 ( ) Yum-Tong Siu 1. Derivation of the Poisson Kernel by Fourier Series and Convolution

Math 115 ( ) Yum-Tong Siu 1. Derivation of the Poisson Kernel by Fourier Series and Convolution Math 5 (006-007 Yum-Tong Siu. Derivation of the Poisson Kernel by Fourier Series and Convolution We are going to give a second derivation of the Poisson kernel by using Fourier series and convolution.

More information

Consequences of Continuity

Consequences of Continuity Consequences of Continuity James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 4, 2017 Outline 1 Domains of Continuous Functions 2 The

More information

Solutions for Problem Set #4 due October 10, 2003 Dustin Cartwright

Solutions for Problem Set #4 due October 10, 2003 Dustin Cartwright Solutions for Problem Set #4 due October 1, 3 Dustin Cartwright (B&N 4.3) Evaluate C f where f(z) 1/z as in Example, and C is given by z(t) sin t + i cos t, t π. Why is the result different from that of

More information

23 Elements of analytic ODE theory. Bessel s functions

23 Elements of analytic ODE theory. Bessel s functions 23 Elements of analytic ODE theory. Bessel s functions Recall I am changing the variables) that we need to solve the so-called Bessel s equation 23. Elements of analytic ODE theory Let x 2 u + xu + x 2

More information

Introduction to the FFT

Introduction to the FFT Introduction to the FFT 1 Introduction Assume that we have a signal fx where x denotes time. We would like to represent fx as a linear combination of functions e πiax or, equivalently, sinπax and cosπax

More information

Integration and Differentiation Limit Interchange Theorems

Integration and Differentiation Limit Interchange Theorems Integration and Differentiation Limit Interchange Theorems James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 11, 2018 Outline A More General

More information

Jim Lambers ENERGY 281 Spring Quarter Lecture 5 Notes

Jim Lambers ENERGY 281 Spring Quarter Lecture 5 Notes Jim ambers ENERGY 28 Spring Quarter 27-8 ecture 5 Notes These notes are based on Rosalind Archer s PE28 lecture notes, with some revisions by Jim ambers. Fourier Series Recall that in ecture 2, when we

More information

Constrained Optimization in Two Variables

Constrained Optimization in Two Variables Constrained Optimization in Two Variables James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 17, 216 Outline Constrained Optimization

More information

5.4 Continuity: Preliminary Notions

5.4 Continuity: Preliminary Notions 5.4. CONTINUITY: PRELIMINARY NOTIONS 181 5.4 Continuity: Preliminary Notions 5.4.1 Definitions The American Heritage Dictionary of the English Language defines continuity as an uninterrupted succession,

More information

Dirchlet s Function and Limit and Continuity Arguments

Dirchlet s Function and Limit and Continuity Arguments Dirchlet s Function and Limit and Continuity Arguments James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 2, 2018 Outline Dirichlet

More information

MATH 5640: Fourier Series

MATH 5640: Fourier Series MATH 564: Fourier Series Hung Phan, UMass Lowell September, 8 Power Series A power series in the variable x is a series of the form a + a x + a x + = where the coefficients a, a,... are real or complex

More information

Variation of Parameters

Variation of Parameters Variation of Parameters James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University April 13, 218 Outline Variation of Parameters Example One We eventually

More information

Consequences of Continuity

Consequences of Continuity Consequences of Continuity James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 4, 2017 Outline Domains of Continuous Functions The Intermediate

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES 11 INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES In section 11.9, we were able to find power series representations for a certain restricted class of functions. INFINITE SEQUENCES AND SERIES

More information

Antiderivatives! Outline. James K. Peterson. January 28, Antiderivatives. Simple Fractional Power Antiderivatives

Antiderivatives! Outline. James K. Peterson. January 28, Antiderivatives. Simple Fractional Power Antiderivatives Antiderivatives! James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 28, 2014 Outline Antiderivatives Simple Fractional Power Antiderivatives

More information

Math 172 Problem Set 8 Solutions

Math 172 Problem Set 8 Solutions Math 72 Problem Set 8 Solutions Problem. (i We have (Fχ [ a,a] (ξ = χ [ a,a] e ixξ dx = a a e ixξ dx = iξ (e iax e iax = 2 sin aξ. ξ (ii We have (Fχ [, e ax (ξ = e ax e ixξ dx = e x(a+iξ dx = a + iξ where

More information

Antiderivatives! James K. Peterson. January 28, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Antiderivatives! James K. Peterson. January 28, Department of Biological Sciences and Department of Mathematical Sciences Clemson University ! James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 28, 2014 Outline 1 2 Simple Fractional Power Abstract This lecture is going to talk

More information

G: Uniform Convergence of Fourier Series

G: Uniform Convergence of Fourier Series G: Uniform Convergence of Fourier Series From previous work on the prototypical problem (and other problems) u t = Du xx 0 < x < l, t > 0 u(0, t) = 0 = u(l, t) t > 0 u(x, 0) = f(x) 0 < x < l () we developed

More information

Section 7.5 Inner Product Spaces

Section 7.5 Inner Product Spaces Section 7.5 Inner Product Spaces With the dot product defined in Chapter 6, we were able to study the following properties of vectors in R n. ) Length or norm of a vector u. ( u = p u u ) 2) Distance of

More information

Lecture 16: Bessel s Inequality, Parseval s Theorem, Energy convergence

Lecture 16: Bessel s Inequality, Parseval s Theorem, Energy convergence Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. ot to be copied, used, or revised without explicit written permission from the copyright owner. ecture 6: Bessel s Inequality,

More information

Derivatives and the Product Rule

Derivatives and the Product Rule Derivatives an the Prouct Rule James K. Peterson Department of Biological Sciences an Department of Mathematical Sciences Clemson University January 28, 2014 Outline Differentiability Simple Derivatives

More information

Predator - Prey Model Trajectories are periodic

Predator - Prey Model Trajectories are periodic Predator - Prey Model Trajectories are periodic James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 4, 2013 Outline 1 Showing The PP

More information

Constrained Optimization in Two Variables

Constrained Optimization in Two Variables in Two Variables James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 17, 216 Outline 1 2 What Does the Lagrange Multiplier Mean? Let

More information

Part 3.3 Differentiation Taylor Polynomials

Part 3.3 Differentiation Taylor Polynomials Part 3.3 Differentiation 3..3.1 Taylor Polynomials Definition 3.3.1 Taylor 1715 and Maclaurin 1742) If a is a fixed number, and f is a function whose first n derivatives exist at a then the Taylor polynomial

More information

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6 Calculus II Practice Test Problems for Chapter 7 Page of 6 This is a set of practice test problems for Chapter 7. This is in no way an inclusive set of problems there can be other types of problems on

More information

multiply both sides of eq. by a and projection overlap

multiply both sides of eq. by a and projection overlap Fourier Series n x n x f xa ancos bncos n n periodic with period x consider n, sin x x x March. 3, 7 Any function with period can be represented with a Fourier series Examples (sawtooth) (square wave)

More information

In this section we extend the idea of Fourier analysis to multivariate functions: that is, functions of more than one independent variable.

In this section we extend the idea of Fourier analysis to multivariate functions: that is, functions of more than one independent variable. 7in x 1in Felder c9_online.tex V - January 24, 215 2: P.M. Page 9 9.8 Multivariate Fourier Series 9.8 Multivariate Fourier Series 9 In this section we extend the idea of Fourier analysis to multivariate

More information

Taylor Polynomials. James K. Peterson. Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Taylor Polynomials. James K. Peterson. Department of Biological Sciences and Department of Mathematical Sciences Clemson University James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 24, 2013 Outline 1 First Order Approximation s Second Order Approximations 2 Approximation

More information

The Limit Inferior and Limit Superior of a Sequence

The Limit Inferior and Limit Superior of a Sequence The Limit Inferior and Limit Superior of a Sequence James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 13, 2018 Outline The Limit Inferior

More information

Complex Numbers. Outline. James K. Peterson. September 19, Complex Numbers. Complex Number Calculations. Complex Functions

Complex Numbers. Outline. James K. Peterson. September 19, Complex Numbers. Complex Number Calculations. Complex Functions Complex Numbers James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 19, 2013 Outline Complex Numbers Complex Number Calculations Complex

More information

Complex Numbers. James K. Peterson. September 19, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Complex Numbers. James K. Peterson. September 19, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Complex Numbers James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 19, 2013 Outline 1 Complex Numbers 2 Complex Number Calculations

More information

Math 2930 Worksheet Final Exam Review

Math 2930 Worksheet Final Exam Review Math 293 Worksheet Final Exam Review Week 14 November 3th, 217 Question 1. (* Solve the initial value problem y y = 2xe x, y( = 1 Question 2. (* Consider the differential equation: y = y y 3. (a Find the

More information

The Dirac δ-function

The Dirac δ-function The Dirac δ-function Elias Kiritsis Contents 1 Definition 2 2 δ as a limit of functions 3 3 Relation to plane waves 5 4 Fourier integrals 8 5 Fourier series on the half-line 9 6 Gaussian integrals 11 Bibliography

More information

Topics in Fourier analysis - Lecture 2.

Topics in Fourier analysis - Lecture 2. Topics in Fourier analysis - Lecture 2. Akos Magyar 1 Infinite Fourier series. In this section we develop the basic theory of Fourier series of periodic functions of one variable, but only to the extent

More information

Predator - Prey Model Trajectories are periodic

Predator - Prey Model Trajectories are periodic Predator - Prey Model Trajectories are periodic James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 4, 2013 Outline Showing The PP Trajectories

More information

Dangerous and Illegal Operations in Calculus Do we avoid differentiating discontinuous functions because it s impossible, unwise, or simply out of

Dangerous and Illegal Operations in Calculus Do we avoid differentiating discontinuous functions because it s impossible, unwise, or simply out of Dangerous and Illegal Operations in Calculus Do we avoid differentiating discontinuous functions because it s impossible, unwise, or simply out of ignorance and fear? Despite the risks, many natural phenomena

More information

Math 121A: Homework 6 solutions

Math 121A: Homework 6 solutions Math A: Homework 6 solutions. (a) The coefficients of the Fourier sine series are given by b n = π f (x) sin nx dx = x(π x) sin nx dx π = (π x) cos nx dx nπ nπ [x(π x) cos nx]π = n ( )(sin nx) dx + π n

More information

Fourier series

Fourier series 11.1-11.2. Fourier series Yurii Lyubarskii, NTNU September 5, 2016 Periodic functions Function f defined on the whole real axis has period p if Properties f (t) = f (t + p) for all t R If f and g have

More information

Upper and Lower Bounds

Upper and Lower Bounds James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University August 30, 2017 Outline 1 2 s 3 Basic Results 4 Homework Let S be a set of real numbers. We

More information

Math 4263 Homework Set 1

Math 4263 Homework Set 1 Homework Set 1 1. Solve the following PDE/BVP 2. Solve the following PDE/BVP 2u t + 3u x = 0 u (x, 0) = sin (x) u x + e x u y = 0 u (0, y) = y 2 3. (a) Find the curves γ : t (x (t), y (t)) such that that

More information

Math 54: Mock Final. December 11, y y 2y = cos(x) sin(2x). The auxiliary equation for the corresponding homogeneous problem is

Math 54: Mock Final. December 11, y y 2y = cos(x) sin(2x). The auxiliary equation for the corresponding homogeneous problem is Name: Solutions Math 54: Mock Final December, 25 Find the general solution of y y 2y = cos(x) sin(2x) The auxiliary equation for the corresponding homogeneous problem is r 2 r 2 = (r 2)(r + ) = r = 2,

More information

Bolzano Weierstrass Theorems I

Bolzano Weierstrass Theorems I Bolzano Weierstrass Theorems I James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 8, 2017 Outline The Bolzano Weierstrass Theorem Extensions

More information

Bernoulli Polynomials

Bernoulli Polynomials Chapter 4 Bernoulli Polynomials 4. Bernoulli Numbers The generating function for the Bernoulli numbers is x e x = n= B n n! xn. (4.) That is, we are to expand the left-hand side of this equation in powers

More information

Fourier Series. 1. Review of Linear Algebra

Fourier Series. 1. Review of Linear Algebra Fourier Series In this section we give a short introduction to Fourier Analysis. If you are interested in Fourier analysis and would like to know more detail, I highly recommend the following book: Fourier

More information

Vectors in Function Spaces

Vectors in Function Spaces Jim Lambers MAT 66 Spring Semester 15-16 Lecture 18 Notes These notes correspond to Section 6.3 in the text. Vectors in Function Spaces We begin with some necessary terminology. A vector space V, also

More information

4.1 Analysis of functions I: Increase, decrease and concavity

4.1 Analysis of functions I: Increase, decrease and concavity 4.1 Analysis of functions I: Increase, decrease and concavity Definition Let f be defined on an interval and let x 1 and x 2 denote points in that interval. a) f is said to be increasing on the interval

More information

Math 61CM - Solutions to homework 6

Math 61CM - Solutions to homework 6 Math 61CM - Solutions to homework 6 Cédric De Groote November 5 th, 2018 Problem 1: (i) Give an example of a metric space X such that not all Cauchy sequences in X are convergent. (ii) Let X be a metric

More information

More On Exponential Functions, Inverse Functions and Derivative Consequences

More On Exponential Functions, Inverse Functions and Derivative Consequences More On Exponential Functions, Inverse Functions and Derivative Consequences James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 10, 2019

More information

CS711008Z Algorithm Design and Analysis

CS711008Z Algorithm Design and Analysis CS711008Z Algorithm Design and Analysis Lecture 5 FFT and Divide and Conquer Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, China 1 / 56 Outline DFT: evaluate a polynomial

More information

7: FOURIER SERIES STEVEN HEILMAN

7: FOURIER SERIES STEVEN HEILMAN 7: FOURIER SERIES STEVE HEILMA Contents 1. Review 1 2. Introduction 1 3. Periodic Functions 2 4. Inner Products on Periodic Functions 3 5. Trigonometric Polynomials 5 6. Periodic Convolutions 7 7. Fourier

More information

Periodic functions: simple harmonic oscillator

Periodic functions: simple harmonic oscillator Periodic functions: simple harmonic oscillator Recall the simple harmonic oscillator (e.g. mass-spring system) d 2 y dt 2 + ω2 0y = 0 Solution can be written in various ways: y(t) = Ae iω 0t y(t) = A cos

More information

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012 MATH 3P: PRACTICE FINAL SOLUTIONS DECEMBER, This is a closed ook, closed notes, no calculators/computers exam. There are 6 prolems. Write your solutions to Prolems -3 in lue ook #, and your solutions to

More information

Math Computer Lab 4 : Fourier Series

Math Computer Lab 4 : Fourier Series Math 227 - Computer Lab 4 : Fourier Series Dylan Zwick Fall 212 This lab should be a pretty quick lab. It s goal is to introduce you to one of the coolest ideas in mathematics, the Fourier series, and

More information

Computational Science and Engineering I Fall 2008

Computational Science and Engineering I Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 18.085 Computational Science and Engineering I Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.085

More information

Computer Problems for Fourier Series and Transforms

Computer Problems for Fourier Series and Transforms Computer Problems for Fourier Series and Transforms 1. Square waves are frequently used in electronics and signal processing. An example is shown below. 1 π < x < 0 1 0 < x < π y(x) = 1 π < x < 2π... and

More information

be the set of complex valued 2π-periodic functions f on R such that

be the set of complex valued 2π-periodic functions f on R such that . Fourier series. Definition.. Given a real number P, we say a complex valued function f on R is P -periodic if f(x + P ) f(x) for all x R. We let be the set of complex valued -periodic functions f on

More information

10.2-3: Fourier Series.

10.2-3: Fourier Series. 10.2-3: Fourier Series. 10.2-3: Fourier Series. O. Costin: Fourier Series, 10.2-3 1 Fourier series are very useful in representing periodic functions. Examples of periodic functions. A function is periodic

More information

Math 489AB A Very Brief Intro to Fourier Series Fall 2008

Math 489AB A Very Brief Intro to Fourier Series Fall 2008 Math 489AB A Very Brief Intro to Fourier Series Fall 8 Contents Fourier Series. The coefficients........................................ Convergence......................................... 4.3 Convergence

More information

MATH 241 Practice Second Midterm Exam - Fall 2012

MATH 241 Practice Second Midterm Exam - Fall 2012 MATH 41 Practice Second Midterm Exam - Fall 1 1. Let f(x = { 1 x for x 1 for 1 x (a Compute the Fourier sine series of f(x. The Fourier sine series is b n sin where b n = f(x sin dx = 1 = (1 x cos = 4

More information

MATH 2413 TEST ON CHAPTER 4 ANSWER ALL QUESTIONS. TIME 1.5 HRS.

MATH 2413 TEST ON CHAPTER 4 ANSWER ALL QUESTIONS. TIME 1.5 HRS. MATH 1 TEST ON CHAPTER ANSWER ALL QUESTIONS. TIME 1. HRS. M1c Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Use the summation formulas to rewrite the

More information

A Simple Protein Synthesis Model

A Simple Protein Synthesis Model A Simple Protein Synthesis Model James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 3, 213 Outline A Simple Protein Synthesis Model

More information

MATH 311: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE

MATH 311: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE MATH 3: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE Recall the Residue Theorem: Let be a simple closed loop, traversed counterclockwise. Let f be a function that is analytic on and meromorphic inside. Then

More information

Lecture 4: Fourier Transforms.

Lecture 4: Fourier Transforms. 1 Definition. Lecture 4: Fourier Transforms. We now come to Fourier transforms, which we give in the form of a definition. First we define the spaces L 1 () and L 2 (). Definition 1.1 The space L 1 ()

More information