ECE 650. Some MATLAB Help (addendum to Lecture 1) D. Van Alphen (Thanks to Prof. Katz for the Histogram PDF Notes!)

Size: px
Start display at page:

Download "ECE 650. Some MATLAB Help (addendum to Lecture 1) D. Van Alphen (Thanks to Prof. Katz for the Histogram PDF Notes!)"

Transcription

1 ECE 65 Some MATLAB Help (addendum to Lecture 1) D. Van Alphen (Thanks to Prof. Katz for the Histogram PDF Notes!)

2 Obtaining Probabilities for Gaussian RV s - An Example Let X be N(1, s 2 = 4). Find Pr(X < 3). Pr( X 3) Pr Z 3 m Pr Z s (1) For 2 nd approach below Standard Normal PDF MATLAB Code* (2 approaches): >> F1 = normcdf(3, 1, 2) F1 =.8413 >> F2 = normcdf(1,, 1) F2 =.8413 MATLAB function normcdf(x, m, s) returns F X (x) for RV X ~ N(m, s 2 ) ECE 65 D. van Alphen 2

3 Obtaining Probabilities for Gaussian RV s - Another Example Let Z be N(, 1). Find Pr(-1 < Z < 1) = P( Z < 1). Pr(-1 < Z < 1) = (1) (-1) MATLAB Code: >> diff = normcdf(1,, 1) normcdf(-1,,1).5.4 (-1) (1) diff = Probability within 1 standard deviation of the mean ECE 65 D. van Alphen 3

4 Obtaining Probabilities for the Standard Normal Random Variable, Z: N(, 1) Probability within 1 s of the mean Probability within 2 s of the mean Probability within 3 s of the mean Pr( Z < 1) 68% Pr( Z < 2) 95.4% Pr( Z < 3) 99.7% % 95.4% 99.7% ECE 65 D. van Alphen 4

5 pdf (By Claims 1 & 2, Lecture 1, p. 36): For Any RV X ~ N(m, s 2 ) -1 s +1 s 68% -2 s +2 s 95.4%.5-3 s +3 s 99.7% Pr( X m < 1s ) = P( Z < 1) 68% Pr( X m < 2s ) = P( Z < 2) 95.4% Pr( X m < 3s ) = P( Z < 3) 99.7% m ECE 65 D. van Alphen 5

6 MATLAB Functions for Gaussian RV s normcdf(x, m, s) computes the cdf, F(x) = Pr(X x) for RV X ~ N(m, s 2 ) norminv(p, m, s) computes the inverse cdf for RV X ~ N(m, s 2 ); i.e., it returns the value x such that F X (x) = Pr(X x) = p normpdf(x, m, s) computes the pdf, f(x), of the normal distribution with mean m and standard deviation s normrnd(m, s) returns a pseudorandom number (called a variate) from a normal distribution with mean m and standard deviation s. To generate a matrix of size (#_rows, #_cols) of such variates, use: normrnd(m, s, #_rows, #_cols) See randn for a similar function available without the statistics toolbox. ECE 65 D. van Alphen 6

7 Histograms A histogram is a bar graph in which the bar heights show the frequency of (random) data occurring over intervals of equal width The individual bars are referred to as bins Example: a 1-bin histogram of measured voltages for 1 nominal 1-KW resistors MATLAB Command: >> hist(y) data vector Resistance, KW ECE 65 D. van Alphen 7

8 Histograms, continued MATLAB allows you to specify the number of bins: >> hist(y, 2) (a 2-bin histogram of data vector y) MATLAB allows you to specify the bin centers: Resistance, KW >> centers = [7 : 15]; >> hist(y, centers) ECE 65 D. van Alphen 8 Resistance, KW

9 Frequency Histogram Relative Frequency Histogram Density Histogram Relative Frequency Histograms show the fraction of values in each bin (freq. hist. heights # data points) Density Histograms are scaled so that the total area (in the bins) is equal to one. (rel. freq. hist. heights bin width) MATLAB Example (Graphs on next page) >> centers = [7 :.5 : 13]; >> freq = hist(y, centers); >> bar(centers, freq, 1) % histogram >> rel_freq = freq/sum(freq); >> bar(centers, rel_freq, 1) % rel. freq. histogram >> dens = rel_freq/.5; % bin width =.5 >> bar(centers, dens, 1) % density histogram Note: The 1 in the 3 rd argument of bar makes the bars adjacent, without spaces between them.) ECE 65 D. van Alphen 9

10 Frequency Histogram Rel. Freq. Histogram Density Histogram 25 Histogram.25 Rel. Freq. Histogram Resistance, KW.5 Density Resistance, KW Total area = 1, like pdf Resistance, KW ECE 65 D. van Alphen 1

11 Density Histograms and PDF s Recall that the density histogramgives the distribution of relative frequencies divided by the bin width for the data Density Histogram # data pts bin width Probability Density Function Generating 1, variates from the distribution: N(, 1) >> x = normrnd(, 1, 1, 1); To generate the theoretical pdf: >> x1 = -4 :.1 : 4; >> y1 = normpdf(x1,, 1); >> plot(x1, y1) ECE 65 D. van Alphen 11

12 .4.3 Density Histogram PDF 1, Observations of a Standard Normal RV bins 3 bins bins pdf ECE 65 D. van Alphen 12

13 MATLAB Function Summary (Requiring the Statistics Toolbox) (compare to p. 6) For Arbitrary RV s, with dist representing the particular type of RV: distcdf(x,... ) computes the cdf, F(x) = Pr(X x) distinv(p,... ) computes the inverse cdf; i.e., it returns the value x such that F X (x) = Pr(X x) = p distpdf(x,... ) computes the pdf, f(x), of the specified distribution defined at the point(s) x distrnd(... ) returns a pseudorandom number (called a variate) from the specified distribution Note: On p. 6, the prefix dist is replaced by the prefix norm, for normal RV s. ECE 65 D. van Alphen 13

14 MATLAB Function Summary (Requiring the Statistics Toolbox) When using the functions from the previous page, for arbitrary RV s, recall that dist represents the particular type of RV. Some of the (~22) RV types available: Gaussian or Normal (dist = norm) Binomial (dist = bino) Uniform (dist = unif) Chi-Square (dist = chi2) Student s t (dist = t) Hypergeometric (dist = hyge) Rayleigh (dist = rayl) Exponential (dist = exp) Discrete Uniform (dist = unid) ECE 65 D. van Alphen 14

15 MATLAB Functions (Requiring the Statistics Toolbox) disttool brings up a GUI to display pdf s and cdf s for a many types of random variables, with settable parameters randtool brings up a GUI to generate random variates from many (~22) types of random variables, with settable parameters MATLAB Functions (No Toolbox Required) randn( ) generates random variates from a normal distribution rand( ) generates random variates from a uniform distribution ECE 65 D. van Alphen 15

16 Some MATLAB Practice To find Pr(X < 7) if X is Rayleigh with pdf: x x x x f (x) exp U(x) exp U(x) X s s From: MATLAB: >> doc raylcdf 2 p = raylcdf(x, b) returns the Rayleigh cdf at each value in x using the corresponding scale parameter, b x t 2 t p = F X (x) = exp dt 2 2 b 2b In class: check with graph of pdf. 2 >> raylcdf(7, 2) ans =.9978 D. van Alphen 16

17 More MATLAB Practice Say we transmit 3 bits over a noisy channel, where errors occur independently from bit-to-bit, with probability.1. If RV X is the # of errors appearing in a 3-bit word on reception, find the pdf and cdf for X. Note that the RV is binomial, with N = 3 trials, p =.1 = probability of success. From MATLAB: >> doc binocdf: y = binocdf(x, N, p) computes a binomial cdf at each of the values in x using the corresponding number of trials in N and probability of success for each trial in p. >> x = -1 :.1 : 4; y = binopdf(x, 3,.1); >> z = binocdf(x, 3,.1); stem(x, y), title('pdf') >> figure, plot(x, z), title('cdf'), axis([ ]) D. van Alphen 17

18 .8 pdf cdf D. van Alphen 18

ECE Homework Set 2

ECE Homework Set 2 1 Solve these problems after Lecture #4: Homework Set 2 1. Two dice are tossed; let X be the sum of the numbers appearing. a. Graph the CDF, FX(x), and the pdf, fx(x). b. Use the CDF to find: Pr(7 X 9).

More information

ECE 650 1/11. Homework Sets 1-3

ECE 650 1/11. Homework Sets 1-3 ECE 650 1/11 Note to self: replace # 12, # 15 Homework Sets 1-3 HW Set 1: Review Assignment from Basic Probability 1. Suppose that the duration in minutes of a long-distance phone call is exponentially

More information

ECE Homework Set 3

ECE Homework Set 3 ECE 450 1 Homework Set 3 0. Consider the random variables X and Y, whose values are a function of the number showing when a single die is tossed, as show below: Exp. Outcome 1 3 4 5 6 X 3 3 4 4 Y 0 1 3

More information

ECE 650 Fall, /9 Homework Set 2 Solutions

ECE 650 Fall, /9 Homework Set 2 Solutions ECE 65 Fall, 14 1/9 Homework Set Solutions 1. Gamma with c = 1, from eq. 3.1a (tetbook): f() = ( / b) ep( / b) b () u() (1/b) ep(-/b) u(), which is eponential since gamma() = 1, either from MATLAB or from

More information

ECE Lecture 4. Overview Simulation & MATLAB

ECE Lecture 4. Overview Simulation & MATLAB ECE 450 - Lecture 4 Overview Simulation & MATLAB Random Variables: Concept and Definition Cumulative Distribution Functions (CDF s) Eamples & Properties Probability Distribution Functions (pdf s) 1 Random

More information

Computer Applications for Engineers ET 601

Computer Applications for Engineers ET 601 Computer Applications for Engineers ET 601 Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th Random Variables (Con t) 1 Office Hours: (BKD 3601-7) Wednesday 9:30-11:30 Wednesday 16:00-17:00 Thursday

More information

ECE 450 Homework #3. 1. Given the joint density function f XY (x,y) = 0.5 1<x<2, 2<y< <x<4, 2<y<3 0 else

ECE 450 Homework #3. 1. Given the joint density function f XY (x,y) = 0.5 1<x<2, 2<y< <x<4, 2<y<3 0 else ECE 450 Homework #3 0. Consider the random variables X and Y, whose values are a function of the number showing when a single die is tossed, as show below: Exp. Outcome 1 3 4 5 6 X 3 3 4 4 Y 0 1 3 4 5

More information

ECE 650 Lecture #10 (was Part 1 & 2) D. van Alphen. D. van Alphen 1

ECE 650 Lecture #10 (was Part 1 & 2) D. van Alphen. D. van Alphen 1 ECE 650 Lecture #10 (was Part 1 & 2) D. van Alphen D. van Alphen 1 Lecture 10 Overview Part 1 Review of Lecture 9 Continuing: Systems with Random Inputs More about Poisson RV s Intro. to Poisson Processes

More information

Signal types. Signal characteristics: RMS, power, db Probability Density Function (PDF). Analogue-to-Digital Conversion (ADC).

Signal types. Signal characteristics: RMS, power, db Probability Density Function (PDF). Analogue-to-Digital Conversion (ADC). Signal types. Signal characteristics:, power, db Probability Density Function (PDF). Analogue-to-Digital Conversion (ADC). Signal types Stationary (average properties don t vary with time) Deterministic

More information

9.07 MATLAB Tutorial. Camilo Lamus. October 1, 2010

9.07 MATLAB Tutorial. Camilo Lamus. October 1, 2010 9.07 MATLAB Tutorial Camilo Lamus October 1, 2010 1 / 22 1 / 22 Aim Transform students into MATLAB ninjas! Source Unknown. All rights reserved. This content is excluded from our Creative Commons license.

More information

MATLAB Workbook CME106. Introduction to Probability and Statistics for Engineers. First Edition. Vadim Khayms

MATLAB Workbook CME106. Introduction to Probability and Statistics for Engineers. First Edition. Vadim Khayms MATLAB Workbook CME106 Introduction to Probability and Statistics for Engineers First Edition Vadim Khayms Table of Contents 1. Random Number Generation 2. Probability Distributions 3. Parameter Estimation

More information

Univariate MATLAB plots

Univariate MATLAB plots Univariate MATLAB plots boxplot Box plot cdfplot Empirical cumulative distribution function plot dfittool Interactive distribution fitting disttool Interactive density and distribution plots ecdfhist Empirical

More information

Chapter 5 continued. Chapter 5 sections

Chapter 5 continued. Chapter 5 sections Chapter 5 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

Chapter 2: Random Variables

Chapter 2: Random Variables ECE54: Stochastic Signals and Systems Fall 28 Lecture 2 - September 3, 28 Dr. Salim El Rouayheb Scribe: Peiwen Tian, Lu Liu, Ghadir Ayache Chapter 2: Random Variables Example. Tossing a fair coin twice:

More information

Computer Applications for Engineers ET 601

Computer Applications for Engineers ET 601 Computer Applications for Engineers ET 601 Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th Random Variables (Con t) 1 Office Hours: (BKD 3601-7) Wednesday 9:30-11:30 Wednesday 16:00-17:00 Thursday

More information

Discrete-Time Signals and Systems

Discrete-Time Signals and Systems Discrete-Time Signals and Systems Chapter Intended Learning Outcomes: (i) Understanding deterministic and random discrete-time signals and ability to generate them (ii) Ability to recognize the discrete-time

More information

BMIR Lecture Series on Probability and Statistics Fall, 2015 Uniform Distribution

BMIR Lecture Series on Probability and Statistics Fall, 2015 Uniform Distribution Lecture #5 BMIR Lecture Series on Probability and Statistics Fall, 2015 Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University s 5.1 Definition ( ) A continuous random

More information

BIOE 198MI Biomedical Data Analysis. Spring Semester Lab 4: Introduction to Probability and Statistics

BIOE 198MI Biomedical Data Analysis. Spring Semester Lab 4: Introduction to Probability and Statistics BIOE 98MI Biomedical Data Analysis. Spring Semester 08. Lab 4: Introduction to Probability and Statistics A. Discrete Distributions: The probability of specific event E occurring, Pr(E), is given by ne

More information

Special Discrete RV s. Then X = the number of successes is a binomial RV. X ~ Bin(n,p).

Special Discrete RV s. Then X = the number of successes is a binomial RV. X ~ Bin(n,p). Sect 3.4: Binomial RV Special Discrete RV s 1. Assumptions and definition i. Experiment consists of n repeated trials ii. iii. iv. There are only two possible outcomes on each trial: success (S) or failure

More information

3 Univariate Statistics

3 Univariate Statistics 3 Univariate Statistics 3.1 Introduction The statistical properties of a single parameter are investigated by means of univariate analysis. Such a parameter could be, for example, the organic carbon content

More information

Ching-Han Hsu, BMES, National Tsing Hua University c 2015 by Ching-Han Hsu, Ph.D., BMIR Lab. = a + b 2. b a. x a b a = 12

Ching-Han Hsu, BMES, National Tsing Hua University c 2015 by Ching-Han Hsu, Ph.D., BMIR Lab. = a + b 2. b a. x a b a = 12 Lecture 5 Continuous Random Variables BMIR Lecture Series in Probability and Statistics Ching-Han Hsu, BMES, National Tsing Hua University c 215 by Ching-Han Hsu, Ph.D., BMIR Lab 5.1 1 Uniform Distribution

More information

National Workshop on LaTeX and MATLAB for Beginners

National Workshop on LaTeX and MATLAB for Beginners BITS Pilani Pilani Campus National Workshop on LaTeX and MATLAB for Beginners 24-28 December, 2014 BITS Pilani, Partially Supported by DST, Rajasthan BITS Pilani Pilani Campus Lecture - 13 : STATISTICAL

More information

Order Statistics and Distributions

Order Statistics and Distributions Order Statistics and Distributions 1 Some Preliminary Comments and Ideas In this section we consider a random sample X 1, X 2,..., X n common continuous distribution function F and probability density

More information

Homework 2 Fall 2018 STAT 305B Due 9/13 (R) NOTE: All work associated with a given problem part MUST be placed DIRECTLY beneath that part.

Homework 2 Fall 2018 STAT 305B Due 9/13 (R) NOTE: All work associated with a given problem part MUST be placed DIRECTLY beneath that part. Homework 2 Fall 208 STAT 305B Due 9/3 (R) Name NOTE: All work associated with a given problem part MUST be placed DIRECTLY beneath that part PROBLEM (20pts) In a recent survey [ http://wwwpewinternetorg/206/0/04/the-politics-of-climate/

More information

Chapter 3 Single Random Variables and Probability Distributions (Part 1)

Chapter 3 Single Random Variables and Probability Distributions (Part 1) Chapter 3 Single Random Variables and Probability Distributions (Part 1) Contents What is a Random Variable? Probability Distribution Functions Cumulative Distribution Function Probability Density Function

More information

DISCRETE RANDOM VARIABLES EXCEL LAB #3

DISCRETE RANDOM VARIABLES EXCEL LAB #3 DISCRETE RANDOM VARIABLES EXCEL LAB #3 ECON/BUSN 180: Quantitative Methods for Economics and Business Department of Economics and Business Lake Forest College Lake Forest, IL 60045 Copyright, 2011 Overview

More information

Laboratory Project 1: Introduction to Random Processes

Laboratory Project 1: Introduction to Random Processes Laboratory Project 1: Introduction to Random Processes Random Processes With Applications (MVE 135) Mats Viberg Department of Signals and Systems Chalmers University of Technology 412 96 Gteborg, Sweden

More information

( x) ( ) F ( ) ( ) ( ) Prob( ) ( ) ( ) X x F x f s ds

( x) ( ) F ( ) ( ) ( ) Prob( ) ( ) ( ) X x F x f s ds Applied Numerical Analysis Pseudo Random Number Generator Lecturer: Emad Fatemizadeh What is random number: A sequence in which each term is unpredictable 29, 95, 11, 60, 22 Application: Monte Carlo Simulations

More information

Calculus with Algebra and Trigonometry II Lecture 21 Probability applications

Calculus with Algebra and Trigonometry II Lecture 21 Probability applications Calculus with Algebra and Trigonometry II Lecture 21 Probability applications Apr 16, 215 Calculus with Algebra and Trigonometry II Lecture 21Probability Apr applications 16, 215 1 / 1 Histograms The distribution

More information

Dr. Iyad Jafar. Adapted from the publisher slides

Dr. Iyad Jafar. Adapted from the publisher slides Computer Applications Lab Lab 9 Probability, Statistics, Interpolation, and Calculus Chapter 7 Dr. Iyad Jafar Adapted from the publisher slides Outline Statistics and Probability Histograms Normal and

More information

ECE Lecture #9, Part 1

ECE Lecture #9, Part 1 ECE 450 - Lecture #9, Part 1 Pairs of Random Variables, continued - Overview Joint PDF s A Discrete Example (PDF for Pair of Discrete RV s) Jointly Gaussian RV s Conditional Probability Density Functions

More information

Random Variables and Their Distributions

Random Variables and Their Distributions Chapter 3 Random Variables and Their Distributions A random variable (r.v.) is a function that assigns one and only one numerical value to each simple event in an experiment. We will denote r.vs by capital

More information

System Identification

System Identification System Identification Arun K. Tangirala Department of Chemical Engineering IIT Madras July 27, 2013 Module 3 Lecture 1 Arun K. Tangirala System Identification July 27, 2013 1 Objectives of this Module

More information

Chapter 5. Chapter 5 sections

Chapter 5. Chapter 5 sections 1 / 43 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

Week 4 Concept of Probability

Week 4 Concept of Probability Week 4 Concept of Probability Mudrik Alaydrus Faculty of Computer Sciences University of Mercu Buana, Jakarta mudrikalaydrus@yahoo.com 1 Introduction : A Speech hrecognition i System computer communication

More information

ECE Lecture #10 Overview

ECE Lecture #10 Overview ECE 450 - Lecture #0 Overview Introduction to Random Vectors CDF, PDF Mean Vector, Covariance Matrix Jointly Gaussian RV s: vector form of pdf Introduction to Random (or Stochastic) Processes Definitions

More information

!P x. !E x. Bad Things Happen to Good Signals Spring 2011 Lecture #6. Signal-to-Noise Ratio (SNR) Definition of Mean, Power, Energy ( ) 2.

!P x. !E x. Bad Things Happen to Good Signals Spring 2011 Lecture #6. Signal-to-Noise Ratio (SNR) Definition of Mean, Power, Energy ( ) 2. Bad Things Happen to Good Signals oise, broadly construed, is any change to the signal from its expected value, x[n] h[n], when it arrives at the receiver. We ll look at additive noise and assume the noise

More information

STAT 430/510 Probability

STAT 430/510 Probability STAT 430/510 Probability Hui Nie Lecture 16 June 24th, 2009 Review Sum of Independent Normal Random Variables Sum of Independent Poisson Random Variables Sum of Independent Binomial Random Variables Conditional

More information

Probability Distributions for Continuous Variables. Probability Distributions for Continuous Variables

Probability Distributions for Continuous Variables. Probability Distributions for Continuous Variables Probability Distributions for Continuous Variables Probability Distributions for Continuous Variables Let X = lake depth at a randomly chosen point on lake surface If we draw the histogram so that the

More information

Computational Statistics with Matlab. Mark Steyvers

Computational Statistics with Matlab. Mark Steyvers Computational Statistics with Matlab Mark Steyvers February 12, 2010 Contents 1 Sampling from Random Variables 4 1.1 Standard distributions.............................. 4 1.2 Sampling from non-standard

More information

1; (f) H 0 : = 55 db, H 1 : < 55.

1; (f) H 0 : = 55 db, H 1 : < 55. Reference: Chapter 8 of J. L. Devore s 8 th Edition By S. Maghsoodloo TESTING a STATISTICAL HYPOTHESIS A statistical hypothesis is an assumption about the frequency function(s) (i.e., pmf or pdf) of one

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics Lecture 3 October 29, 2012 Silvia Masciocchi, GSI Darmstadt s.masciocchi@gsi.de Winter Semester 2012 / 13 Outline Reminder: Probability density function Cumulative

More information

Learning Objectives for Stat 225

Learning Objectives for Stat 225 Learning Objectives for Stat 225 08/20/12 Introduction to Probability: Get some general ideas about probability, and learn how to use sample space to compute the probability of a specific event. Set Theory:

More information

ECE 564/645 - Digital Communications, Spring 2018 Homework #2 Due: March 19 (In Lecture)

ECE 564/645 - Digital Communications, Spring 2018 Homework #2 Due: March 19 (In Lecture) ECE 564/645 - Digital Communications, Spring 018 Homework # Due: March 19 (In Lecture) 1. Consider a binary communication system over a 1-dimensional vector channel where message m 1 is sent by signaling

More information

Chapter 4: Continuous Random Variables and Probability Distributions

Chapter 4: Continuous Random Variables and Probability Distributions Chapter 4: and Probability Distributions Walid Sharabati Purdue University February 14, 2014 Professor Sharabati (Purdue University) Spring 2014 (Slide 1 of 37) Chapter Overview Continuous random variables

More information

Computational Foundations of Cognitive Science

Computational Foundations of Cognitive Science Computational Foundations of Cognitive Science Lecture 14: Inverses and Eigenvectors in Matlab; Plotting and Graphics Frank Keller School of Informatics University of Edinburgh keller@inf.ed.ac.uk February

More information

ECE 4400:693 - Information Theory

ECE 4400:693 - Information Theory ECE 4400:693 - Information Theory Dr. Nghi Tran Lecture 8: Differential Entropy Dr. Nghi Tran (ECE-University of Akron) ECE 4400:693 Lecture 1 / 43 Outline 1 Review: Entropy of discrete RVs 2 Differential

More information

3 Modeling Process Quality

3 Modeling Process Quality 3 Modeling Process Quality 3.1 Introduction Section 3.1 contains basic numerical and graphical methods. familiar with these methods. It is assumed the student is Goal: Review several discrete and continuous

More information

ECE 5615/4615 Computer Project

ECE 5615/4615 Computer Project Set #1p Due Friday March 17, 017 ECE 5615/4615 Computer Project The details of this first computer project are described below. This being a form of take-home exam means that each person is to do his/her

More information

Random variables, Expectation, Mean and Variance. Slides are adapted from STAT414 course at PennState

Random variables, Expectation, Mean and Variance. Slides are adapted from STAT414 course at PennState Random variables, Expectation, Mean and Variance Slides are adapted from STAT414 course at PennState https://onlinecourses.science.psu.edu/stat414/ Random variable Definition. Given a random experiment

More information

Lecture 11: Probability, Order Statistics and Sampling

Lecture 11: Probability, Order Statistics and Sampling 5-75: Graduate Algorithms February, 7 Lecture : Probability, Order tatistics and ampling Lecturer: David Whitmer cribes: Ilai Deutel, C.J. Argue Exponential Distributions Definition.. Given sample space

More information

Lecture 10: Normal RV. Lisa Yan July 18, 2018

Lecture 10: Normal RV. Lisa Yan July 18, 2018 Lecture 10: Normal RV Lisa Yan July 18, 2018 Announcements Midterm next Tuesday Practice midterm, solutions out on website SCPD students: fill out Google form by today Covers up to and including Friday

More information

Riemann Sums. Outline. James K. Peterson. September 15, Riemann Sums. Riemann Sums In MatLab

Riemann Sums. Outline. James K. Peterson. September 15, Riemann Sums. Riemann Sums In MatLab Riemann Sums James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 15, 2013 Outline Riemann Sums Riemann Sums In MatLab Abstract This

More information

Applied Statistics and Probability for Engineers. Sixth Edition. Chapter 4 Continuous Random Variables and Probability Distributions.

Applied Statistics and Probability for Engineers. Sixth Edition. Chapter 4 Continuous Random Variables and Probability Distributions. Applied Statistics and Probability for Engineers Sixth Edition Douglas C. Montgomery George C. Runger Chapter 4 Continuous Random Variables and Probability Distributions 4 Continuous CHAPTER OUTLINE Random

More information

Chapter 4 Continuous Random Variables and Probability Distributions

Chapter 4 Continuous Random Variables and Probability Distributions Applied Statistics and Probability for Engineers Sixth Edition Douglas C. Montgomery George C. Runger Chapter 4 Continuous Random Variables and Probability Distributions 4 Continuous CHAPTER OUTLINE 4-1

More information

ECE 510 Lecture 7 Goodness of Fit, Maximum Likelihood. Scott Johnson Glenn Shirley

ECE 510 Lecture 7 Goodness of Fit, Maximum Likelihood. Scott Johnson Glenn Shirley ECE 510 Lecture 7 Goodness of Fit, Maximum Likelihood Scott Johnson Glenn Shirley Confidence Limits 30 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 2 Binomial Confidence Limits (Solution 6.2) UCL: Prob of

More information

1. I had a computer generate the following 19 numbers between 0-1. Were these numbers randomly selected?

1. I had a computer generate the following 19 numbers between 0-1. Were these numbers randomly selected? Activity #10: Continuous Distributions Uniform, Exponential, Normal) 1. I had a computer generate the following 19 numbers between 0-1. Were these numbers randomly selected? 0.12374454, 0.19609266, 0.44248450,

More information

Basics of Monte Carlo Simulations: practical exercises

Basics of Monte Carlo Simulations: practical exercises Basics of Monte Carlo Simulations: practical exercises Piero Baraldi Politecnico di Milano, Energy Department Phone: +39 02 2399 6345 Piero.baraldi@polimi.it EXERCISE 1 (first part) Exercise 1 Consider

More information

Introduction to Statistics and Error Analysis

Introduction to Statistics and Error Analysis Introduction to Statistics and Error Analysis Physics116C, 4/3/06 D. Pellett References: Data Reduction and Error Analysis for the Physical Sciences by Bevington and Robinson Particle Data Group notes

More information

Probability Distributions Columns (a) through (d)

Probability Distributions Columns (a) through (d) Discrete Probability Distributions Columns (a) through (d) Probability Mass Distribution Description Notes Notation or Density Function --------------------(PMF or PDF)-------------------- (a) (b) (c)

More information

Continuous random variables

Continuous random variables Continuous random variables Can take on an uncountably infinite number of values Any value within an interval over which the variable is definied has some probability of occuring This is different from

More information

Continuous random variables and probability distributions

Continuous random variables and probability distributions and probability distributions Sta. 113 Chapter 4 of Devore March 12, 2010 Table of contents 1 2 Mathematical definition Definition A random variable X is continuous if its set of possible values is an

More information

ECE 650 Lecture 4. Intro to Estimation Theory Random Vectors. ECE 650 D. Van Alphen 1

ECE 650 Lecture 4. Intro to Estimation Theory Random Vectors. ECE 650 D. Van Alphen 1 EE 650 Lecture 4 Intro to Estimation Theory Random Vectors EE 650 D. Van Alphen 1 Lecture Overview: Random Variables & Estimation Theory Functions of RV s (5.9) Introduction to Estimation Theory MMSE Estimation

More information

8 - Continuous random vectors

8 - Continuous random vectors 8-1 Continuous random vectors S. Lall, Stanford 2011.01.25.01 8 - Continuous random vectors Mean-square deviation Mean-variance decomposition Gaussian random vectors The Gamma function The χ 2 distribution

More information

Properties of Continuous Probability Distributions The graph of a continuous probability distribution is a curve. Probability is represented by area

Properties of Continuous Probability Distributions The graph of a continuous probability distribution is a curve. Probability is represented by area Properties of Continuous Probability Distributions The graph of a continuous probability distribution is a curve. Probability is represented by area under the curve. The curve is called the probability

More information

Simulating events: the Poisson process

Simulating events: the Poisson process Simulating events: te Poisson process p. 1/15 Simulating events: te Poisson process Micel Bierlaire micel.bierlaire@epfl.c Transport and Mobility Laboratory Simulating events: te Poisson process p. 2/15

More information

ECE-340, Spring 2015 Review Questions

ECE-340, Spring 2015 Review Questions ECE-340, Spring 2015 Review Questions 1. Suppose that there are two categories of eggs: large eggs and small eggs, occurring with probabilities 0.7 and 0.3, respectively. For a large egg, the probabilities

More information

PAS04 - Important discrete and continuous distributions

PAS04 - Important discrete and continuous distributions PAS04 - Important discrete and continuous distributions Jan Březina Technical University of Liberec 30. října 2014 Bernoulli trials Experiment with two possible outcomes: yes/no questions throwing coin

More information

for valid PSD. PART B (Answer all five units, 5 X 10 = 50 Marks) UNIT I

for valid PSD. PART B (Answer all five units, 5 X 10 = 50 Marks) UNIT I Code: 15A04304 R15 B.Tech II Year I Semester (R15) Regular Examinations November/December 016 PROBABILITY THEY & STOCHASTIC PROCESSES (Electronics and Communication Engineering) Time: 3 hours Max. Marks:

More information

Random Variables. Definition: A random variable (r.v.) X on the probability space (Ω, F, P) is a mapping

Random Variables. Definition: A random variable (r.v.) X on the probability space (Ω, F, P) is a mapping Random Variables Example: We roll a fair die 6 times. Suppose we are interested in the number of 5 s in the 6 rolls. Let X = number of 5 s. Then X could be 0, 1, 2, 3, 4, 5, 6. X = 0 corresponds to the

More information

Lecture 9 Two-Sample Test. Fall 2013 Prof. Yao Xie, H. Milton Stewart School of Industrial Systems & Engineering Georgia Tech

Lecture 9 Two-Sample Test. Fall 2013 Prof. Yao Xie, H. Milton Stewart School of Industrial Systems & Engineering Georgia Tech Lecture 9 Two-Sample Test Fall 2013 Prof. Yao Xie, yao.xie@isye.gatech.edu H. Milton Stewart School of Industrial Systems & Engineering Georgia Tech Computer exam 1 18 Histogram 14 Frequency 9 5 0 75 83.33333333

More information

Experiment A12 Monte Carlo Night! Procedure

Experiment A12 Monte Carlo Night! Procedure Experiment A12 Monte Carlo Night! Procedure Deliverables: checked lab notebook, printed plots with captions Overview In the real world, you will never measure the exact same number every single time. Rather,

More information

Lesson 19: Matlab Tools for Teletraffic Engineering

Lesson 19: Matlab Tools for Teletraffic Engineering Slide supporting material Lesson 19: Matlab Tools for Teletraffic Engineering Giovanni Giambene Queuing Theory and Telecommunications: Networks and Applications 2nd edition, Springer All rights reserved

More information

Lecture 2. G. Cowan Lectures on Statistical Data Analysis Lecture 2 page 1

Lecture 2. G. Cowan Lectures on Statistical Data Analysis Lecture 2 page 1 Lecture 2 1 Probability (90 min.) Definition, Bayes theorem, probability densities and their properties, catalogue of pdfs, Monte Carlo 2 Statistical tests (90 min.) general concepts, test statistics,

More information

1 Probability Distributions

1 Probability Distributions 1 Probability Distributions A probability distribution describes how the values of a random variable are distributed. For example, the collection of all possible outcomes of a sequence of coin tossing

More information

STAT 3128 HW # 4 Solutions Spring 2013 Instr. Sonin

STAT 3128 HW # 4 Solutions Spring 2013 Instr. Sonin STAT 28 HW 4 Solutions Spring 2 Instr. Sonin Due Wednesday, March 2 NAME (25 + 5 points) Show all work on problems! (5). p. [5] 58. Please read subsection 6.6, pp. 6 6. Change:...select components...to:

More information

Machine Learning. Theory of Classification and Nonparametric Classifier. Lecture 2, January 16, What is theoretically the best classifier

Machine Learning. Theory of Classification and Nonparametric Classifier. Lecture 2, January 16, What is theoretically the best classifier Machine Learning 10-701/15 701/15-781, 781, Spring 2008 Theory of Classification and Nonparametric Classifier Eric Xing Lecture 2, January 16, 2006 Reading: Chap. 2,5 CB and handouts Outline What is theoretically

More information

(Mathematical Operations with Arrays) Applied Linear Algebra in Geoscience Using MATLAB

(Mathematical Operations with Arrays) Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB (Mathematical Operations with Arrays) Contents Getting Started Matrices Creating Arrays Linear equations Mathematical Operations with Arrays Using Script

More information

Introduction to Probability and Statistics (Continued)

Introduction to Probability and Statistics (Continued) Introduction to Probability and Statistics (Continued) Prof. icholas Zabaras Center for Informatics and Computational Science https://cics.nd.edu/ University of otre Dame otre Dame, Indiana, USA Email:

More information

Continuous random variables

Continuous random variables Continuous random variables Continuous r.v. s take an uncountably infinite number of possible values. Examples: Heights of people Weights of apples Diameters of bolts Life lengths of light-bulbs We cannot

More information

Lecture 4. Continuous Random Variables and Transformations of Random Variables

Lecture 4. Continuous Random Variables and Transformations of Random Variables Math 408 - Mathematical Statistics Lecture 4. Continuous Random Variables and Transformations of Random Variables January 25, 2013 Konstantin Zuev (USC) Math 408, Lecture 4 January 25, 2013 1 / 13 Agenda

More information

2.3 Estimating PDFs and PDF Parameters

2.3 Estimating PDFs and PDF Parameters .3 Estimating PDFs and PDF Parameters estimating means - discrete and continuous estimating variance using a known mean estimating variance with an estimated mean estimating a discrete pdf estimating a

More information

Chapter 2: Elements of Probability Continued

Chapter 2: Elements of Probability Continued MSCS6 Chapter : Elements of Probability Continued Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 7 by MSCS6 Agenda.7 Chebyshev s Inequality and the law of Large

More information

λ = pn µt = µ(dt)(n) Phylomath Lecture 4

λ = pn µt = µ(dt)(n) Phylomath Lecture 4 Phylomath Lecture 4 Brigid O Donnell (17 February 2004) A return to sojourn times We began by returning to the idea of sojourn times, or the time period until the next disruption event occurs for a given

More information

Random Signal Transformations and Quantization

Random Signal Transformations and Quantization York University Department of Electrical Engineering and Computer Science EECS 4214 Lab #3 Random Signal Transformations and Quantization 1 Purpose In this lab, you will be introduced to transformations

More information

Introduction and Overview STAT 421, SP Course Instructor

Introduction and Overview STAT 421, SP Course Instructor Introduction and Overview STAT 421, SP 212 Prof. Prem K. Goel Mon, Wed, Fri 3:3PM 4:48PM Postle Hall 118 Course Instructor Prof. Goel, Prem E mail: goel.1@osu.edu Office: CH 24C (Cockins Hall) Phone: 614

More information

Will Landau. Feb 28, 2013

Will Landau. Feb 28, 2013 Iowa State University The F Feb 28, 2013 Iowa State University Feb 28, 2013 1 / 46 Outline The F The F Iowa State University Feb 28, 2013 2 / 46 The normal (Gaussian) distribution A random variable X is

More information

Statistics for Economists. Lectures 3 & 4

Statistics for Economists. Lectures 3 & 4 Statistics for Economists Lectures 3 & 4 Asrat Temesgen Stockholm University 1 CHAPTER 2- Discrete Distributions 2.1. Random variables of the Discrete Type Definition 2.1.1: Given a random experiment with

More information

Three hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER.

Three hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER. Three hours To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER EXTREME VALUES AND FINANCIAL RISK Examiner: Answer QUESTION 1, QUESTION

More information

Optimization and Simulation

Optimization and Simulation Optimization and Simulation Simulating events: the Michel Bierlaire Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne

More information

EXAM. Exam #1. Math 3342 Summer II, July 21, 2000 ANSWERS

EXAM. Exam #1. Math 3342 Summer II, July 21, 2000 ANSWERS EXAM Exam # Math 3342 Summer II, 2 July 2, 2 ANSWERS i pts. Problem. Consider the following data: 7, 8, 9, 2,, 7, 2, 3. Find the first quartile, the median, and the third quartile. Make a box and whisker

More information

CHAPTER 6 SOME CONTINUOUS PROBABILITY DISTRIBUTIONS. 6.2 Normal Distribution. 6.1 Continuous Uniform Distribution

CHAPTER 6 SOME CONTINUOUS PROBABILITY DISTRIBUTIONS. 6.2 Normal Distribution. 6.1 Continuous Uniform Distribution CHAPTER 6 SOME CONTINUOUS PROBABILITY DISTRIBUTIONS Recall that a continuous random variable X is a random variable that takes all values in an interval or a set of intervals. The distribution of a continuous

More information

1 Solution to Problem 2.1

1 Solution to Problem 2.1 Solution to Problem 2. I incorrectly worked this exercise instead of 2.2, so I decided to include the solution anyway. a) We have X Y /3, which is a - function. It maps the interval, ) where X lives) onto

More information

BIOE 198MI Biomedical Data Analysis. Spring Semester Lab 4: Introduction to Probability and Random Data

BIOE 198MI Biomedical Data Analysis. Spring Semester Lab 4: Introduction to Probability and Random Data BIOE 98MI Biomedical Data Analysis. Spring Semester 209. Lab 4: Introduction to Probability and Random Data A. Random Variables Randomness is a component of all measurement data, either from acquisition

More information

Bayesian Scientific Computing D. Calvetti & E. Sommersalo

Bayesian Scientific Computing D. Calvetti & E. Sommersalo Bayesian Scientific Computing D. Calvetti & E. Sommersalo Quinn Winters Week : -7 January 8 Lecture - Inverse Problems and Subjective Computing. Example.7: Assume every day except sundays a train for your

More information

2 Random Variable Generation

2 Random Variable Generation 2 Random Variable Generation Most Monte Carlo computations require, as a starting point, a sequence of i.i.d. random variables with given marginal distribution. We describe here some of the basic methods

More information

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential.

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential. Math 8A Lecture 6 Friday May 7 th Epectation Recall the three main probability density functions so far () Uniform () Eponential (3) Power Law e, ( ), Math 8A Lecture 6 Friday May 7 th Epectation Eample

More information

The Normal Distribution

The Normal Distribution The Normal Distribution image: Etsy Will Monroe July 19, 017 with materials by Mehran Sahami and Chris Piech Announcements: Midterm A week from yesterday: Tuesday, July 5, 7:00-9:00pm Building 30-105 One

More information

3F1 Random Processes Examples Paper (for all 6 lectures)

3F1 Random Processes Examples Paper (for all 6 lectures) 3F Random Processes Examples Paper (for all 6 lectures). Three factories make the same electrical component. Factory A supplies half of the total number of components to the central depot, while factories

More information

Intro to probability concepts

Intro to probability concepts October 31, 2017 Serge Lang lecture This year s Serge Lang Undergraduate Lecture will be given by Keith Devlin of our main athletic rival. The title is When the precision of mathematics meets the messiness

More information