WEEKS 2-3 Dynamics of Machinery

Size: px
Start display at page:

Download "WEEKS 2-3 Dynamics of Machinery"

Transcription

1 WEEKS 2-3 Dynamics of Machinery References Theory of Machines and Mechanisms, J.J. Uicker, G.R.Pennock ve J.E. Shigley, 2003 Makine Dinamiği, Prof. Dr. Eres SÖYLEMEZ, 2013 Uygulamalı Makine Dinamiği, Jeremy Hirschhorn, Çeviri: Prof.Dr. Mustafa SABUNCU, 2014 Prof.Dr.Hasan ÖZTÜRK 1

2 Example:This slider-crank mechanism is in static equilibrium in the shown configuration. A known force F acts on the slider block in the direction shown. An unknown torque acts on the crank. Our objective is to determine the magnitude and the direction of this torque in order to keep the system in static equilibrium F 32y F 32x F 23x F 34x F 34y F 12x F 23y F 43y T 12 F 14 =F 14y T 14 F F 12x 32x 12 y 32 y F 12y + F = 0 + F = 0 af + bf + T = 0 32x 32 y 12 (Sum of moments about O ) 2 F23x + F43x = 0 F + F = 0 cf 23 y 43 y + df = 0 43x 43 y F 43x (Sum of moments about A ) Prof.Dr.Hasan ÖZTÜRK F + F = x F + F = 0 T 34 y 14 = 0 (Sum of moments about B ) 2

3 Numerical values for the link lengths are L 2 = 2 m and L 3 = 4 m. From the figures we extract the following measurements: a = 1.8 m, b = 1 m, c = 2 m, d = 3.6 m. Assume the applied force is given to be F = 10 N in the negative direction. F F F F T 12x 12 y 32x 32 y 12 = 10N = 5.56N = 10N = 5.56 = 23.55N F F F T 43x 43 y = 10N = 5.56N = 5.56N = 0 Simplified FBD method: The connecting rod of this mechanism is a two-force member. The reaction forces at A and B must be equal but in opposite directions. These reaction forces are named F 2 3 and F 43, and given arbitrary directions T 2 2 A F 32 F 23 A F 12x 3 F 12y F 34 B 4 F B F 43 1 F 14 Prof.Dr.Hasan ÖZTÜRK 3

4 Graphical: F = 0 F = 0 x Fy = 0 F + F + F = F = F F = F F = 0 Prof.Dr.Hasan ÖZTÜRK T M = 0 T hf. = 0 O = hf

5 Coulomb Friction: Coulomb friction can be included between two contacting surfaces in a static force analysis. Given the static coefficient of friction, μ (s), the friction force can be described as the product of the coefficient of friction and the reaction force normal to the contacting surfaces. The friction force must act in the opposite direction of the tendency of any motion. V B F friction =µ F 14 F F + F = 0 + F = 0 12x 32x 12 y 32 y af + bf + T = 0 32x 32 y 12 (Sum of moments about O ) 2 F23x + F43x = 0 F + F = 0 cf 23 y 43 y + df = 0 43x 43 y (Sum of moments about A ) F + F + F = 34 x fric. F + F = 0 34 y 14 0 Prof.Dr.Hasan ÖZTÜRK 5

6 Example: An external force of 10 N is acting horizontally on the rocker link, 30 mm from the point D. Find the amount of torque to be applied to the crank AB to keep the mechanism in static equilibrium. [ME 302 DYNAMICS OF MACHINERY, Prof. Dr. Sadettin KAPUCU] θ = 60, b = 20.02, φ = Prof.Dr.Hasan ÖZTÜRK 6

7 Prof.Dr.Hasan ÖZTÜRK 7

8 Prof.Dr.Hasan ÖZTÜRK 8

9 Graphical method: F 14 & F 34 are measured directly from the scaled force polygon. 10 N stands for 50 mm Prof.Dr.Hasan ÖZTÜRK 9

10 Example: Onto link 6 of the mechanism given, a 100 N vertical force acting. Calculate the amount of the torque required on the crank AB to keep the mechanism in static equilibrium, using the graphical approach. [ME 302 DYNAMICS OF MACHINERY, Prof. Dr. Sadettin KAPUCU] Prof.Dr.Hasan ÖZTÜRK 10

11 Prof.Dr.Hasan ÖZTÜRK 11

12 Prof.Dr.Hasan ÖZTÜRK 12

13 GEAR KINEMATICS The kinematic function of gears is to transfer rotational motion from one shaft to another. Since these shafts may be parallel, perpendicular, or at any other angle with respect to each other, gears designed for any of these cases take different forms and have different names: spur, helical, bevel, worm, etc. Vt1 = Vt2 pitch diameter ω 1.r 1= ( ) ω2.r 2 ω 1.D 1 = ( ) ω2.d2 N 1.D 1 = ( )N 2.D 2, N : rpm 2πN ω=,rad / sn 60 N. m.z = ( )N. m.z, D = m.z ( ) ( ) *****m = m N.z = ( )N.z number of teeth Kinematics of meshing gears. a = a t1 t2 α.r = ( ) α.r tangential acceleration module Prof.Dr.Hasan ÖZTÜRK 13

14 Spur Gear Force Analysis (Static): The reaction forces between the teeth occur along the pressure line AB, tipped by the pressure angle, tipped by the pressure angle φ from the common tangent to the pitch circles. F F = F = radial force component = F = transmitted force component r r t t F r t ( ) = F tan φ In applications involving gears, the power transmitted and the shaft speeds are often specified. remembering that power is the product of force times velocity or torque times angular velocity, we can find the relation between power and the transmitted force. Using the symbol P to denote power, we obtain 14

15 15

16 16

17 Spur Gear Force Analysis (Dynamic): The reaction forces between the teeth occur along the pressure line AB, tipped by the pressure angle, tipped by the pressure angle φ from the common tangent to the pitch circles. F F = F = radial force component = F = transmitted force component r r t t F = F tan φ r t ( ) Prof.Dr.Hasan ÖZTÜRK 17

18 Example (Midterm ): Find all the pin (joint) forces and the external torque (T 5 ) that must be applied to gear 5 of the mechanism by using the analytical method. Neglecting friction. Prof.Dr.Hasan ÖZTÜRK 18

19 A 3 M O3 = 0 Prof..Dr.Hasan ÖZTÜRK 19

20 M O4 = 0 Prof.Dr.Hasan ÖZTÜRK 20

21 Prof.Dr.Hasan ÖZTÜRK 21

22 Helical Gears F a : axial, F r : radial F t : tangential φ t : transverse pressure angle ψ: helix angle Prof.Dr.Hasan ÖZTÜRK 22

23 Straight Bevel Gears Prof.Dr.Hasan ÖZTÜRK 23

24 Dynamic Force Analysis 24

25 Sometimes it is convenient to arrange these mass moments of inertia and mass products of inertia into a symmetric square array or matrix format called the inertia tensor of the body: 25

26 Dynamic Force Analysis D'Alembertls principle: The vector sum of all external forces and inertia forces acting upon a system of rigid bodies is zero. The vector sum of all external moments and inertia torques acting upon a system of rigid bodies is also separately zero. i F + F = 0 or F ma G = 0 inertia force F i has the same line of action of a G but is in opposite direction i M + T = 0 or M I α = 0 G inertia torque T i is in opposite sense of the angular acceleration a Prof.Dr.Hasan ÖZTÜRK 26

27 Slider Crank Mechanism external force and torque, F 4 and T 2 All frictions are neglected except for the friction at joint 14 Prof.Dr.Hasan ÖZTÜRK 27

28 EXAMPLE We use the four-bar linkage of the below Figure. The required data, based on a complete kinematic analysis, are illustrated in the Figure and in the legend. At the crank angle shown and assuming that gravity and friction effects are negligible, determine all the constraint forces and the driving torque required to produce the acceleration conditions specifıed. Prof.Dr.Hasan ÖZTÜRK 28

29 29

30 We start with the following kinematic information. Next we calculate the inertia forces and inertia torques. Because the solution is analytical, we do not need to calculate offset distances nor do we replace the inertia torques by couples. The six equations are 30

31 Considering the free-body diagram of link 4 alone, we formulate the summation of moments about point 04: Also, considering the free-body diagram of link 3 alone, we formulate the summation of moments about point A: Prof.Dr.Hasan ÖZTÜRK 31

32 Prof.Dr.Hasan ÖZTÜRK 32

33 Prof.Dr.Hasan ÖZTÜRK 33

34 Prof.Dr.Hasan ÖZTÜRK 34

35 35

36 36

37 37

38 PRINCIPLE OF SUPERPOSITION Linear systems are those in which effect is proportional to cause. This means that the response or output of a linear system is directly proportional to the drive or input to the system. An example of a linear system is a spring, where the deflection (output) is directly proportional to the force (input) exerted on the spring. The principle of superposition may be used to solve problems involving linear systems by considering each of the inputs to the system separately. If the system is linear, the responses to each of these inputs can be summed or superposed on each other to determine the total response of the system. Thus, the principle of superposition states that for a linear system the individual responses to several disturbances, or driving functions, can be superposed on each other to obtain the total response of the system. Prof.Dr.Hasan ÖZTÜRK 38

39 Prof.Dr.Hasan ÖZTÜRK 39

40 40

41 Prof.Dr.Hasan ÖZTÜRK 41

42 42

43 43

44 44

45 45

46 46

47 47

48 PLANAR ROTATION ABOUT A FIXED CENTER F = ma G For fixed-axis rotation, it is generally useful to apply a moment equation directly about the rotation axis O. Application of the parallel-axis theorem for mass moments of inertia Prof.Dr.Hasan ÖZTÜRK 48

49 Center of percussion P P P P Prof.Dr.Hasan ÖZTÜRK 49

50 Prof.Dr.Hasan ÖZTÜRK 50

51 Prof.Dr.Hasan ÖZTÜRK 51

52 SHAKING FORCES AND MOMENTS Of special interest to the designer are the forces transmitted to the frame or foundation of a machine owing to the inertia of the moving links. When these forces vary in magnitude or direction, they tend to shake or vibrate the machine (and the frame); consequently, such effects are called shaking forces and shaking moments. If we consider some machine, say a four-bar linkage for example, with links 2,3, and 4 as the moving members and link I as the frame, then taking the entire group of moving parts as a system, not including the frame, and draw a free-body diagram, we can immediately write This makes sense because if we consider a free-body diagram ofthe entiremachine including the frame, all other applied and constraint forces have equal and opposite reaction forces and these cancel within the free-body system. Only the inertia forces, having no reactions, are ultimately extemal to the system and remain unbalanced. These are not balanced by reaction forces and produce unbalanced shaking effects between the frame and whatever bench or other surface on which it is mounted. These are the forces that require that the machine be fastened down to prevent it from moving. Prof.Dr.Hasan ÖZTÜRK 52

53 Prof.Dr.Hasan ÖZTÜRK 53

54 Force Analysis using the method of Virtual Work 1. If a rigid body is in equilibrium under the action of external forces, the total work done by these forces is zero for a small displacement of the body. 2. Work: W = F dx, W = T dθ 1. With F, x, T, q, vectors and W a scalar. 2. To indicate that we are dealing with infinitesimal displacements (virtual displacements), use the notation: 3. Now apply the virtual work definition: δw δw = F δx δw = Fi δxi + T i j j = T δθ δθ j = 0 Prof.Dr.Hasan ÖZTÜRK 54

55 Virtual Work (cont.) 4. If we divide the virtual work by a small time step, we get: F v T 0 i i i j j j 5. These are all external torques and forces on the body, and include inertial forces and gravity. Rewrite, to clearly show this as: i i F v+ T ω+ F v + T ω= external,friction,weight external,friction G 0 Prof.Dr.Hasan ÖZTÜRK 55

56 Example (2015-Midterm 1). Neglect the gravity force for the mechanism shown in the Figure. Links 2 and 3 are uniform. E and D points are the centroids of the triangles. All frictions are neglected. a) Find all the pin (joint) forces and the external torque that must be applied to link 2 of the mechanism by using the analytical method. b) Find the external torque that must be applied to link 2 of the mechanism by using the Virtual Work method. Prof.Dr.Hasan ÖZTÜRK 56

57 ANSWER- a): Prof.Dr.Hasan ÖZTÜRK 57

58 Prof.Dr.Hasan ÖZTÜRK 58

59 ( F 43 = F34 ) Prof.Dr.Hasan ÖZTÜRK 59

60 Prof.Dr.Hasan ÖZTÜRK 60

61 ANSWER- b) Virtual Work method : Prof.Dr.Hasan ÖZTÜRK 61

62 Prof.Dr.Hasan ÖZTÜRK 62

63 Prof.Dr.Hasan ÖZTÜRK 63

64 Prof.Dr.Hasan ÖZTÜRK 64

65 Prof.Dr.Hasan ÖZTÜRK 65

66 Example (2010-Midterm 1): For the mechanism shown in the figure, Links 2 and 3 are uniform. All frictions and mass of link 2 are neglected. Link 4 can rotate about its axis. Find all the pin (joint) forces and the external torque that must be applied to link 2 of the mechanism by using the grapical method. g α 3 =545 r/s 2 Prof.Dr.Hasan ÖZTÜRK 66

67 Free Body Diagram Prof.Dr.Hasan ÖZTÜRK 67

68 F + F + F = F =13.37 N O T 2 F cm F 12 O F = F T 2 F 23 1 cm: 5 N F 43 F43 = 4.2cm 5 = 21N A F 32 A F 32 F =13.37 N F 43 F 23 F23 = 3.28cm 5 = 16.4 N 0.1 MO = 0 T2 + F32 = T2 = 16.4 N = Nm 100 Prof.Dr.Hasan ÖZTÜRK 68

69 Example (2011-Final): For the mechanism shown in the figure, Links 2 and 3 are uniform. All frictions (except for 3-4) and mass of link 2 are neglected. Link 4 can rotate about its axis. Find all the pin (joint) forces and the external torque that must be applied to link 2 of the mechanism by using the grapical method. g α 3 =545 r/s 2 V 34 µ=0.5 Prof.Dr.Hasan ÖZTÜRK 69

70 tanφ = µ φ = F 23 A B F R 43 F A 22 0 G F 43 α 3 i F = ma 3 G3 = 12.4 N 2 ag3 = 24.8 m/ s G 3 B F fric N C d Nm = d cos(53.2 ) d = m d = 27.5 mm i T3 = IG3α 3 = Nm m 3 g=5 N C Prof.Dr.Hasan ÖZTÜRK 70

71 A F 23 F =13.37 N F 23 B F R F R 43 G d F =13.37 N F N C A F R 43 V 34 B F R 43 G 3 F 43 F fric F fric C Prof.Dr.Hasan ÖZTÜRK 71

72 F R 43 A 1 cm: 5 N F =13.37 N G 3 B F 23 F =13.37 N F R 43 F N 22 0 C d F R 43 F + F + F = R F 23 R F 43 = 4.3cm 5 = 21.5 N F23 = 4.7cm 5 = 23.5 N F 12 O T 2 F 12 O T cm 1.5 M = 0 T2 F32 = O A A T2 = N = Nm 100 F 32 F 32 Prof.Dr.Hasan ÖZTÜRK 72

WEEK 1 Dynamics of Machinery

WEEK 1 Dynamics of Machinery WEEK 1 Dynamics of Machinery References Theory of Machines and Mechanisms, J.J. Uicker, G.R.Pennock ve J.E. Shigley, 2003 Makine Dinamiği, Prof. Dr. Eres SÖYLEMEZ, 2013 Uygulamalı Makine Dinamiği, Jeremy

More information

EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid

EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body undergoing rotational motion. APPLICATIONS The crank

More information

WEEKS 8-9 Dynamics of Machinery

WEEKS 8-9 Dynamics of Machinery WEEKS 8-9 Dynamics of Machinery References Theory of Machines and Mechanisms, J.J.Uicker, G.R.Pennock ve J.E. Shigley, 2011 Mechanical Vibrations, Singiresu S. Rao, 2010 Mechanical Vibrations: Theory and

More information

RIGID BODY MOTION (Section 16.1)

RIGID BODY MOTION (Section 16.1) RIGID BODY MOTION (Section 16.1) There are cases where an object cannot be treated as a particle. In these cases the size or shape of the body must be considered. Rotation of the body about its center

More information

UNIT 2 KINEMATICS OF LINKAGE MECHANISMS

UNIT 2 KINEMATICS OF LINKAGE MECHANISMS UNIT 2 KINEMATICS OF LINKAGE MECHANISMS ABSOLUTE AND RELATIVE VELOCITY An absolute velocity is the velocity of a point measured from a fixed point (normally the ground or anything rigidly attached to the

More information

Kinematics, Dynamics, and Vibrations FE Review Session. Dr. David Herrin March 27, 2012

Kinematics, Dynamics, and Vibrations FE Review Session. Dr. David Herrin March 27, 2012 Kinematics, Dynamics, and Vibrations FE Review Session Dr. David Herrin March 7, 0 Example A 0 g ball is released vertically from a height of 0 m. The ball strikes a horizontal surface and bounces back.

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.4-5

CEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.4-5 1 / 36 CEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.4-5 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Date: 2 / 36 EQUATIONS OF MOTION: ROTATION

More information

Chapter 4 Statics and dynamics of rigid bodies

Chapter 4 Statics and dynamics of rigid bodies Chapter 4 Statics and dynamics of rigid bodies Bachelor Program in AUTOMATION ENGINEERING Prof. Rong-yong Zhao (zhaorongyong@tongji.edu.cn) First Semester,2014-2015 Content of chapter 4 4.1 Static equilibrium

More information

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2)

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2) PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2) We will limit our study of planar kinetics to rigid bodies that are symmetric with respect to a fixed reference plane. As discussed in Chapter 16, when

More information

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION I. Moment of Inertia: Since a body has a definite size and shape, an applied nonconcurrent force system may cause the body to both translate and rotate.

More information

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 8: Rotation of a Rigid Object About a Fixed Axis Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ New Territory Object In the past, point particle (no rotation,

More information

Dynamics of Machinery

Dynamics of Machinery 1 Preamble Dynamics of Machinery Relation between motion and forces causing is a fascinating subject. This study is a generally referred as dynamic. Modern Engineering aims at analysing and predicting

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA ADVANCED MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 18 NQF LEVEL 3

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA ADVANCED MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 18 NQF LEVEL 3 EDEXCEL NATIONAL CERTIFICATE/DIPLOMA ADVANCED MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 18 NQF LEVEL 3 OUTCOME 3 BE ABLE TO DETERMINE RELATIVE AND RESULTANT VELOCITY IN ENGINEERING SYSTEMS Resultant

More information

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 8: Rotation of a Rigid Object About a Fixed Axis Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ New Territory Object In the past, point particle (no rotation,

More information

DEPARTMENT OF MECHANICAL ENGINEERING Dynamics of Machinery. Submitted

DEPARTMENT OF MECHANICAL ENGINEERING Dynamics of Machinery. Submitted DEPARTMENT OF MECHANICAL ENGINEERING Dynamics of Machinery Submitted 1 UNIT I - Force Analysis INDEX (1) Introduction (2) Newton s Law (3) Types of force Analysis (4) Principle of Super Position (5) Free

More information

MECHANISM AND MACHINE THEORY

MECHANISM AND MACHINE THEORY LITHUANIAN UNIVERSITY OF AGRICULTURE FACULTY OF AGRICULTURE ENGINEERING Department of Mechanics STUDY SUBJECT DESCRIPTION MECHANISM AND MACHINE THEORY Study cycle: BSc Number of ECTS credit points: 4,5

More information

FORCE ANALYSIS OF MACHINERY. School of Mechanical & Industrial Engineering, AAiT

FORCE ANALYSIS OF MACHINERY. School of Mechanical & Industrial Engineering, AAiT 1 FORCE ANALYSIS OF MACHINERY School of Mechanical & Industrial Engineering, AAiT INTRODUCTION 2 A machine is a device that performs work and, as such, transmits energy by means mechanical force from a

More information

STATICS. FE Review. Statics, Fourteenth Edition R.C. Hibbeler. Copyright 2016 by Pearson Education, Inc. All rights reserved.

STATICS. FE Review. Statics, Fourteenth Edition R.C. Hibbeler. Copyright 2016 by Pearson Education, Inc. All rights reserved. STATICS FE Review 1. Resultants of force systems VECTOR OPERATIONS (Section 2.2) Scalar Multiplication and Division VECTOR ADDITION USING EITHER THE PARALLELOGRAM LAW OR TRIANGLE Parallelogram Law: Triangle

More information

PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION (Sections ) Today s Objectives: Students will be able to: a) Apply the three equations of

PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION (Sections ) Today s Objectives: Students will be able to: a) Apply the three equations of PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION (Sections 17.2-17.3) Today s Objectives: Students will be able to: a) Apply the three equations of motion for a rigid body in planar motion. b) Analyze problems

More information

PLANAR RIGID BODY MOTION: TRANSLATION &

PLANAR RIGID BODY MOTION: TRANSLATION & PLANAR RIGID BODY MOTION: TRANSLATION & Today s Objectives : ROTATION Students will be able to: 1. Analyze the kinematics of a rigid body undergoing planar translation or rotation about a fixed axis. In-Class

More information

1. Replace the given system of forces acting on a body as shown in figure 1 by a single force and couple acting at the point A.

1. Replace the given system of forces acting on a body as shown in figure 1 by a single force and couple acting at the point A. Code No: Z0321 / R07 Set No. 1 I B.Tech - Regular Examinations, June 2009 CLASSICAL MECHANICS ( Common to Mechanical Engineering, Chemical Engineering, Mechatronics, Production Engineering and Automobile

More information

Chapter 12. Static Equilibrium and Elasticity

Chapter 12. Static Equilibrium and Elasticity Chapter 12 Static Equilibrium and Elasticity Static Equilibrium Equilibrium implies that the object moves with both constant velocity and constant angular velocity relative to an observer in an inertial

More information

Deriving 1 DOF Equations of Motion Worked-Out Examples. MCE371: Vibrations. Prof. Richter. Department of Mechanical Engineering. Handout 3 Fall 2017

Deriving 1 DOF Equations of Motion Worked-Out Examples. MCE371: Vibrations. Prof. Richter. Department of Mechanical Engineering. Handout 3 Fall 2017 MCE371: Vibrations Prof. Richter Department of Mechanical Engineering Handout 3 Fall 2017 Masses with Rectilinear Motion Follow Palm, p.63, 67-72 and Sect.2.6. Refine your skill in drawing correct free

More information

Rigid bodies - general theory

Rigid bodies - general theory Rigid bodies - general theory Kinetic Energy: based on FW-26 Consider a system on N particles with all their relative separations fixed: it has 3 translational and 3 rotational degrees of freedom. Motion

More information

5. Plane Kinetics of Rigid Bodies

5. Plane Kinetics of Rigid Bodies 5. Plane Kinetics of Rigid Bodies 5.1 Mass moments of inertia 5.2 General equations of motion 5.3 Translation 5.4 Fixed axis rotation 5.5 General plane motion 5.6 Work and energy relations 5.7 Impulse

More information

STATICS & DYNAMICS. Engineering Mechanics. Gary L. Gray. Francesco Costanzo. Michael E. Plesha. University of Wisconsin-Madison

STATICS & DYNAMICS. Engineering Mechanics. Gary L. Gray. Francesco Costanzo. Michael E. Plesha. University of Wisconsin-Madison Engineering Mechanics STATICS & DYNAMICS SECOND EDITION Francesco Costanzo Department of Engineering Science and Mechanics Penn State University Michael E. Plesha Department of Engineering Physics University

More information

+ + = integer (13-15) πm. z 2 z 2 θ 1. Fig Constrained Gear System Fig Constrained Gear System Containing a Rack

+ + = integer (13-15) πm. z 2 z 2 θ 1. Fig Constrained Gear System Fig Constrained Gear System Containing a Rack Figure 13-8 shows a constrained gear system in which a rack is meshed. The heavy line in Figure 13-8 corresponds to the belt in Figure 13-7. If the length of the belt cannot be evenly divided by circular

More information

7. FORCE ANALYSIS. Fundamentals F C

7. FORCE ANALYSIS. Fundamentals F C ME 352 ORE NLYSIS 7. ORE NLYSIS his chapter discusses some of the methodologies used to perform force analysis on mechanisms. he chapter begins with a review of some fundamentals of force analysis using

More information

Dynamics of Machinery

Dynamics of Machinery Dynamics of Machinery Two Mark Questions & Answers Varun B Page 1 Force Analysis 1. Define inertia force. Inertia force is an imaginary force, which when acts upon a rigid body, brings it to an equilibrium

More information

3.1 CONDITIONS FOR RIGID-BODY EQUILIBRIUM

3.1 CONDITIONS FOR RIGID-BODY EQUILIBRIUM 3.1 CONDITIONS FOR RIGID-BODY EQUILIBRIUM Consider rigid body fixed in the x, y and z reference and is either at rest or moves with reference at constant velocity Two types of forces that act on it, the

More information

ME Machine Design I

ME Machine Design I ME 35 - Machine Design I Summer Semester 008 Name Lab. Div. FINAL EXAM. OPEN BOOK AND CLOSED NOTES. Wednesday, July 30th, 008 Please show all your work for your solutions on the blank white paper. Write

More information

General Physics I. Lecture 9: Vector Cross Product. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 9: Vector Cross Product. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 9: Vector Cross Product Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Outline Examples of the rotation of a rigid object about a fixed axis Force/torque

More information

ME Machine Design I

ME Machine Design I ME 5 - Machine Design I Summer Semester 008 Name Lab. Div. EXAM. OEN BOOK AND CLOSED NOTES. Wednesday, July 16th, 008 Write your solutions on the blank paper that is provided. Write on one side of the

More information

PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION

PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION Today s Objectives: Students will be able to: 1. Apply the three equations of motion for a rigid body in planar motion. 2. Analyze problems involving translational

More information

of the four-bar linkage shown in Figure 1 is T 12

of the four-bar linkage shown in Figure 1 is T 12 ME 5 - Machine Design I Fall Semester 0 Name of Student Lab Section Number FINL EM. OPEN BOOK ND CLOSED NOTES Wednesday, December th, 0 Use the blank paper provided for your solutions write on one side

More information

The... of a particle is defined as its change in position in some time interval.

The... of a particle is defined as its change in position in some time interval. Distance is the. of a path followed by a particle. Distance is a quantity. The... of a particle is defined as its change in position in some time interval. Displacement is a.. quantity. The... of a particle

More information

Kinematics of. Motion. 8 l Theory of Machines

Kinematics of. Motion. 8 l Theory of Machines 8 l Theory of Machines Features 1. 1ntroduction.. Plane Motion. 3. Rectilinear Motion. 4. Curvilinear Motion. 5. Linear Displacement. 6. Linear Velocity. 7. Linear Acceleration. 8. Equations of Linear

More information

Members Subjected to Torsional Loads

Members Subjected to Torsional Loads Members Subjected to Torsional Loads Torsion of circular shafts Definition of Torsion: Consider a shaft rigidly clamped at one end and twisted at the other end by a torque T = F.d applied in a plane perpendicular

More information

Figure Two. Then the two vector equations of equilibrium are equivalent to three scalar equations:

Figure Two. Then the two vector equations of equilibrium are equivalent to three scalar equations: 2004- v 10/16 2. The resultant external torque (the vector sum of all external torques) acting on the body must be zero about any origin. These conditions can be written as equations: F = 0 = 0 where the

More information

UNIT-I (FORCE ANALYSIS)

UNIT-I (FORCE ANALYSIS) DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEACH AND TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK ME2302 DYNAMICS OF MACHINERY III YEAR/ V SEMESTER UNIT-I (FORCE ANALYSIS) PART-A (2 marks)

More information

Torsion of shafts with circular symmetry

Torsion of shafts with circular symmetry orsion of shafts with circular symmetry Introduction Consider a uniform bar which is subject to a torque, eg through the action of two forces F separated by distance d, hence Fd orsion is the resultant

More information

Physics 111 Lecture 4 Newton`s Laws

Physics 111 Lecture 4 Newton`s Laws Physics 111 Lecture 4 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department www.aovgun.com he Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law q Examples Isaac

More information

ME 230 Kinematics and Dynamics

ME 230 Kinematics and Dynamics ME 230 Kinematics and Dynamics Wei-Chih Wang Department of Mechanical Engineering University of Washington Lecture 6: Particle Kinetics Kinetics of a particle (Chapter 13) - 13.4-13.6 Chapter 13: Objectives

More information

E 490 FE Exam Prep. Engineering Mechanics

E 490 FE Exam Prep. Engineering Mechanics E 490 FE Exam Prep Engineering Mechanics 2008 E 490 Course Topics Statics Newton s Laws of Motion Resultant Force Systems Moment of Forces and Couples Equilibrium Pulley Systems Trusses Centroid of an

More information

Dynamics. Dynamics of mechanical particle and particle systems (many body systems)

Dynamics. Dynamics of mechanical particle and particle systems (many body systems) Dynamics Dynamics of mechanical particle and particle systems (many body systems) Newton`s first law: If no net force acts on a body, it will move on a straight line at constant velocity or will stay at

More information

When a rigid body is in equilibrium, both the resultant force and the resultant couple must be zero.

When a rigid body is in equilibrium, both the resultant force and the resultant couple must be zero. When a rigid body is in equilibrium, both the resultant force and the resultant couple must be zero. 0 0 0 0 k M j M i M M k R j R i R F R z y x z y x Forces and moments acting on a rigid body could be

More information

AP Physics QUIZ Chapters 10

AP Physics QUIZ Chapters 10 Name: 1. Torque is the rotational analogue of (A) Kinetic Energy (B) Linear Momentum (C) Acceleration (D) Force (E) Mass A 5-kilogram sphere is connected to a 10-kilogram sphere by a rigid rod of negligible

More information

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd Chapter Objectives To develop the equations of equilibrium for a rigid body. To introduce the concept of the free-body diagram for a rigid body. To show how to solve rigid-body equilibrium problems using

More information

Plane Motion of Rigid Bodies: Forces and Accelerations

Plane Motion of Rigid Bodies: Forces and Accelerations Plane Motion of Rigid Bodies: Forces and Accelerations Reference: Beer, Ferdinand P. et al, Vector Mechanics for Engineers : Dynamics, 8 th Edition, Mc GrawHill Hibbeler R.C., Engineering Mechanics: Dynamics,

More information

Review of Engineering Dynamics

Review of Engineering Dynamics Review of Engineering Dynamics Part 1: Kinematics of Particles and Rigid Bodies by James Doane, PhD, PE Contents 1.0 Course Overview... 4.0 Basic Introductory Concepts... 4.1 Introduction... 4.1.1 Vectors

More information

Balancing of Masses. 1. Balancing of a Single Rotating Mass By a Single Mass Rotating in the Same Plane

Balancing of Masses. 1. Balancing of a Single Rotating Mass By a Single Mass Rotating in the Same Plane lecture - 1 Balancing of Masses Theory of Machine Balancing of Masses A car assembly line. In this chapter we shall discuss the balancing of unbalanced forces caused by rotating masses, in order to minimize

More information

3. Kinetics of Particles

3. Kinetics of Particles 3. Kinetics of Particles 3.1 Force, Mass and Acceleration 3.3 Impulse and Momentum 3.4 Impact 1 3.1 Force, Mass and Acceleration We draw two important conclusions from the results of the experiments. First,

More information

SECOND ENGINEER REG. III/2 APPLIED MECHANICS

SECOND ENGINEER REG. III/2 APPLIED MECHANICS SECOND ENGINEER REG. III/2 APPLIED MECHANICS LIST OF TOPICS Static s Friction Kinematics Dynamics Machines Strength of Materials Hydrostatics Hydrodynamics A STATICS 1 Solves problems involving forces

More information

Rotational Kinematics

Rotational Kinematics Rotational Kinematics Rotational Coordinates Ridged objects require six numbers to describe their position and orientation: 3 coordinates 3 axes of rotation Rotational Coordinates Use an angle θ to describe

More information

Chapter 8. Centripetal Force and The Law of Gravity

Chapter 8. Centripetal Force and The Law of Gravity Chapter 8 Centripetal Force and The Law of Gravity Centripetal Acceleration An object traveling in a circle, even though it moves with a constant speed, will have an acceleration The centripetal acceleration

More information

Vector Mechanics: Statics

Vector Mechanics: Statics PDHOnline Course G492 (4 PDH) Vector Mechanics: Statics Mark A. Strain, P.E. 2014 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org www.pdhcenter.com

More information

This equation of motion may be solved either by differential equation method or by graphical method as discussed below:

This equation of motion may be solved either by differential equation method or by graphical method as discussed below: 2.15. Frequency of Under Damped Forced Vibrations Consider a system consisting of spring, mass and damper as shown in Fig. 22. Let the system is acted upon by an external periodic (i.e. simple harmonic)

More information

ENGR 1100 Introduction to Mechanical Engineering

ENGR 1100 Introduction to Mechanical Engineering ENGR 1100 Introduction to Mechanical Engineering Mech. Engineering Objectives Newton s Laws of Motion Free Body Diagram Transmissibility Forces and Moments as vectors Parallel Vectors (addition/subtraction)

More information

Rigid Body Kinetics :: Force/Mass/Acc

Rigid Body Kinetics :: Force/Mass/Acc Rigid Body Kinetics :: Force/Mass/Acc General Equations of Motion G is the mass center of the body Action Dynamic Response 1 Rigid Body Kinetics :: Force/Mass/Acc Fixed Axis Rotation All points in body

More information

Torque and Rotation Lecture 7

Torque and Rotation Lecture 7 Torque and Rotation Lecture 7 ˆ In this lecture we finally move beyond a simple particle in our mechanical analysis of motion. ˆ Now we consider the so-called rigid body. Essentially, a particle with extension

More information

Chapter 17 Two Dimensional Rotational Dynamics

Chapter 17 Two Dimensional Rotational Dynamics Chapter 17 Two Dimensional Rotational Dynamics 17.1 Introduction... 1 17.2 Vector Product (Cross Product)... 2 17.2.1 Right-hand Rule for the Direction of Vector Product... 3 17.2.2 Properties of the Vector

More information

TABLE OF CONTENTS. Preface...

TABLE OF CONTENTS. Preface... TABLE OF CONTENTS Preface...................................... xiv 1 Introduction........................................ 1 1.1 Engineering and Statics.............................. 1 1.2 A Brief History

More information

ME 274 Spring 2017 Examination No. 2 PROBLEM No. 2 (20 pts.) Given:

ME 274 Spring 2017 Examination No. 2 PROBLEM No. 2 (20 pts.) Given: PROBLEM No. 2 (20 pts.) Given: Blocks A and B (having masses of 2m and m, respectively) are connected by an inextensible cable, with the cable being pulled over a small pulley of negligible mass. Block

More information

Inertia Forces in a Reciprocating Engine, Considering the Weight of Connecting Rod.

Inertia Forces in a Reciprocating Engine, Considering the Weight of Connecting Rod. Inertia Forces in a Reciprocating Engine, Considering the Weight of Connecting Rod. We use equivalent mass method. let OC be the crank and PC, the connecting rod whose centre of gravity lies at G. We will

More information

Static Unbalance. Both bearing reactions occur in the same plane and in the. After balancing no bearing reaction remains theoretically.

Static Unbalance. Both bearing reactions occur in the same plane and in the. After balancing no bearing reaction remains theoretically. BALANCING Static Unbalance A disk-shaft system on rigid rails An unbalanced disk-shaft system mounted on bearings and rotated For the unbalanced rotating system: Dynamic Bearing Reactions + Inertia Forces

More information

F R. + F 3x. + F 2y. = (F 1x. j + F 3x. i + F 2y. i F 3y. i + F 1y. j F 2x. ) i + (F 1y. ) j. F 2x. F 3y. = (F ) i + (F ) j. ) j

F R. + F 3x. + F 2y. = (F 1x. j + F 3x. i + F 2y. i F 3y. i + F 1y. j F 2x. ) i + (F 1y. ) j. F 2x. F 3y. = (F ) i + (F ) j. ) j General comments: closed book and notes but optional one page crib sheet allowed. STUDY: old exams, homework and power point lectures! Key: make sure you can solve your homework problems and exam problems.

More information

Advanced Dynamics. - Lecture 4 Lagrange Equations. Paolo Tiso Spring Semester 2017 ETH Zürich

Advanced Dynamics. - Lecture 4 Lagrange Equations. Paolo Tiso Spring Semester 2017 ETH Zürich Advanced Dynamics - Lecture 4 Lagrange Equations Paolo Tiso Spring Semester 2017 ETH Zürich LECTURE OBJECTIVES 1. Derive the Lagrange equations of a system of particles; 2. Show that the equation of motion

More information

6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm.

6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm. 1. During a certain period of time, the angular position of a swinging door is described by θ = 5.00 + 10.0t + 2.00t 2, where θ is in radians and t is in seconds. Determine the angular position, angular

More information

20k rad/s and 2 10k rad/s,

20k rad/s and 2 10k rad/s, ME 35 - Machine Design I Summer Semester 0 Name of Student: Lab Section Number: FINAL EXAM. OPEN BOOK AND CLOSED NOTES. Thursday, August nd, 0 Please show all your work for your solutions on the blank

More information

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction)

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction) Kinematics (special case) a = constant 1D motion 2D projectile Uniform circular Dynamics gravity, tension, elastic, normal, friction Motion with a = constant Newton s Laws F = m a F 12 = F 21 Time & Position

More information

Chapter 5. The Laws of Motion

Chapter 5. The Laws of Motion Chapter 5 The Laws of Motion The Laws of Motion The description of an object in There was no consideration of what might influence that motion. Two main factors need to be addressed to answer questions

More information

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 21 The oment- Distribution ethod: rames with Sidesway Instructional Objectives After reading this chapter the student

More information

Course Overview. Statics (Freshman Fall) Dynamics: x(t)= f(f(t)) displacement as a function of time and applied force

Course Overview. Statics (Freshman Fall) Dynamics: x(t)= f(f(t)) displacement as a function of time and applied force Course Overview Statics (Freshman Fall) Engineering Mechanics Dynamics (Freshman Spring) Strength of Materials (Sophomore Fall) Mechanism Kinematics and Dynamics (Sophomore Spring ) Aircraft structures

More information

Video 2.1a Vijay Kumar and Ani Hsieh

Video 2.1a Vijay Kumar and Ani Hsieh Video 2.1a Vijay Kumar and Ani Hsieh Robo3x-1.3 1 Introduction to Lagrangian Mechanics Vijay Kumar and Ani Hsieh University of Pennsylvania Robo3x-1.3 2 Analytical Mechanics Aristotle Galileo Bernoulli

More information

Inertia Forces in Reciprocating. Parts. 514 l Theory of Machines

Inertia Forces in Reciprocating. Parts. 514 l Theory of Machines 514 l Theory of Machines 15 Features 1. Introduction.. Resultant Effect of a System of Forces Acting on a Rigid Body. 3. D-Alembert s Principle. 4. Velocity and Acceleration of the Reciprocating Parts

More information

SCHEME OF BE 100 ENGINEERING MECHANICS DEC 2015

SCHEME OF BE 100 ENGINEERING MECHANICS DEC 2015 Part A Qn. No SCHEME OF BE 100 ENGINEERING MECHANICS DEC 201 Module No BE100 ENGINEERING MECHANICS Answer ALL Questions 1 1 Theorem of three forces states that three non-parallel forces can be in equilibrium

More information

Equilibrium of a Particle

Equilibrium of a Particle ME 108 - Statics Equilibrium of a Particle Chapter 3 Applications For a spool of given weight, what are the forces in cables AB and AC? Applications For a given weight of the lights, what are the forces

More information

STATICS Chapter 1 Introductory Concepts

STATICS Chapter 1 Introductory Concepts Contents Preface to Adapted Edition... (v) Preface to Third Edition... (vii) List of Symbols and Abbreviations... (xi) PART - I STATICS Chapter 1 Introductory Concepts 1-1 Scope of Mechanics... 1 1-2 Preview

More information

Chapter 10. Rotation of a Rigid Object about a Fixed Axis

Chapter 10. Rotation of a Rigid Object about a Fixed Axis Chapter 10 Rotation of a Rigid Object about a Fixed Axis Angular Position Axis of rotation is the center of the disc Choose a fixed reference line. Point P is at a fixed distance r from the origin. A small

More information

However, the friction forces are limited in magnitude and will not prevent motion if sufficiently large forces are applied.

However, the friction forces are limited in magnitude and will not prevent motion if sufficiently large forces are applied. FRICTION 1 Introduction In preceding chapters, it was assumed that surfaces in contact were either frictionless (surfaces could move freely with respect to each other) or rough (tangential forces prevent

More information

Exam II Difficult Problems

Exam II Difficult Problems Exam II Difficult Problems Exam II Difficult Problems 90 80 70 60 50 40 30 20 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Two boxes are connected to each other as shown. The system is released

More information

Engineering Mechanics: Statics. Chapter 7: Virtual Work

Engineering Mechanics: Statics. Chapter 7: Virtual Work Engineering Mechanics: Statics Chapter 7: Virtual Work Introduction Previous chapters-- FBD & zero-force and zero-moment equations -- Suitable when equilibrium position is known For bodies composed of

More information

RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5)

RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5) RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5) Today s Objectives: Students will be able to: a) Describe the velocity of a rigid body in terms of translation and rotation components. b) Perform a relative-motion

More information

An Overview of Mechanics

An Overview of Mechanics An Overview of Mechanics Mechanics: The study of how bodies react to forces acting on them. Statics: The study of bodies in equilibrium. Dynamics: 1. Kinematics concerned with the geometric aspects of

More information

Chapter 5. The Laws of Motion

Chapter 5. The Laws of Motion Chapter 5 The Laws of Motion Sir Isaac Newton 1642 1727 Formulated basic laws of mechanics Discovered Law of Universal Gravitation Invented form of calculus Many observations dealing with light and optics

More information

STATICS SECOND EDITION

STATICS SECOND EDITION Engineering Mechanics STATICS SECOND EDITION Michael E. Plesha Department of Engineering Physics University of Wisconsin-Madison Gary L. Gray Department of Engineering Science and Mechanics Penn State

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 9: Ch.13, Sec.4-5

CEE 271: Applied Mechanics II, Dynamics Lecture 9: Ch.13, Sec.4-5 1 / 40 CEE 271: Applied Mechanics II, Dynamics Lecture 9: Ch.13, Sec.4-5 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa 2 / 40 EQUATIONS OF MOTION:RECTANGULAR COORDINATES

More information

PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION

PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION Today s Objectives: Students will be able to: 1. Apply the three equations of motion for a rigid body in planar motion. 2. Analyze problems involving translational

More information

INTRODUCTION. The three general approaches to the solution of kinetics. a) Direct application of Newton s law (called the forcemass-acceleration

INTRODUCTION. The three general approaches to the solution of kinetics. a) Direct application of Newton s law (called the forcemass-acceleration INTRODUCTION According to Newton s law, a particle will accelerate when it is subjected to unbalanced force. Kinetics is the study of the relations between unbalanced forces and resulting changes in motion.

More information

Chapter 12 Static Equilibrium

Chapter 12 Static Equilibrium Chapter Static Equilibrium. Analysis Model: Rigid Body in Equilibrium. More on the Center of Gravity. Examples of Rigid Objects in Static Equilibrium CHAPTER : STATIC EQUILIBRIUM AND ELASTICITY.) The Conditions

More information

PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics

PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics Page1 PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [2910601] Introduction, Fundamentals of Statics 1. Differentiate between Scalar and Vector quantity. Write S.I.

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 24: Ch.17, Sec.1-3

CEE 271: Applied Mechanics II, Dynamics Lecture 24: Ch.17, Sec.1-3 1 / 38 CEE 271: Applied Mechanics II, Dynamics Lecture 24: Ch.17, Sec.1-3 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Tuesday, Nov. 13, 2012 2 / 38 MOMENT OF

More information

Course Material Engineering Mechanics. Topic: Friction

Course Material Engineering Mechanics. Topic: Friction Course Material Engineering Mechanics Topic: Friction by Dr.M.Madhavi, Professor, Department of Mechanical Engineering, M.V.S.R.Engineering College, Hyderabad. Contents PART I : Introduction to Friction

More information

DYNAMICS OF MACHINES By. Dr.K.SRINIVASAN, Professor, AU-FRG Inst.for CAD/CAM, Anna University BALANCING OF RECIPROCATING MASSES

DYNAMICS OF MACHINES By. Dr.K.SRINIVASAN, Professor, AU-FRG Inst.for CAD/CAM, Anna University BALANCING OF RECIPROCATING MASSES DYNAMICS OF MACHINES By Dr.K.SRINIVASAN, Professor, AU-FRG Inst.for CAD/CAM, Anna University BALANCING OF RECIPROCATING MASSES SINGLE CYLINDER ENGINE IN-LINE ENGINES- 3, 4,5, 6 cylinders are Common V-ENGINES

More information

Chapter 8 continued. Rotational Dynamics

Chapter 8 continued. Rotational Dynamics Chapter 8 continued Rotational Dynamics 8.4 Rotational Work and Energy Work to accelerate a mass rotating it by angle φ F W = F(cosθ)x x = s = rφ = Frφ Fr = τ (torque) = τφ r φ s F to s θ = 0 DEFINITION

More information

Contents. Dynamics and control of mechanical systems. Focus on

Contents. Dynamics and control of mechanical systems. Focus on Dynamics and control of mechanical systems Date Day 1 (01/08) Day 2 (03/08) Day 3 (05/08) Day 4 (07/08) Day 5 (09/08) Day 6 (11/08) Content Review of the basics of mechanics. Kinematics of rigid bodies

More information

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur Module - 5 Lecture - 1 Velocity and Acceleration Analysis The topic of today s lecture

More information

PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION

PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION Today s Objectives : Students will be able to: 1. Analyze the kinematics of a rigid body undergoing planar translation or rotation about a fixed axis. In-Class

More information

PLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work.

PLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work. PLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work. In-Class Activities: 2. Apply the principle of work

More information

Chapter 8 continued. Rotational Dynamics

Chapter 8 continued. Rotational Dynamics Chapter 8 continued Rotational Dynamics 8.4 Rotational Work and Energy Work to accelerate a mass rotating it by angle φ F W = F(cosθ)x x = rφ = Frφ Fr = τ (torque) = τφ r φ s F to x θ = 0 DEFINITION OF

More information