CSE 105 Theory of Computation

Size: px
Start display at page:

Download "CSE 105 Theory of Computation"

Transcription

1 CSE 105 Theory of Computation Professor Jeanne Ferrante 1

2 Undecidability Today s Agenda Review: The TM Acceptance problem, A TM The Halting Problem for TM s Other problems involving TM s Announcements & Reminders: Sipser 5.1: No computation histories Exam 2 grades out on gradescope HW 6 due Wed May 18 by 11:59 pm 2

3 Status: Language Hierarchy Context-Free Regular Decidable Turing- Recognizable CF but not Regular: {0 n 1 n n > 0} By pumping lemma (Regular) Decidable but not CF: { a n b n c n n > 0} By pumping lemma (CF) Turing-Recognizable but Not Decidable: A TM By Diagonalization Not Turing Recognizable:? By counting 3

4 Harry Potter and.. The Set of All Sets that do not contain ExistentialComics.com themselves 4

5 The proof you are longing to see a second time! A TM IS UNDECIDABLE 5

6 Recall that A TM = {<M,w> M is a TM, M accepts w} In this definition of A TM, <M,w> is A. A Turing machine and a string B. A Turing Machine C. A string that encodes a TM M and input string w D. None or more than one of the above 6

7 Review: The Proof Game Plan Recall that A TM = {<M,w> M is a TM, M accepts w} Thm: A TM is undecidable Proof by Contradiction: Assume (towards contradiction) that A TM is decidable, so there exists some TM M ATM that decides A TM. Want to show: We construct TM D that uses M ATM as a subroutine, leading to a contradiction. D(w): //w is a string We define D using diagonalization, and show it leads to a contradiction. Then, because we will have reached a contradiction, we will conclude that the assumption is false, and A TM is not decidable. 7

8 Review: What does M ATM (<M,w>) do? w1 w2 w3 w4 w5 M1 Acc Rej Acc Rej Rej Loop M2 Acc Acc Acc Acc Acc M3 Rej Rej Loop Rej Rej M4 Acc Rej Acc Rej Acc Loop M5 Acc Acc Acc Rej Rej... Assume (towards contradiction) that A TM is decidable, so there exists some TM M ATM that decides A TM. What does M ATM do given as input encodings of <Mi, wi> along the diagonal green region shown? A. Acc, Acc, Rej, Rej, Rej B. Acc, Acc, Loop, Rej, Rej C. Rej, Rej, Acc, Rej, Rej D. None of the above 8

9 Review: Proof Thm: A TM = {<M,w> M is a TM, M accepts w} is undecidable Proof: Assume (towards contradiction) that A TM is decidable, so there exists some TM M ATM that decides A TM. Construct a TM D as follows: D(<M>): //input is a string description of a TM Run M ATM on <M,<M>> //M ATM decides if <M> is in L(M) or not If M ATM accepts, reject If M ATM rejects, accept // do the opposite of M ATM By definition, D(<M>) will always halt and accept when A. M rejects <M> B. M accepts <M> C. Neither of the above 9

10 Is <D> in L(D)? D(<M>): Run M ATM (<M,<M>>) to decide if <M> is in L(M); if acc->rej, if rej->acc <M1> <M2> <M3> <M4> <M5> <D> M1 Acc Rej Acc Rej Rej Rej M2 Acc Acc Acc Acc Acc Acc M3 Rej Rej Rej Rej Rej Rej M4 Acc Rej Acc Rej Acc Rej M5 Acc Acc Acc Rej Rej Rej... D Rej What goes in the green region? A. Rej B. Acc C. Loop D. Can t say, it s a contradiction 10

11 Proof: Thm: A TM = {<M,w> M is a TM, M accepts w} is undecidable Assume (towards contradiction) that A TM is decidable, so some TM M ATM decides A TM. Construct TM D as follows: D(<M>): //input is a string description of a TM M ATM (<M,<M>>) // M ATM is a decider, so it will either accept or reject (no infinite looping) If M ATM accepts, reject If M ATM rejects, accept // do the opposite of M ATM Run D(<D>). Observe that D(<D>) accepts when D(<D>) rejects, and D(<D>) rejects when D(<D>) accepts, a contradiction. Therefore the assumption is false, and A TM is undecidable. 11

12 Which of the following are true about proofs using Diagonalization? A. It s a proof by contradiction B. The proof assumes there is a list of items O 1, O 2, of that type which includes ALL the items C. The proof involves showing that there is SOME item of the same type which CANNOT be in the (assumed) list D. It has been used to prove a set is not countable or not decidable E. More than one or none of the above 12

13 Prove undecidable, by reduction from A TM THE HALTING PROBLEM HALT TM 13

14 The Halting Problem HALT TM = {<M,w> M is a TM and M halts on input w} Doesn t say if M accepts or rejects w, only that it halts Differs from A TM HALT TM is Turing-Recognizable -- Why? Assume we had a TM M HALT that decides HALT TM. Could we use M HALT to build a decider for A TM? That would get us a contradiction, and show HALT TM undecidable 14

15 Thm. 5.1: HALT TM is undecidable. Proof by contradiction. Assume that HALT TM is decidable, and some TM M HALT decides it. Construct a TM M ATM : M ATM (<M,w>): Run M HALT (<M,w>) //see if M will halt on w If M HALT rejects (so M does not halt on w), then reject. Else, run M(w) If it accepts, then accept. If it rejects, then reject. //we know M halts on w Is M ATM defined above a decider? A. Yes, because M HALT is B. Yes, because M is C. Yes, for a different reason D. No 15

16 HALT TM = {<M,w> M is a TM and M halts on input w} (Assume (for contradiction) decider M HALT for HALT TM Construct M ATM ) M ATM (<M,w>): Run M HALT (<M,w>) //see if M will halt on w. If M HALT rejects (so M doesn t halt on w), then reject. Else, run M(w) If it accepts, then accept. If it rejects, then reject. What is the language of TM M ATM defined above? A. HALT TM B. A TM = {<M,w> M is a TM and M accepts input w} C. Other D. Not sure 16

17 Thm. 5.1: HALT TM is undecidable. Proof by contradiction. Assume that HALT TM is decidable, and some TM M HALT decides it. Construct a TM M ATM that decides A TM : M ATM (<M,w>): Run M HALT (<M,w>) //see if M will halt on w If M HALT rejects, then reject. Else, run M(w) //we know M halts on w If it accepts, then accept. If it rejects, then reject. Correctness: M ATM is a decider, since M HALT is, and M ATM accepts <M,w> iff M accepts w But A TM is undecidable, a contradiction. So the assumption is false and HALT TM is undecidable. 17

18 Scooping the Loop Snooper 18

19 A very useful tool for proving undecidability of more problems REDUCTIONS MORPHING ONE SOLUTION INTO ANOTHER 19

20 We just did a reduction For 2 problems P 1 and P 2, P 1 reduces to P 2 if any solution for P 2 can be used to solve P 1 (May be) Easier P 1 Yes Yes P 2 No No If P 1 reduces to P 2, and P 2 is decidable, then P 1 is also decidable. P 1 is undecidable, then P 2 is also undecidable We just showed that *if* we have a solution to HALT TM, then we have a solution to A TM. This means that A. A TM reduces to HALT TM. B. HALT TM reduces to A TM. C. HALT TM and A TM reduce to each other. D. None of the above or more than one of the above. (May be) Harder 20

21 TH. 5.2: E TM = {<M> M is a TM and L(M) is empty} is undecidable Proof: By reducing A TM to E TM Recall that P 1 reduces to P 2 if any solution for P 2 can be used to solve P 1 We must show how a decider for E TM can be used to construct a decider for A TM 21

22 TH. 5.2: E TM = {<M> M is a TM and L(M) is empty} is undecidable Proof: Assume that E TM is decidable, with TM R. We show that A TM is decidable, a contradiction. Using R, we construct a TM M ATM that decides A TM : M ATM =? What algorithm, using calls to R as subroutine, will accept exactly when w є L(M) and Reject exactly when w not є L(M)? Correctness: M ATM is a decider since R is, and accepts <M,w> iff L(M ) is nonempty iff M accepts w. But A TM is undecidable, a contradiction. So the assumption is false and E TM is undecidable. 22

23 What if we input <M> to R? R(<M>): Rejects <M> when M accepts some string ( L(M) is not empty) M ATM (<M,w>) Accepts <M,w> when M accepts w Accepts <M> when M accepts no strings ( L(M) is empty) Rejects <M,w> when M does not accept w Does R(<M>) help to decide A TM? A. No, R(<M>) only says whether M accepts some string, not just w B. Yes, just flip the accept and reject states C. Don t know 23

24 How do we turn Emptiness decider into an Acceptance decider? Define a special TM X (modified version of M) as input to R X rejects all inputs except possibly w X will accept w IFF M accepts w So L(X) is empty IFF M does not accept w X = On input y: 1. If y w, then reject. What is L(X)? A. {w} B. Φ C. Either w or Φ D. Either {w} or Φ 2. If y = w, run M on w and accept if M does 24

25 TH. 5.2: E TM = {<M> M is a TM and L(M) is empty} is undecidable Proof: Assume that E TM is decidable, with TM R. We show that A TM is decidable, a contradiction. Using R, we construct a TM M ATM that decides A TM : M ATM = On input <M,w>: 1.Construct TM X as follows: X = On input y: a) If y w, then reject. b) If y = w, run M on w and accept if M does // Note that L(X) is empty iff M does not accept w. 2. Run R on <X>. If R accepts, reject. If R rejects, accept. Correctness: M ATM is a decider since R is, and accepts <M,w> iff L(X) is nonempty iff M accepts w. But A TM is undecidable, a contradiction. So the assumption is false and E TM is undecidable. 25

26 We just did a reduction We showed that *if* we have a solution to E TM, then we have a solution to A TM. What did we show exactly? A. A TM reduces to E TM. B. E TM reduces to A TM. C. A TM and E TM reduce to each other. D. None of the above or more than one of the above. 26

27 TH. 5.3: REGULAR TM = {<M> M is a TM and L(M) is regular} is undecidable Proof: Assume that REGULAR TM is decidable, with TM R. We show that A TM is decidable, a contradiction. Construct a TM M ATM that decides A TM : M ATM = On input <M,w>: ***Construct TM X such that *** L(X) is regular if M accepts w L(X) is not regular if M does not accept w Correctness: M ATM is a decider since R is, and accepts <M,w> iff L(X) is??? iff M accepts w. But A TM is undecidable, a contradiction. So the assumption is false and E TM is undecidable. 27

28 TM X should be such that L(X) is regular if M accepts w L(X) is not regular if M does not accept w To construct TM X, we choose: An example of a simple regular language: {0,1}* An example of a simple non-regular language: {0 n 1 n n 0} X = On input z: 1. If z is of the form 0 n 1 n then accept. 2. If z does not have that form, then run M on w and accept if M accepts w. 28

29 TH. 5.3: REGULAR TM = {<M> M is a TM and L(M) is regular} is undecidable Proof: Assume that REGULAR TM is decidable, with TM R. We show that A TM is decidable, a contradiction. Construct a TM M ATM that decides A TM : M ATM = On input <M,w>: 1. Construct TM X as follows: X = On input z: 1. If z is of the form 0 n 1 n then accept. 2. If z does not have that form, then run M on w and accept if M accepts w. //Note that L(X) is regular iff M accepts w 2. Run R on <X>. If R accepts, accept. If R rejects, reject. Correctness: M ATM is a decider since R is, and accepts <M,w> iff L(X) is {0,1}* iff M accepts w. But A TM is undecidable, a contradiction. So the assumption is false and E TM is undecidable. 29

CSE 105 Theory of Computation

CSE 105 Theory of Computation CSE 105 Theory of Computation http://www.jflap.org/jflaptmp/ Professor Jeanne Ferrante 1 Undecidability Today s Agenda Review and More Problems A Non-TR Language Reminders and announcements: HW 7 (Last!!)

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2016 http://cseweb.ucsd.edu/classes/sp16/cse105-ab/ Today's learning goals Sipser Ch 4.1, 5.1 Define reductions from one problem to another. Use reductions to prove

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION "Winter" 2018 http://cseweb.ucsd.edu/classes/wi18/cse105-ab/ Today's learning goals Sipser Ch 4.2 Trace high-level descriptions of algorithms for computational problems. Use

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2018 http://cseweb.ucsd.edu/classes/sp18/cse105-ab/ Today's learning goals Sipser Ch 5.1, 5.3 Define and explain core examples of computational problems, including

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION "Winter" 2018 http://cseweb.ucsd.edu/classes/wi18/cse105-ab/ Today's learning goals Sipser Section 4.1 Explain what it means for a problem to be decidable. Justify the use

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2017 http://cseweb.ucsd.edu/classes/sp17/cse105-ab/ Today's learning goals Sipser Ch 5.1 Define and explain core examples of decision problems: A DFA, E DFA, EQ DFA,

More information

CS154, Lecture 10: Rice s Theorem, Oracle Machines

CS154, Lecture 10: Rice s Theorem, Oracle Machines CS154, Lecture 10: Rice s Theorem, Oracle Machines Moral: Analyzing Programs is Really, Really Hard But can we more easily tell when some program analysis problem is undecidable? Problem 1 Undecidable

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2017 http://cseweb.ucsd.edu/classes/sp17/cse105-ab/ Today's learning goals Summarize key concepts, ideas, themes from CSE 105. Approach your final exam studying with

More information

Computability and Complexity

Computability and Complexity Computability and Complexity Lecture 5 Reductions Undecidable problems from language theory Linear bounded automata given by Jiri Srba Lecture 5 Computability and Complexity 1/14 Reduction Informal Definition

More information

Turing Machines. Reading Assignment: Sipser Chapter 3.1, 4.2

Turing Machines. Reading Assignment: Sipser Chapter 3.1, 4.2 Reading Assignment: Sipser Chapter 31, 42 Turing Machines 41 covers algorithms for decidable problems about DFA, NFA, RegExp, CFG, and PDAs, eg slides 17 & 18 below I ve talked about most of this in class

More information

Reading Assignment: Sipser Chapter 3.1, 4.2

Reading Assignment: Sipser Chapter 3.1, 4.2 Turing Machines 1 Reading Assignment: Sipser Chapter 3.1, 4.2 4.1 covers algorithms for decidable problems about DFA, NFA, RegExp, CFG, and PDAs, e.g. slides 17 & 18 below. I ve talked about most of this

More information

Decidability and Undecidability

Decidability and Undecidability Decidability and Undecidability Major Ideas from Last Time Every TM can be converted into a string representation of itself. The encoding of M is denoted M. The universal Turing machine U TM accepts an

More information

Reducability. Sipser, pages

Reducability. Sipser, pages Reducability Sipser, pages 187-214 Reduction Reduction encodes (transforms) one problem as a second problem. A solution to the second, can be transformed into a solution to the first. We expect both transformations

More information

Undecidability. We are not so much concerned if you are slow as when you come to a halt. (Chinese Proverb)

Undecidability. We are not so much concerned if you are slow as when you come to a halt. (Chinese Proverb) We are not so much concerned if you are slow as when you come to a halt. (Chinese Proverb) CS /55 Theory of Computation The is A TM = { M,w M is a TM and w L(M)} A TM is Turing-recognizable. Proof Sketch:

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation LECTURE 15 Last time Decidable languages Designing deciders Today Designing deciders Undecidable languages Diagonalization Sofya Raskhodnikova 3/1/2016 Sofya Raskhodnikova;

More information

Lecture Notes: The Halting Problem; Reductions

Lecture Notes: The Halting Problem; Reductions Lecture Notes: The Halting Problem; Reductions COMS W3261 Columbia University 20 Mar 2012 1 Review Key point. Turing machines can be encoded as strings, and other Turing machines can read those strings

More information

Turing Machines Part III

Turing Machines Part III Turing Machines Part III Announcements Problem Set 6 due now. Problem Set 7 out, due Monday, March 4. Play around with Turing machines, their powers, and their limits. Some problems require Wednesday's

More information

1 Showing Recognizability

1 Showing Recognizability CSCC63 Worksheet Recognizability and Decidability 1 1 Showing Recognizability 1.1 An Example - take 1 Let Σ be an alphabet. L = { M M is a T M and L(M) }, i.e., that M accepts some string from Σ. Prove

More information

CSE 105 THEORY OF COMPUTATION. Spring 2018 review class

CSE 105 THEORY OF COMPUTATION. Spring 2018 review class CSE 105 THEORY OF COMPUTATION Spring 2018 review class Today's learning goals Summarize key concepts, ideas, themes from CSE 105. Approach your final exam studying with confidence. Identify areas to focus

More information

Turing Machine Recap

Turing Machine Recap Turing Machine Recap DFA with (infinite) tape. One move: read, write, move, change state. High-level Points Church-Turing thesis: TMs are the most general computing devices. So far no counter example Every

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Fall 2016 http://cseweb.ucsd.edu/classes/fa16/cse105-abc/ Today's learning goals Sipser Ch 3 Trace the computation of a Turing machine using its transition function and configurations.

More information

6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, Class 8 Nancy Lynch

6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, Class 8 Nancy Lynch 6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010 Class 8 Nancy Lynch Today More undecidable problems: About Turing machines: Emptiness, etc. About

More information

CSE 105 Theory of Computation

CSE 105 Theory of Computation CSE 105 Theory of Computation http://www.jflap.org/jflaptmp/ Professor Jeanne Ferrante 1 Today s Agenda Quick Review of CFG s and PDA s Introduction to Turing Machines and their Languages Reminders and

More information

CSE 105 Theory of Computation Professor Jeanne Ferrante

CSE 105 Theory of Computation  Professor Jeanne Ferrante CSE 105 Theory of Computation http://www.jflap.org/jflaptmp/ Professor Jeanne Ferrante 1 Today s agenda NFA Review and Design NFA s Equivalence to DFA s Another Closure Property proof for Regular Languages

More information

1 Reducability. CSCC63 Worksheet Reducability. For your reference, A T M is defined to be the language { M, w M accepts w}. Theorem 5.

1 Reducability. CSCC63 Worksheet Reducability. For your reference, A T M is defined to be the language { M, w M accepts w}. Theorem 5. CSCC63 Worksheet Reducability For your reference, A T M is defined to be the language { M, w M accepts w}. 1 Reducability Theorem 5.1 HALT TM = { M, w M is a T M that halts on input w} is undecidable.

More information

CpSc 421 Homework 9 Solution

CpSc 421 Homework 9 Solution CpSc 421 Homework 9 Solution Attempt any three of the six problems below. The homework is graded on a scale of 100 points, even though you can attempt fewer or more points than that. Your recorded grade

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2018 http://cseweb.ucsd.edu/classes/sp18/cse105-ab/ Today's learning goals Sipser Ch 4.1 Explain what it means for a problem to be decidable. Justify the use of encoding.

More information

Decidability. Linz 6 th, Chapter 12: Limits of Algorithmic Computation, page 309ff

Decidability. Linz 6 th, Chapter 12: Limits of Algorithmic Computation, page 309ff Decidability Linz 6 th, Chapter 12: Limits of Algorithmic Computation, page 309ff 1 A property P of strings is said to be decidable if the set of all strings having property P is a recursive set; that

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION "Winter" 2018 http://cseweb.ucsd.edu/classes/wi18/cse105-ab/ Today's learning goals Sipser Ch 4.1 Explain what it means for a problem to be decidable. Justify the use of encoding.

More information

Decidability. Human-aware Robotics. 2017/10/31 Chapter 4.1 in Sipser Ø Announcement:

Decidability. Human-aware Robotics. 2017/10/31 Chapter 4.1 in Sipser Ø Announcement: Decidability 2017/10/31 Chapter 4.1 in Sipser Ø Announcement: q q q Slides for this lecture are here: http://www.public.asu.edu/~yzhan442/teaching/cse355/lectures/decidability.pdf Happy Hollaween! Delayed

More information

CSCE 551: Chin-Tser Huang. University of South Carolina

CSCE 551: Chin-Tser Huang. University of South Carolina CSCE 551: Theory of Computation Chin-Tser Huang huangct@cse.sc.edu University of South Carolina Computation History A computation history of a TM M is a sequence of its configurations C 1, C 2,, C l such

More information

6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, Class 10 Nancy Lynch

6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, Class 10 Nancy Lynch 6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010 Class 10 Nancy Lynch Today Final topic in computability theory: Self-Reference and the Recursion

More information

Decidable Languages - relationship with other classes.

Decidable Languages - relationship with other classes. CSE2001, Fall 2006 1 Last time we saw some examples of decidable languages (or, solvable problems). Today we will start by looking at the relationship between the decidable languages, and the regular and

More information

CSE 105 Theory of Computation Professor Jeanne Ferrante

CSE 105 Theory of Computation   Professor Jeanne Ferrante CSE 105 Theory of Computation http://www.jflap.org/jflaptmp/ Professor Jeanne Ferrante 1 Announcement & Reminders HW 2: Grades not available yet, will be soon Solutions posted, read even if you did well

More information

CSE 105 Theory of Computation

CSE 105 Theory of Computation CSE 105 Theory of Computation http://www.jflap.org/jflaptmp/ Professor Jeanne Ferrante 1 Today s Agenda P and NP (7.2, 7.3) Next class: Review Reminders and announcements: CAPE & TA evals are open: Please

More information

Decidable and undecidable languages

Decidable and undecidable languages The Chinese University of Hong Kong Fall 2011 CSCI 3130: Formal languages and automata theory Decidable and undecidable languages Andrej Bogdanov http://www.cse.cuhk.edu.hk/~andrejb/csc3130 Problems about

More information

CPSC 421: Tutorial #1

CPSC 421: Tutorial #1 CPSC 421: Tutorial #1 October 14, 2016 Set Theory. 1. Let A be an arbitrary set, and let B = {x A : x / x}. That is, B contains all sets in A that do not contain themselves: For all y, ( ) y B if and only

More information

V Honors Theory of Computation

V Honors Theory of Computation V22.0453-001 Honors Theory of Computation Problem Set 3 Solutions Problem 1 Solution: The class of languages recognized by these machines is the exactly the class of regular languages, thus this TM variant

More information

Decision Problems with TM s. Lecture 31: Halting Problem. Universe of discourse. Semi-decidable. Look at following sets: CSCI 81 Spring, 2012

Decision Problems with TM s. Lecture 31: Halting Problem. Universe of discourse. Semi-decidable. Look at following sets: CSCI 81 Spring, 2012 Decision Problems with TM s Look at following sets: Lecture 31: Halting Problem CSCI 81 Spring, 2012 Kim Bruce A TM = { M,w M is a TM and w L(M)} H TM = { M,w M is a TM which halts on input w} TOTAL TM

More information

Computational Models Lecture 9, Spring 2009

Computational Models Lecture 9, Spring 2009 Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. p. 1 Computational Models Lecture 9, Spring 2009 Reducibility among languages Mapping reductions More undecidable

More information

Mapping Reducibility. Human-aware Robotics. 2017/11/16 Chapter 5.3 in Sipser Ø Announcement:

Mapping Reducibility. Human-aware Robotics. 2017/11/16 Chapter 5.3 in Sipser Ø Announcement: Mapping Reducibility 2017/11/16 Chapter 5.3 in Sipser Ø Announcement: q Slides for this lecture are here: http://www.public.asu.edu/~yzhan442/teaching/cse355/lectures/mapping.pdf 1 Last time Reducibility

More information

Chap. 4,5 Review. Algorithms created in proofs from prior chapters

Chap. 4,5 Review. Algorithms created in proofs from prior chapters Chap. 4,5 Review Algorithms created in proofs from prior chapters (p. 55) Theorem 1.39: NFA to DFA (p. 67) Lemma 1.55: Regex to NFA (p. 69) Lemma 1.60: DFA to regex (through GNFA) (p. 112) Lemma 2.21:

More information

CS 361 Meeting 26 11/10/17

CS 361 Meeting 26 11/10/17 CS 361 Meeting 26 11/10/17 1. Homework 8 due Announcements A Recognizable, but Undecidable Language 1. Last class, I presented a brief, somewhat inscrutable proof that the language A BT M = { M w M is

More information

16.1 Countability. CS125 Lecture 16 Fall 2014

16.1 Countability. CS125 Lecture 16 Fall 2014 CS125 Lecture 16 Fall 2014 16.1 Countability Proving the non-existence of algorithms for computational problems can be very difficult. Indeed, we do not know how to prove P NP. So a natural question is

More information

Lecture 12: Mapping Reductions

Lecture 12: Mapping Reductions Lecture 12: Mapping Reductions October 18, 2016 CS 1010 Theory of Computation Topics Covered 1. The Language EQ T M 2. Mapping Reducibility 3. The Post Correspondence Problem 1 The Language EQ T M The

More information

The Unsolvability of the Halting Problem. Chapter 19

The Unsolvability of the Halting Problem. Chapter 19 The Unsolvability of the Halting Problem Chapter 19 Languages and Machines SD D Context-Free Languages Regular Languages reg exps FSMs cfgs PDAs unrestricted grammars Turing Machines D and SD A TM M with

More information

CSCE 551 Final Exam, Spring 2004 Answer Key

CSCE 551 Final Exam, Spring 2004 Answer Key CSCE 551 Final Exam, Spring 2004 Answer Key 1. (10 points) Using any method you like (including intuition), give the unique minimal DFA equivalent to the following NFA: 0 1 2 0 5 1 3 4 If your answer is

More information

Exam Computability and Complexity

Exam Computability and Complexity Total number of points:... Number of extra sheets of paper:... Exam Computability and Complexity by Jiri Srba, January 2009 Student s full name CPR number Study number Before you start, fill in the three

More information

} Some languages are Turing-decidable A Turing Machine will halt on all inputs (either accepting or rejecting). No infinite loops.

} Some languages are Turing-decidable A Turing Machine will halt on all inputs (either accepting or rejecting). No infinite loops. and their languages } Some languages are Turing-decidable A Turing Machine will halt on all inputs (either accepting or rejecting). No infinite loops. } Some languages are Turing-recognizable, but not

More information

Decidability: Church-Turing Thesis

Decidability: Church-Turing Thesis Decidability: Church-Turing Thesis While there are a countably infinite number of languages that are described by TMs over some alphabet Σ, there are an uncountably infinite number that are not Are there

More information

Computation Histories

Computation Histories 208 Computation Histories The computation history for a Turing machine on an input is simply the sequence of configurations that the machine goes through as it processes the input. An accepting computation

More information

CS5371 Theory of Computation. Lecture 14: Computability V (Prove by Reduction)

CS5371 Theory of Computation. Lecture 14: Computability V (Prove by Reduction) CS5371 Theory of Computation Lecture 14: Computability V (Prove by Reduction) Objectives This lecture shows more undecidable languages Our proof is not based on diagonalization Instead, we reduce the problem

More information

What languages are Turing-decidable? What languages are not Turing-decidable? Is there a language that isn t even Turingrecognizable?

What languages are Turing-decidable? What languages are not Turing-decidable? Is there a language that isn t even Turingrecognizable? } We ll now take a look at Turing Machines at a high level and consider what types of problems can be solved algorithmically and what types can t: What languages are Turing-decidable? What languages are

More information

Computational Models Lecture 8 1

Computational Models Lecture 8 1 Computational Models Lecture 8 1 Handout Mode Nachum Dershowitz & Yishay Mansour. Tel Aviv University. May 17 22, 2017 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice

More information

CSCI3390-Lecture 6: An Undecidable Problem

CSCI3390-Lecture 6: An Undecidable Problem CSCI3390-Lecture 6: An Undecidable Problem September 21, 2018 1 Summary The language L T M recognized by the universal Turing machine is not decidable. Thus there is no algorithm that determines, yes or

More information

CS 301. Lecture 18 Decidable languages. Stephen Checkoway. April 2, 2018

CS 301. Lecture 18 Decidable languages. Stephen Checkoway. April 2, 2018 CS 301 Lecture 18 Decidable languages Stephen Checkoway April 2, 2018 1 / 26 Decidable language Recall, a language A is decidable if there is some TM M that 1 recognizes A (i.e., L(M) = A), and 2 halts

More information

Computational Models Lecture 8 1

Computational Models Lecture 8 1 Computational Models Lecture 8 1 Handout Mode Ronitt Rubinfeld and Iftach Haitner. Tel Aviv University. May 11/13, 2015 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice

More information

CS5371 Theory of Computation. Lecture 12: Computability III (Decidable Languages relating to DFA, NFA, and CFG)

CS5371 Theory of Computation. Lecture 12: Computability III (Decidable Languages relating to DFA, NFA, and CFG) CS5371 Theory of Computation Lecture 12: Computability III (Decidable Languages relating to DFA, NFA, and CFG) Objectives Recall that decidable languages are languages that can be decided by TM (that means,

More information

Lecture 23: Rice Theorem and Turing machine behavior properties 21 April 2009

Lecture 23: Rice Theorem and Turing machine behavior properties 21 April 2009 CS 373: Theory of Computation Sariel Har-Peled and Madhusudan Parthasarathy Lecture 23: Rice Theorem and Turing machine behavior properties 21 April 2009 This lecture covers Rice s theorem, as well as

More information

There are two main techniques for showing that problems are undecidable: diagonalization and reduction

There are two main techniques for showing that problems are undecidable: diagonalization and reduction Reducibility 1 There are two main techniques for showing that problems are undecidable: diagonalization and reduction 2 We say that a problem A is reduced to a problem B if the decidability of A follows

More information

4.2 The Halting Problem

4.2 The Halting Problem 172 4.2 The Halting Problem The technique of diagonalization was discovered in 1873 by Georg Cantor who was concerned with the problem of measuring the sizes of infinite sets For finite sets we can simply

More information

Non-emptiness Testing for TMs

Non-emptiness Testing for TMs 180 5. Reducibility The proof of unsolvability of the halting problem is an example of a reduction: a way of converting problem A to problem B in such a way that a solution to problem B can be used to

More information

6.045J/18.400J: Automata, Computability and Complexity. Quiz 2. March 30, Please write your name in the upper corner of each page.

6.045J/18.400J: Automata, Computability and Complexity. Quiz 2. March 30, Please write your name in the upper corner of each page. 6.045J/18.400J: Automata, Computability and Complexity March 30, 2005 Quiz 2 Prof. Nancy Lynch Please write your name in the upper corner of each page. Problem Score 1 2 3 4 5 6 Total Q2-1 Problem 1: True

More information

CS481F01 Solutions 8

CS481F01 Solutions 8 CS481F01 Solutions 8 A. Demers 7 Dec 2001 1. Prob. 111 from p. 344 of the text. One of the following sets is r.e. and the other is not. Which is which? (a) { i L(M i ) contains at least 481 elements }

More information

CS20a: Turing Machines (Oct 29, 2002)

CS20a: Turing Machines (Oct 29, 2002) CS20a: Turing Machines (Oct 29, 2002) So far: DFA = regular languages PDA = context-free languages Today: Computability 1 Church s thesis The computable functions are the same as the partial recursive

More information

CS5371 Theory of Computation. Lecture 15: Computability VI (Post s Problem, Reducibility)

CS5371 Theory of Computation. Lecture 15: Computability VI (Post s Problem, Reducibility) CS5371 Theory of Computation Lecture 15: Computability VI (Post s Problem, Reducibility) Objectives In this lecture, we introduce Post s correspondence problem (playing with a special type of domino) We

More information

Computability Crib Sheet

Computability Crib Sheet Computer Science and Engineering, UCSD Winter 10 CSE 200: Computability and Complexity Instructor: Mihir Bellare Computability Crib Sheet January 3, 2010 Computability Crib Sheet This is a quick reference

More information

Automata Theory CS S-FR2 Final Review

Automata Theory CS S-FR2 Final Review Automata Theory CS411-2015S-FR2 Final Review David Galles Department of Computer Science University of San Francisco FR2-0: Halting Problem e(m) e(w) Halting Machine takes as input an encoding of a Turing

More information

Computational Models Lecture 8 1

Computational Models Lecture 8 1 Computational Models Lecture 8 1 Handout Mode Ronitt Rubinfeld and Iftach Haitner. Tel Aviv University. April 18/ May 2, 2016 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2016 http://cseweb.ucsd.edu/classes/sp16/cse105-ab/ Today's learning goals Sipser Ch 2 Design a PDA and a CFG for a given language Give informal description for a PDA,

More information

Midterm Exam 2 CS 341: Foundations of Computer Science II Fall 2018, face-to-face day section Prof. Marvin K. Nakayama

Midterm Exam 2 CS 341: Foundations of Computer Science II Fall 2018, face-to-face day section Prof. Marvin K. Nakayama Midterm Exam 2 CS 341: Foundations of Computer Science II Fall 2018, face-to-face day section Prof. Marvin K. Nakayama Print family (or last) name: Print given (or first) name: I have read and understand

More information

6.045J/18.400J: Automata, Computability and Complexity Final Exam. There are two sheets of scratch paper at the end of this exam.

6.045J/18.400J: Automata, Computability and Complexity Final Exam. There are two sheets of scratch paper at the end of this exam. 6.045J/18.400J: Automata, Computability and Complexity May 20, 2005 6.045 Final Exam Prof. Nancy Lynch Name: Please write your name on each page. This exam is open book, open notes. There are two sheets

More information

CpSc 421 Final Exam December 15, 2006

CpSc 421 Final Exam December 15, 2006 CpSc 421 Final Exam December 15, 2006 Do problem zero and six of problems 1 through 9. If you write down solutions for more that six problems, clearly indicate those that you want graded. Note that problems

More information

problem X reduces to Problem Y solving X would be easy, if we knew how to solve Y

problem X reduces to Problem Y solving X would be easy, if we knew how to solve Y CPS220 Reducibility A reduction is a procedure to convert one problem to another problem, in such a way that a solution to the second problem can be used to solve the first problem. The conversion itself

More information

Midterm Exam 2 CS 341: Foundations of Computer Science II Fall 2016, face-to-face day section Prof. Marvin K. Nakayama

Midterm Exam 2 CS 341: Foundations of Computer Science II Fall 2016, face-to-face day section Prof. Marvin K. Nakayama Midterm Exam 2 CS 341: Foundations of Computer Science II Fall 2016, face-to-face day section Prof. Marvin K. Nakayama Print family (or last) name: Print given (or first) name: I have read and understand

More information

TURING MAHINES

TURING MAHINES 15-453 TURING MAHINES TURING MACHINE FINITE STATE q 10 CONTROL AI N P U T INFINITE TAPE read write move 0 0, R, R q accept, R q reject 0 0, R 0 0, R, L read write move 0 0, R, R q accept, R 0 0, R 0 0,

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 15-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY THURSDAY APRIL 3 REVIEW for Midterm TUESDAY April 8 Definition: A Turing Machine is a 7-tuple T = (Q, Σ, Γ, δ, q, q accept, q reject ), where: Q is a

More information

MTAT Introduction to Theoretical Computer Science

MTAT Introduction to Theoretical Computer Science MTAT.5.25 Introduction to Theoretical Computer Science Autumn 25 Vitaly Skachek Estonian version by Reimo Palm English version by Yauhen Yakimenka Lecture 2. Decidable languages. Decidable languages We

More information

Undecidable Problems and Reducibility

Undecidable Problems and Reducibility University of Georgia Fall 2014 Reducibility We show a problem decidable/undecidable by reducing it to another problem. One type of reduction: mapping reduction. Definition Let A, B be languages over Σ.

More information

Theory of Computation p.1/?? Theory of Computation p.2/?? We develop examples of languages that are decidable

Theory of Computation p.1/?? Theory of Computation p.2/?? We develop examples of languages that are decidable Decidable Languages We use languages to represent various computational problems because we have a terminology for dealing with languages Definition: A language is decidable if there is an algorithm (i.e.

More information

Introduction to Turing Machines. Reading: Chapters 8 & 9

Introduction to Turing Machines. Reading: Chapters 8 & 9 Introduction to Turing Machines Reading: Chapters 8 & 9 1 Turing Machines (TM) Generalize the class of CFLs: Recursively Enumerable Languages Recursive Languages Context-Free Languages Regular Languages

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2016 http://cseweb.ucsd.edu/classes/sp16/cse105-ab/ Today's learning goals Sipser Ch 3.3, 4.1 State and use the Church-Turing thesis. Give examples of decidable problems.

More information

Reductions in Computability Theory

Reductions in Computability Theory Reductions in Computability Theory Prakash Panangaden 9 th November 2015 The concept of reduction is central to computability and complexity theory. The phrase P reduces to Q is often used in a confusing

More information

17.1 The Halting Problem

17.1 The Halting Problem CS125 Lecture 17 Fall 2016 17.1 The Halting Problem Consider the HALTING PROBLEM (HALT TM ): Given a TM M and w, does M halt on input w? Theorem 17.1 HALT TM is undecidable. Suppose HALT TM = { M,w : M

More information

Please give details of your answer. A direct answer without explanation is not counted.

Please give details of your answer. A direct answer without explanation is not counted. Please give details of your answer. A direct answer without explanation is not counted. Your answers must be in English. Please carefully read problem statements. During the exam you are not allowed to

More information

SD & Turing Enumerable. Lecture 33: Reductions and Undecidability. Lexicographically Enumerable. SD & Turing Enumerable

SD & Turing Enumerable. Lecture 33: Reductions and Undecidability. Lexicographically Enumerable. SD & Turing Enumerable SD & Turing Lecture 33: Reductions and Undecidability CSCI 81 Spring, 2012 Kim Bruce Theorem: A language is SD iff it is Turing enumerable. Proof: Spose L is Turing enumerable. Show L is SD. Let w be input.

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2016 http://cseweb.ucsd.edu/classes/sp16/cse105-ab/ Today's learning goals Sipser Ch 1.4 Give an example of a non-regular language Outline two strategies for proving

More information

CpSc 421 Final Exam December 6, 2008

CpSc 421 Final Exam December 6, 2008 CpSc 421 Final Exam December 6, 2008 Do any five of problems 1-10. If you attempt more than five of problems 1-10, please indicate which ones you want graded otherwise, I ll make an arbitrary choice. Graded

More information

Decidability (What, stuff is unsolvable?)

Decidability (What, stuff is unsolvable?) University of Georgia Fall 2014 Outline Decidability Decidable Problems for Regular Languages Decidable Problems for Context Free Languages The Halting Problem Countable and Uncountable Sets Diagonalization

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTATION

FORMAL LANGUAGES, AUTOMATA AND COMPUTATION FORMAL LANGUAGES, AUTOMATA AND COMPUTATION DECIDABILITY ( LECTURE 15) SLIDES FOR 15-453 SPRING 2011 1 / 34 TURING MACHINES-SYNOPSIS The most general model of computation Computations of a TM are described

More information

uring Reducibility Dept. of Computer Sc. & Engg., IIT Kharagpur 1 Turing Reducibility

uring Reducibility Dept. of Computer Sc. & Engg., IIT Kharagpur 1 Turing Reducibility uring Reducibility Dept. of Computer Sc. & Engg., IIT Kharagpur 1 Turing Reducibility uring Reducibility Dept. of Computer Sc. & Engg., IIT Kharagpur 2 FINITE We have already seen that the language FINITE

More information

Part I: Definitions and Properties

Part I: Definitions and Properties Turing Machines Part I: Definitions and Properties Finite State Automata Deterministic Automata (DFSA) M = {Q, Σ, δ, q 0, F} -- Σ = Symbols -- Q = States -- q 0 = Initial State -- F = Accepting States

More information

CS 125 Section #10 (Un)decidability and Probability November 1, 2016

CS 125 Section #10 (Un)decidability and Probability November 1, 2016 CS 125 Section #10 (Un)decidability and Probability November 1, 2016 1 Countability Recall that a set S is countable (either finite or countably infinite) if and only if there exists a surjective mapping

More information

Turing Machines Part Three

Turing Machines Part Three Turing Machines Part Three What problems can we solve with a computer? What kind of computer? Very Important Terminology Let M be a Turing machine. M accepts a string w if it enters an accept state when

More information

ECS 120 Lesson 18 Decidable Problems, the Halting Problem

ECS 120 Lesson 18 Decidable Problems, the Halting Problem ECS 120 Lesson 18 Decidable Problems, the Halting Problem Oliver Kreylos Friday, May 11th, 2001 In the last lecture, we had a look at a problem that we claimed was not solvable by an algorithm the problem

More information

Undecidability. Almost all Languages are undecidable. Question: Is it just weird languages that no one would care about which are undecidable?

Undecidability. Almost all Languages are undecidable. Question: Is it just weird languages that no one would care about which are undecidable? 15-251: Great Theoretical Ideas in Computer Science Lecture 7 Undecidability Almost all Languages are undecidable Set of all languages: Set of all dec. lang.: Most languages do not have a TM deciding them

More information

Theory of Computation CS3102 Spring 2014 A tale of computers, math, problem solving, life, love and tragic death

Theory of Computation CS3102 Spring 2014 A tale of computers, math, problem solving, life, love and tragic death Theory of Computation CS3102 Spring 2014 A tale of computers, math, problem solving, life, love and tragic death Nathan Brunelle Department of Computer Science University of Virginia www.cs.virginia.edu/~njb2b/theory

More information

ACS2: Decidability Decidability

ACS2: Decidability Decidability Decidability Bernhard Nebel and Christian Becker-Asano 1 Overview An investigation into the solvable/decidable Decidable languages The halting problem (undecidable) 2 Decidable problems? Acceptance problem

More information

Notes for Lecture Notes 2

Notes for Lecture Notes 2 Stanford University CS254: Computational Complexity Notes 2 Luca Trevisan January 11, 2012 Notes for Lecture Notes 2 In this lecture we define NP, we state the P versus NP problem, we prove that its formulation

More information

CSE355 SUMMER 2018 LECTURES TURING MACHINES AND (UN)DECIDABILITY

CSE355 SUMMER 2018 LECTURES TURING MACHINES AND (UN)DECIDABILITY CSE355 SUMMER 2018 LECTURES TURING MACHINES AND (UN)DECIDABILITY RYAN DOUGHERTY If we want to talk about a program running on a real computer, consider the following: when a program reads an instruction,

More information