A new statistical framework to infer gene regulatory networks with hidden transcription factors

Size: px
Start display at page:

Download "A new statistical framework to infer gene regulatory networks with hidden transcription factors"

Transcription

1 A new statistical framework to infer gene regulatory networks with hidden transcription factors Ivan Vujačić, Javier González, Ernst Wit University of Groningen Johann Bernoulli Institute PEDS II, June 4-6, Eindhoven Vujačić, González, Wit (rug) Inference of ODE s PEDS II, June 4-6, Eindhoven 1 / 18

2 Central dogma of molecular biology Vujačić, González, Wit (rug) Inference of ODE s PEDS II, June 4-6, Eindhoven 2 / 18

3 SOS system in Escherichia coli Vujačić, González, Wit (rug) Inference of ODE s PEDS II, June 4-6, Eindhoven 3 / 18

4 The goal The goal of the analysis is to Reconstruct the activity level of the repressor LexA. Identify kinetic parameters of the system. Order the genes in terms of speed they are repressed by LexA protein. Vujačić, González, Wit (rug) Inference of ODE s PEDS II, June 4-6, Eindhoven 4 / 18

5 ODE model η(t) - the abundance of the protein (TF) LexA at time t T. x 1 (t),..., x m (t) - mrna concentrations of genes. ODE model for expressions of the genes ẋ k (t) = p(t; θ k, η(t)) δ k x k (t), k = 1,..., m. Michaelis-Menten form for p, i.e. Here θ k = (β k, γ k, ϕ k ), where β k - production rate, γ k - half-saturation rate, p(t; θ k, η(t)) = β k 1 γ k + η(t) + ϕ k. ϕ k - basal level of gene transcription. Vujačić, González, Wit (rug) Inference of ODE s PEDS II, June 4-6, Eindhoven 5 / 18

6 Modelling the protein abundance We assume that η is cubic spline on T : d η(t) = µ j φ j (t), j=1 µ j IR and {φ 1,..., φ d } is truncated-power basis set for cubic spline. This induces a new set of parameters µ = (µ 1,..., µ d ) T. Vujačić, González, Wit (rug) Inference of ODE s PEDS II, June 4-6, Eindhoven 6 / 18

7 Noise model ODE models t = {t 1,..., t n } y ki - the measured expression of gene k at t i. S k = {(y ki, t i ) IR T } n i=1 Gene expression measurements of genes are independent and y ki N (x k (t i ), σ 2 k). The log-likelihood of a single observation is up to an additive constant l(x k (t i ), σk y 2 ki ) = 1 ( ) yki x k (t i ) log(σ2 k). The contribution of each gene k to the log-likelihood of the network is σ k n l k (S k ; δ k, θ k, σk, 2 µ) = l(x k (t i ), σk y 2 ki ), i=1 where it is assumed that each function x k satisfies the corresponding ODE. Vujačić, González, Wit (rug) Inference of ODE s PEDS II, June 4-6, Eindhoven 7 / 18

8 The likelihood is up to an additive constant l = 1 2 m k=1 1 σ 2 k y k x k (t) 2 n 2 m log(σk), 2 k=1 where x k (t) = (x k (t 1 ),..., x k (t n )) T, y k = (y k1,..., y kn ) T. Vujačić, González, Wit (rug) Inference of ODE s PEDS II, June 4-6, Eindhoven 8 / 18

9 Discretization ODE models p(t; θ k, η(t)) = (p(t 1 ; θ k, η(t 1 )),..., p(t n ; θ k, η(t n ))) T. The difference operator D = , for = diag(t 2 t 1, t 3 t 1,..., t n t n 1 ). P δk = D + δ k I, where I is the identity matrix. The discretization of the ODE for the gene k can be written as P δk x k (t) = p(t; θ, η(t)). Vujačić, González, Wit (rug) Inference of ODE s PEDS II, June 4-6, Eindhoven 9 / 18

10 Penalizing the likelihood We want to penalize the likelihood with the term P δk x k (t) p(t; θ k, η(t)) 2. To use RKHS theory, penalty needs to be equal to P δk x k 2 for some x k. This leads to x k = x k (t) P 1 δ k p(t; θ k, η(t)), and to transformation of the observations Penalized log-likelihood is defined as l λ = 1 2 m k=1 ỹ k = y k P 1 δ k p(t; θ k, η(t)). 1 σ 2 k ỹ k x k 2 n 2 m m log(σk) 2 λ P δk x k 2. k=1 k=1 Vujačić, González, Wit (rug) Inference of ODE s PEDS II, June 4-6, Eindhoven 10 / 18

11 RKHS theory guarantees that for some α k IR n and K δk = (P T δ k P δk ) 1 Ω( x k ) = P δk x k 2 = α T k K δk α k, x k = K δk α k. S k is transformed set of expression measurements for the gene k. The penalized log-likelihood is l λ (, Θ, Σ, µ S) = 1 2 λ m k=1 m k=1 1 σ 2 k ỹ k K δk α k 2 n 2 α T k K δk α k, S = { S 1,..., S m }, = {δ 1,..., δ m }, Θ = {θ 1,..., θ m }, Σ = {σ 2 1,..., σ2 m}. m log(σk) 2 k=1 Vujačić, González, Wit (rug) Inference of ODE s PEDS II, June 4-6, Eindhoven 11 / 18

12 Estimation ODE models A = {α 1,..., α m } the set of parameters characterizing x. The penalized maximum likelihood estimators of, Θ, Σ, µ and A are given by ( ˆ λ, ˆΘ λ, ˆΣ λ, ˆµ λ,  λ ) = arg max,θ,σ,µ,a l λ(, Θ, Σ, µ, A S). Vujačić, González, Wit (rug) Inference of ODE s PEDS II, June 4-6, Eindhoven 12 / 18

13 Choosing the tunning parameter To choose λ we use AIC type of criteria. The smoother matrix is S λ,k = K δk (K δk + 2σ 2 kλi) 1. The complexity of the model is defined as df k = Tr(S λ,k ). λ is chosen as λ opt = arg min λ m [ 2 l k (S k ; ˆδ k, ˆθ k, ˆσ k, 2 ˆµ) + 2df k ]. k=1 Vujačić, González, Wit (rug) Inference of ODE s PEDS II, June 4-6, Eindhoven 13 / 18

14 Data m = 14 expression genes of the E-coli SOS system. mrna measurements in n = 6 time points: 0,5,10,20, 40 and 50 min. Vujačić, González, Wit (rug) Inference of ODE s PEDS II, June 4-6, Eindhoven 14 / 18

15 RESULTS Vujačić, González, Wit (rug) Inference of ODE s PEDS II, June 4-6, Eindhoven 15 / 18

16 LexA activity ODE models Master Repressor LexA TFA Time Figure: Reconstruction of the activity of the master repressor LexA scaled between 0 an 1. The smoothed LexA profile is obtained using a cubic spline. Time is given in minutes. Vujačić, González, Wit (rug) Inference of ODE s PEDS II, June 4-6, Eindhoven 16 / 18

17 Gene Profiles ODE models sbmc umud Gene Expression Gene Expression Time Time Figure: Reconstruction of gene profiles sbmc and umudb. Points represent the data values and lines the predicted profiles. The rest of the genes are fitted in a similar way. Time is given in minutes. Vujačić, González, Wit (rug) Inference of ODE s PEDS II, June 4-6, Eindhoven 17 / 18

18 Kinetics To rank the genes in terms of their production rate we use the values of r k = β k γ k + η for i = 1,..., 14 and η the averaged TF level, recn (r = 15.51), sula (r = 13.62), unuc (r = 16.95) are the fastest dinf (r = 0.97) is the slowest recn and umuc show the largest values for δ k ϕ k were found to be negligible for genes sula and umuc and very small for recn. Vujačić, González, Wit (rug) Inference of ODE s PEDS II, June 4-6, Eindhoven 18 / 18

Inference of genomic network dynamics with non-linear ODEs

Inference of genomic network dynamics with non-linear ODEs Inference of genomic network dynamics with non-linear ODEs University of Groningen e.c.wit@rug.nl http://www.math.rug.nl/ ernst 11 June 2015 Joint work with Mahdi Mahmoudi, Itai Dattner and Ivan Vujačić

More information

Markov Chain Monte Carlo Algorithms for Gaussian Processes

Markov Chain Monte Carlo Algorithms for Gaussian Processes Markov Chain Monte Carlo Algorithms for Gaussian Processes Michalis K. Titsias, Neil Lawrence and Magnus Rattray School of Computer Science University of Manchester June 8 Outline Gaussian Processes Sampling

More information

Estimating prediction error in mixed models

Estimating prediction error in mixed models Estimating prediction error in mixed models benjamin saefken, thomas kneib georg-august university goettingen sonja greven ludwig-maximilians-university munich 1 / 12 GLMM - Generalized linear mixed models

More information

CS-E5880 Modeling biological networks Gene regulatory networks

CS-E5880 Modeling biological networks Gene regulatory networks CS-E5880 Modeling biological networks Gene regulatory networks Jukka Intosalmi (based on slides by Harri Lähdesmäki) Department of Computer Science Aalto University January 12, 2018 Outline Modeling gene

More information

2. Mathematical descriptions. (i) the master equation (ii) Langevin theory. 3. Single cell measurements

2. Mathematical descriptions. (i) the master equation (ii) Langevin theory. 3. Single cell measurements 1. Why stochastic?. Mathematical descriptions (i) the master equation (ii) Langevin theory 3. Single cell measurements 4. Consequences Any chemical reaction is stochastic. k P d φ dp dt = k d P deterministic

More information

Lecture 7: Simple genetic circuits I

Lecture 7: Simple genetic circuits I Lecture 7: Simple genetic circuits I Paul C Bressloff (Fall 2018) 7.1 Transcription and translation In Fig. 20 we show the two main stages in the expression of a single gene according to the central dogma.

More information

Basic Synthetic Biology circuits

Basic Synthetic Biology circuits Basic Synthetic Biology circuits Note: these practices were obtained from the Computer Modelling Practicals lecture by Vincent Rouilly and Geoff Baldwin at Imperial College s course of Introduction to

More information

the noisy gene Biology of the Universidad Autónoma de Madrid Jan 2008 Juan F. Poyatos Spanish National Biotechnology Centre (CNB)

the noisy gene Biology of the Universidad Autónoma de Madrid Jan 2008 Juan F. Poyatos Spanish National Biotechnology Centre (CNB) Biology of the the noisy gene Universidad Autónoma de Madrid Jan 2008 Juan F. Poyatos Spanish National Biotechnology Centre (CNB) day III: noisy bacteria - Regulation of noise (B. subtilis) - Intrinsic/Extrinsic

More information

F & B Approaches to a simple model

F & B Approaches to a simple model A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 215 http://www.astro.cornell.edu/~cordes/a6523 Lecture 11 Applications: Model comparison Challenges in large-scale surveys

More information

Inference of Gaussian graphical models and ordinary differential equations Vujacic, Ivan

Inference of Gaussian graphical models and ordinary differential equations Vujacic, Ivan University of Groningen Inference of Gaussian graphical models and ordinary differential equations Vujacic, Ivan IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if

More information

Hybrid Model of gene regulatory networks, the case of the lac-operon

Hybrid Model of gene regulatory networks, the case of the lac-operon Hybrid Model of gene regulatory networks, the case of the lac-operon Laurent Tournier and Etienne Farcot LMC-IMAG, 51 rue des Mathématiques, 38041 Grenoble Cedex 9, France Laurent.Tournier@imag.fr, Etienne.Farcot@imag.fr

More information

Learning parameters in ODEs

Learning parameters in ODEs Learning parameters in ODEs Application to biological networks Florence d Alché-Buc Joint work with Minh Quach and Nicolas Brunel IBISC FRE 3190 CNRS, Université d Évry-Val d Essonne, France /14 Florence

More information

Trajectory Smoothing as a Linear Optimal Control Problem

Trajectory Smoothing as a Linear Optimal Control Problem Trajectory Smoothing as a Linear Optimal Control Problem Biswadip Dey & P. S. Krishnaprasad Allerton Conference - 212 Monticello, IL, USA. October 4, 212 Background and Motivation 1 Background and Motivation

More information

Modelling in Biology

Modelling in Biology Modelling in Biology Dr Guy-Bart Stan Department of Bioengineering 17th October 2017 Dr Guy-Bart Stan (Dept. of Bioeng.) Modelling in Biology 17th October 2017 1 / 77 1 Introduction 2 Linear models of

More information

Computational Genomics. Reconstructing dynamic regulatory networks in multiple species

Computational Genomics. Reconstructing dynamic regulatory networks in multiple species 02-710 Computational Genomics Reconstructing dynamic regulatory networks in multiple species Methods for reconstructing networks in cells CRH1 SLT2 SLR3 YPS3 YPS1 Amit et al Science 2009 Pe er et al Recomb

More information

Model comparison and selection

Model comparison and selection BS2 Statistical Inference, Lectures 9 and 10, Hilary Term 2008 March 2, 2008 Hypothesis testing Consider two alternative models M 1 = {f (x; θ), θ Θ 1 } and M 2 = {f (x; θ), θ Θ 2 } for a sample (X = x)

More information

MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD. Copyright c 2012 (Iowa State University) Statistics / 30

MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD. Copyright c 2012 (Iowa State University) Statistics / 30 MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD Copyright c 2012 (Iowa State University) Statistics 511 1 / 30 INFORMATION CRITERIA Akaike s Information criterion is given by AIC = 2l(ˆθ) + 2k, where l(ˆθ)

More information

CSEP 590A Summer Lecture 4 MLE, EM, RE, Expression

CSEP 590A Summer Lecture 4 MLE, EM, RE, Expression CSEP 590A Summer 2006 Lecture 4 MLE, EM, RE, Expression 1 FYI, re HW #2: Hemoglobin History Alberts et al., 3rd ed.,pg389 2 Tonight MLE: Maximum Likelihood Estimators EM: the Expectation Maximization Algorithm

More information

CSEP 590A Summer Tonight MLE. FYI, re HW #2: Hemoglobin History. Lecture 4 MLE, EM, RE, Expression. Maximum Likelihood Estimators

CSEP 590A Summer Tonight MLE. FYI, re HW #2: Hemoglobin History. Lecture 4 MLE, EM, RE, Expression. Maximum Likelihood Estimators CSEP 59A Summer 26 Lecture 4 MLE, EM, RE, Expression FYI, re HW #2: Hemoglobin History 1 Alberts et al., 3rd ed.,pg389 2 Tonight MLE: Maximum Likelihood Estimators EM: the Expectation Maximization Algorithm

More information

Networks in systems biology

Networks in systems biology Networks in systems biology Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4500, Spring 2017 M. Macauley (Clemson) Networks in systems

More information

L3.1: Circuits: Introduction to Transcription Networks. Cellular Design Principles Prof. Jenna Rickus

L3.1: Circuits: Introduction to Transcription Networks. Cellular Design Principles Prof. Jenna Rickus L3.1: Circuits: Introduction to Transcription Networks Cellular Design Principles Prof. Jenna Rickus In this lecture Cognitive problem of the Cell Introduce transcription networks Key processing network

More information

MFM Practitioner Module: Quantitiative Risk Management. John Dodson. October 14, 2015

MFM Practitioner Module: Quantitiative Risk Management. John Dodson. October 14, 2015 MFM Practitioner Module: Quantitiative Risk Management October 14, 2015 The n-block maxima 1 is a random variable defined as M n max (X 1,..., X n ) for i.i.d. random variables X i with distribution function

More information

Control of Gene Expression in Prokaryotes

Control of Gene Expression in Prokaryotes Why? Control of Expression in Prokaryotes How do prokaryotes use operons to control gene expression? Houses usually have a light source in every room, but it would be a waste of energy to leave every light

More information

Statistics 203: Introduction to Regression and Analysis of Variance Course review

Statistics 203: Introduction to Regression and Analysis of Variance Course review Statistics 203: Introduction to Regression and Analysis of Variance Course review Jonathan Taylor - p. 1/?? Today Review / overview of what we learned. - p. 2/?? General themes in regression models Specifying

More information

Chapter 15 Active Reading Guide Regulation of Gene Expression

Chapter 15 Active Reading Guide Regulation of Gene Expression Name: AP Biology Mr. Croft Chapter 15 Active Reading Guide Regulation of Gene Expression The overview for Chapter 15 introduces the idea that while all cells of an organism have all genes in the genome,

More information

A Robust Approach to Regularized Discriminant Analysis

A Robust Approach to Regularized Discriminant Analysis A Robust Approach to Regularized Discriminant Analysis Moritz Gschwandtner Department of Statistics and Probability Theory Vienna University of Technology, Austria Österreichische Statistiktage, Graz,

More information

FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models

FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models Markus W. Covert Stanford University 0 CRC Press Taylor & Francis Group Boca Raton London New York Contents /... Preface, xi

More information

Are DNA Transcription Factor Proteins Maxwellian Demons?

Are DNA Transcription Factor Proteins Maxwellian Demons? Are DNA Transcription Factor Proteins Maxwellian Demons? * physics as a design constraint on molecular evolution. Alexander Grosberg, Longhua Hu, U. Minnesota, NYU U. Minnesota Biophysical Journal 2008

More information

Lecture 4: Transcription networks basic concepts

Lecture 4: Transcription networks basic concepts Lecture 4: Transcription networks basic concepts - Activators and repressors - Input functions; Logic input functions; Multidimensional input functions - Dynamics and response time 2.1 Introduction The

More information

7.32/7.81J/8.591J: Systems Biology. Fall Exam #1

7.32/7.81J/8.591J: Systems Biology. Fall Exam #1 7.32/7.81J/8.591J: Systems Biology Fall 2013 Exam #1 Instructions 1) Please do not open exam until instructed to do so. 2) This exam is closed- book and closed- notes. 3) Please do all problems. 4) Use

More information

Gene regulation II Biochemistry 302. February 27, 2006

Gene regulation II Biochemistry 302. February 27, 2006 Gene regulation II Biochemistry 302 February 27, 2006 Molecular basis of inhibition of RNAP by Lac repressor 35 promoter site 10 promoter site CRP/DNA complex 60 Lewis, M. et al. (1996) Science 271:1247

More information

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation Yujin Chung November 29th, 2016 Fall 2016 Yujin Chung Lec13: MLE Fall 2016 1/24 Previous Parametric tests Mean comparisons (normality assumption)

More information

Stat 579: Generalized Linear Models and Extensions

Stat 579: Generalized Linear Models and Extensions Stat 579: Generalized Linear Models and Extensions Mixed models Yan Lu March, 2018, week 8 1 / 32 Restricted Maximum Likelihood (REML) REML: uses a likelihood function calculated from the transformed set

More information

MLE and GMM. Li Zhao, SJTU. Spring, Li Zhao MLE and GMM 1 / 22

MLE and GMM. Li Zhao, SJTU. Spring, Li Zhao MLE and GMM 1 / 22 MLE and GMM Li Zhao, SJTU Spring, 2017 Li Zhao MLE and GMM 1 / 22 Outline 1 MLE 2 GMM 3 Binary Choice Models Li Zhao MLE and GMM 2 / 22 Maximum Likelihood Estimation - Introduction For a linear model y

More information

Multistability in the lactose utilization network of Escherichia coli

Multistability in the lactose utilization network of Escherichia coli Multistability in the lactose utilization network of Escherichia coli Lauren Nakonechny, Katherine Smith, Michael Volk, Robert Wallace Mentor: J. Ruby Abrams Agenda Motivation Intro to multistability Purpose

More information

Economics 582 Random Effects Estimation

Economics 582 Random Effects Estimation Economics 582 Random Effects Estimation Eric Zivot May 29, 2013 Random Effects Model Hence, the model can be re-written as = x 0 β + + [x ] = 0 (no endogeneity) [ x ] = = + x 0 β + + [x ] = 0 [ x ] = 0

More information

Gene regulation II Biochemistry 302. Bob Kelm February 28, 2005

Gene regulation II Biochemistry 302. Bob Kelm February 28, 2005 Gene regulation II Biochemistry 302 Bob Kelm February 28, 2005 Catabolic operons: Regulation by multiple signals targeting different TFs Catabolite repression: Activity of lac operon is restricted when

More information

Regulation of Gene Expression

Regulation of Gene Expression Chapter 18 Regulation of Gene Expression PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Comparisons of Statistical Modeling for Constructing Gene Regulatory Networks

Comparisons of Statistical Modeling for Constructing Gene Regulatory Networks Comparisons of Statistical Modeling for Constructing Gene Regulatory Networks by Xiaohui Chen B.Sc., Zhejiang University, 2006 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE

More information

High-dimensional statistics and data analysis Course Part I

High-dimensional statistics and data analysis Course Part I and data analysis Course Part I 3 - Computation of p-values in high-dimensional regression Jérémie Bigot Institut de Mathématiques de Bordeaux - Université de Bordeaux Master MAS-MSS, Université de Bordeaux,

More information

Persistence and Stationary Distributions of Biochemical Reaction Networks

Persistence and Stationary Distributions of Biochemical Reaction Networks Persistence and Stationary Distributions of Biochemical Reaction Networks David F. Anderson Department of Mathematics University of Wisconsin - Madison Discrete Models in Systems Biology SAMSI December

More information

Effective interaction graphs arising from resource limitations in gene networks

Effective interaction graphs arising from resource limitations in gene networks Effective interaction graphs arising from resource limitations in gene networks The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

56:198:582 Biological Networks Lecture 8

56:198:582 Biological Networks Lecture 8 56:198:582 Biological Networks Lecture 8 Course organization Two complementary approaches to modeling and understanding biological networks Constraint-based modeling (Palsson) System-wide Metabolism Steady-state

More information

Model selection in penalized Gaussian graphical models

Model selection in penalized Gaussian graphical models University of Groningen e.c.wit@rug.nl http://www.math.rug.nl/ ernst January 2014 Penalized likelihood generates a PATH of solutions Consider an experiment: Γ genes measured across T time points. Assume

More information

Biology. Biology. Slide 1 of 26. End Show. Copyright Pearson Prentice Hall

Biology. Biology. Slide 1 of 26. End Show. Copyright Pearson Prentice Hall Biology Biology 1 of 26 Fruit fly chromosome 12-5 Gene Regulation Mouse chromosomes Fruit fly embryo Mouse embryo Adult fruit fly Adult mouse 2 of 26 Gene Regulation: An Example Gene Regulation: An Example

More information

Nonconcave Penalized Likelihood with A Diverging Number of Parameters

Nonconcave Penalized Likelihood with A Diverging Number of Parameters Nonconcave Penalized Likelihood with A Diverging Number of Parameters Jianqing Fan and Heng Peng Presenter: Jiale Xu March 12, 2010 Jianqing Fan and Heng Peng Presenter: JialeNonconcave Xu () Penalized

More information

STOCHASTIC MODELING OF BIOCHEMICAL REACTIONS

STOCHASTIC MODELING OF BIOCHEMICAL REACTIONS STOCHASTIC MODELING OF BIOCHEMICAL REACTIONS Abhyudai Singh and João Pedro Hespanha* Department of Electrical and Computer Engineering University of California, Santa Barbara, CA 93101. Abstract The most

More information

Principles of Synthetic Biology: Midterm Exam

Principles of Synthetic Biology: Midterm Exam Principles of Synthetic Biology: Midterm Exam October 28, 2010 1 Conceptual Simple Circuits 1.1 Consider the plots in figure 1. Identify all critical points with an x. Put a circle around the x for each

More information

3.B.1 Gene Regulation. Gene regulation results in differential gene expression, leading to cell specialization.

3.B.1 Gene Regulation. Gene regulation results in differential gene expression, leading to cell specialization. 3.B.1 Gene Regulation Gene regulation results in differential gene expression, leading to cell specialization. We will focus on gene regulation in prokaryotes first. Gene regulation accounts for some of

More information

Simple model of mrna production

Simple model of mrna production Simple model of mrna production We assume that the number of mrna (m) of a gene can change either due to the production of a mrna by transcription of DNA (which occurs at a constant rate α) or due to degradation

More information

A Practical Approach to Inferring Large Graphical Models from Sparse Microarray Data

A Practical Approach to Inferring Large Graphical Models from Sparse Microarray Data A Practical Approach to Inferring Large Graphical Models from Sparse Microarray Data Juliane Schäfer Department of Statistics, University of Munich Workshop: Practical Analysis of Gene Expression Data

More information

Machine Learning And Applications: Supervised Learning-SVM

Machine Learning And Applications: Supervised Learning-SVM Machine Learning And Applications: Supervised Learning-SVM Raphaël Bournhonesque École Normale Supérieure de Lyon, Lyon, France raphael.bournhonesque@ens-lyon.fr 1 Supervised vs unsupervised learning Machine

More information

Parameter Estimation in the Spatio-Temporal Mixed Effects Model Analysis of Massive Spatio-Temporal Data Sets

Parameter Estimation in the Spatio-Temporal Mixed Effects Model Analysis of Massive Spatio-Temporal Data Sets Parameter Estimation in the Spatio-Temporal Mixed Effects Model Analysis of Massive Spatio-Temporal Data Sets Matthias Katzfuß Advisor: Dr. Noel Cressie Department of Statistics The Ohio State University

More information

Introduction. Dagmar Iber Jörg Stelling. CSB Deterministic, SS 2015, 1.

Introduction. Dagmar Iber Jörg Stelling. CSB Deterministic, SS 2015, 1. Introduction Dagmar Iber Jörg Stelling joerg.stelling@bsse.ethz.ch CSB Deterministic, SS 2015, 1 Origins of Systems Biology On this assumption of the passage of blood, made as a basis for argument, and

More information

A Practical Guide to State Space Modeling

A Practical Guide to State Space Modeling A Practical Guide to State Space Modeling Jin-Lung Lin Institute of Economics, Academia Sinica Department of Economics, National Chengchi University March 006 1 1 Introduction State Space Model (SSM) has

More information

Bistability and a differential equation model of the lac operon

Bistability and a differential equation model of the lac operon Bistability and a differential equation model of the lac operon Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4500, Fall 2016 M. Macauley

More information

Regression, Ridge Regression, Lasso

Regression, Ridge Regression, Lasso Regression, Ridge Regression, Lasso Fabio G. Cozman - fgcozman@usp.br October 2, 2018 A general definition Regression studies the relationship between a response variable Y and covariates X 1,..., X n.

More information

Numerical and Analytic Predictions for Correlations in Gene Expression Noise

Numerical and Analytic Predictions for Correlations in Gene Expression Noise 9 Chapter 2 Numerical and Analytic Predictions for Correlations in Gene Expression Noise In this chapter we develop a mathematical model for stochastic gene regulation that is motivated by previous work

More information

DETC DELAY DIFFERENTIAL EQUATIONS IN THE DYNAMICS OF GENE COPYING

DETC DELAY DIFFERENTIAL EQUATIONS IN THE DYNAMICS OF GENE COPYING Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2007 September 4-7, 2007, Las Vegas, Nevada, USA DETC2007-3424

More information

Chapter 7: Model Assessment and Selection

Chapter 7: Model Assessment and Selection Chapter 7: Model Assessment and Selection DD3364 April 20, 2012 Introduction Regression: Review of our problem Have target variable Y to estimate from a vector of inputs X. A prediction model ˆf(X) has

More information

BME 5742 Biosystems Modeling and Control

BME 5742 Biosystems Modeling and Control BME 5742 Biosystems Modeling and Control Lecture 24 Unregulated Gene Expression Model Dr. Zvi Roth (FAU) 1 The genetic material inside a cell, encoded in its DNA, governs the response of a cell to various

More information

Cybergenetics: Control theory for living cells

Cybergenetics: Control theory for living cells Department of Biosystems Science and Engineering, ETH-Zürich Cybergenetics: Control theory for living cells Corentin Briat Joint work with Ankit Gupta and Mustafa Khammash Introduction Overview Cybergenetics:

More information

13.4 Gene Regulation and Expression

13.4 Gene Regulation and Expression 13.4 Gene Regulation and Expression Lesson Objectives Describe gene regulation in prokaryotes. Explain how most eukaryotic genes are regulated. Relate gene regulation to development in multicellular organisms.

More information

Multidimensional Density Smoothing with P-splines

Multidimensional Density Smoothing with P-splines Multidimensional Density Smoothing with P-splines Paul H.C. Eilers, Brian D. Marx 1 Department of Medical Statistics, Leiden University Medical Center, 300 RC, Leiden, The Netherlands (p.eilers@lumc.nl)

More information

A Synthetic Oscillatory Network of Transcriptional Regulators

A Synthetic Oscillatory Network of Transcriptional Regulators A Synthetic Oscillatory Network of Transcriptional Regulators Michael Elowitz & Stanislas Leibler Nature, 2000 Presented by Khaled A. Rahman Background Genetic Networks Gene X Operator Operator Gene Y

More information

Design of experiments for smoke depollution of diesel engine outputs

Design of experiments for smoke depollution of diesel engine outputs ControlledCO 2 Diversifiedfuels Fuel-efficientvehicles Cleanrefining Extendedreserves Design of experiments for smoke depollution of diesel engine outputs M. CANAUD (1), F. WAHL (1), C. HELBERT (2), L.

More information

GLOBEX Bioinformatics (Summer 2015) Genetic networks and gene expression data

GLOBEX Bioinformatics (Summer 2015) Genetic networks and gene expression data GLOBEX Bioinformatics (Summer 2015) Genetic networks and gene expression data 1 Gene Networks Definition: A gene network is a set of molecular components, such as genes and proteins, and interactions between

More information

Matteo Figliuzzi

Matteo Figliuzzi Supervisors: Prof. Andrea De Martino, Prof. Enzo Marinari Dottorato in sica, XXVI ciclo (N,1) model (N,M) model 25-10-2013 Systems Biology & Networks (N,1) model (N,M) model Arabidopsis regulatory network

More information

Corner. Corners are the intersections of two edges of sufficiently different orientations.

Corner. Corners are the intersections of two edges of sufficiently different orientations. 2D Image Features Two dimensional image features are interesting local structures. They include junctions of different types like Y, T, X, and L. Much of the work on 2D features focuses on junction L,

More information

Lecture 14: Variable Selection - Beyond LASSO

Lecture 14: Variable Selection - Beyond LASSO Fall, 2017 Extension of LASSO To achieve oracle properties, L q penalty with 0 < q < 1, SCAD penalty (Fan and Li 2001; Zhang et al. 2007). Adaptive LASSO (Zou 2006; Zhang and Lu 2007; Wang et al. 2007)

More information

The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm 1/29 EM & Latent Variable Models Gaussian Mixture Models EM Theory The Expectation-Maximization Algorithm Mihaela van der Schaar Department of Engineering Science University of Oxford MLE for Latent Variable

More information

CONSTRAINED OPTIMIZATION OVER DISCRETE SETS VIA SPSA WITH APPLICATION TO NON-SEPARABLE RESOURCE ALLOCATION

CONSTRAINED OPTIMIZATION OVER DISCRETE SETS VIA SPSA WITH APPLICATION TO NON-SEPARABLE RESOURCE ALLOCATION Proceedings of the 200 Winter Simulation Conference B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds. CONSTRAINED OPTIMIZATION OVER DISCRETE SETS VIA SPSA WITH APPLICATION TO NON-SEPARABLE

More information

arxiv: v2 [q-bio.qm] 12 Jan 2017

arxiv: v2 [q-bio.qm] 12 Jan 2017 Approximation and inference methods for stochastic biochemical kinetics - a tutorial review arxiv:1608.06582v2 [q-bio.qm] 12 Jan 2017 David Schnoerr 1,2,3, Guido Sanguinetti 2,3, and Ramon Grima 1,3,*

More information

Gene Regulation and Expression

Gene Regulation and Expression THINK ABOUT IT Think of a library filled with how-to books. Would you ever need to use all of those books at the same time? Of course not. Now picture a tiny bacterium that contains more than 4000 genes.

More information

Welcome to Class 21!

Welcome to Class 21! Welcome to Class 21! Introductory Biochemistry! Lecture 21: Outline and Objectives l Regulation of Gene Expression in Prokaryotes! l transcriptional regulation! l principles! l lac operon! l trp attenuation!

More information

what is Bayes theorem? posterior = likelihood * prior / C

what is Bayes theorem? posterior = likelihood * prior / C who was Bayes? Reverend Thomas Bayes (70-76) part-time mathematician buried in Bunhill Cemetary, Moongate, London famous paper in 763 Phil Trans Roy Soc London was Bayes the first with this idea? (Laplace?)

More information

Functional SVD for Big Data

Functional SVD for Big Data Functional SVD for Big Data Pan Chao April 23, 2014 Pan Chao Functional SVD for Big Data April 23, 2014 1 / 24 Outline 1 One-Way Functional SVD a) Interpretation b) Robustness c) CV/GCV 2 Two-Way Problem

More information

Boolean models of gene regulatory networks. Matthew Macauley Math 4500: Mathematical Modeling Clemson University Spring 2016

Boolean models of gene regulatory networks. Matthew Macauley Math 4500: Mathematical Modeling Clemson University Spring 2016 Boolean models of gene regulatory networks Matthew Macauley Math 4500: Mathematical Modeling Clemson University Spring 2016 Gene expression Gene expression is a process that takes gene info and creates

More information

Tom A.B. Snijders, ICS, University of Groningen Johannes Berkhof, Free University, Amsterdam

Tom A.B. Snijders, ICS, University of Groningen Johannes Berkhof, Free University, Amsterdam Chapter 4 DIAGNOSTIC CHECKS FOR MULTILEVEL MODELS Tom A.B. Sniders, ICS, University of Groningen Johannes Berkhof, Free University, Amsterdam To be published in Jan de Leeuw & Ita Kreft (eds., Handbook

More information

Graphical model inference with unobserved variables via latent tree aggregation

Graphical model inference with unobserved variables via latent tree aggregation Graphical model inference with unobserved variables via latent tree aggregation Geneviève Robin Christophe Ambroise Stéphane Robin UMR 518 AgroParisTech/INRA MIA Équipe Statistique et génome 15 decembre

More information

Alternatives. The D Operator

Alternatives. The D Operator Using Smoothness Alternatives Text: Chapter 5 Some disadvantages of basis expansions Discrete choice of number of basis functions additional variability. Non-hierarchical bases (eg B-splines) make life

More information

Differential transcriptional regulation by alternatively designed mechanisms: A mathematical modeling approach

Differential transcriptional regulation by alternatively designed mechanisms: A mathematical modeling approach In Silico Biology 12 (2017) 95 127 DOI 10.3233/ISB-160467 IOS Press 95 Differential transcriptional regulation by alternatively designed mechanisms: A mathematical modeling approach Necmettin Yildirim

More information

Name Period The Control of Gene Expression in Prokaryotes Notes

Name Period The Control of Gene Expression in Prokaryotes Notes Bacterial DNA contains genes that encode for many different proteins (enzymes) so that many processes have the ability to occur -not all processes are carried out at any one time -what allows expression

More information

Kneib, Fahrmeir: Supplement to "Structured additive regression for categorical space-time data: A mixed model approach"

Kneib, Fahrmeir: Supplement to Structured additive regression for categorical space-time data: A mixed model approach Kneib, Fahrmeir: Supplement to "Structured additive regression for categorical space-time data: A mixed model approach" Sonderforschungsbereich 386, Paper 43 (25) Online unter: http://epub.ub.uni-muenchen.de/

More information

Optimal design of microarray experiments

Optimal design of microarray experiments University of Groningen e.c.wit@rug.nl http://www.math.rug.nl/ ernst 7 June 2011 What is a cdna Microarray Experiment? GREEN (Cy3) Cancer Tissue mrna Mix tissues in equal amounts G G G R R R R R G R G

More information

Nonparametric Regression. Badr Missaoui

Nonparametric Regression. Badr Missaoui Badr Missaoui Outline Kernel and local polynomial regression. Penalized regression. We are given n pairs of observations (X 1, Y 1 ),...,(X n, Y n ) where Y i = r(x i ) + ε i, i = 1,..., n and r(x) = E(Y

More information

Compositional Safety Analysis using Barrier Certificates

Compositional Safety Analysis using Barrier Certificates Compositional Safety Analysis using Barrier Certificates Department of Electronic Systems Aalborg University Denmark November 29, 2011 Objective: To verify that a continuous dynamical system is safe. Definition

More information

UNIVERSITY OF MASSACHUSETTS. Department of Mathematics and Statistics. Basic Exam - Applied Statistics. Tuesday, January 17, 2017

UNIVERSITY OF MASSACHUSETTS. Department of Mathematics and Statistics. Basic Exam - Applied Statistics. Tuesday, January 17, 2017 UNIVERSITY OF MASSACHUSETTS Department of Mathematics and Statistics Basic Exam - Applied Statistics Tuesday, January 17, 2017 Work all problems 60 points are needed to pass at the Masters Level and 75

More information

UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11

UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11 UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11 REVIEW: Signals that Start and Stop Transcription and Translation BUT, HOW DO CELLS CONTROL WHICH GENES ARE EXPRESSED AND WHEN? First of

More information

Lecture 1: Biomolecular Modeling

Lecture 1: Biomolecular Modeling Lecture 1: Biomolecular Modeling Richard M. Murray Caltech CDS/BE Goals: Motivate the role of dynamics and feedback in the the cell Provide mathematical tools for analyzing and predicting the dynamics

More information

2 Dilution of Proteins Due to Cell Growth

2 Dilution of Proteins Due to Cell Growth Problem Set 1 1 Transcription and Translation Consider the following set of reactions describing the process of maing a protein out of a gene: G β g G + M M α m M β m M + X X + S 1+ 1 X S 2+ X S X S 2

More information

Modeling Real Estate Data using Quantile Regression

Modeling Real Estate Data using Quantile Regression Modeling Real Estate Data using Semiparametric Quantile Regression Department of Statistics University of Innsbruck September 9th, 2011 Overview 1 Application: 2 3 4 Hedonic regression data for house prices

More information

Bi 1x Spring 2014: LacI Titration

Bi 1x Spring 2014: LacI Titration Bi 1x Spring 2014: LacI Titration 1 Overview In this experiment, you will measure the effect of various mutated LacI repressor ribosome binding sites in an E. coli cell by measuring the expression of a

More information

Computational Cell Biology Lecture 4

Computational Cell Biology Lecture 4 Computational Cell Biology Lecture 4 Case Study: Basic Modeling in Gene Expression Yang Cao Department of Computer Science DNA Structure and Base Pair Gene Expression Gene is just a small part of DNA.

More information

COS513 LECTURE 8 STATISTICAL CONCEPTS

COS513 LECTURE 8 STATISTICAL CONCEPTS COS513 LECTURE 8 STATISTICAL CONCEPTS NIKOLAI SLAVOV AND ANKUR PARIKH 1. MAKING MEANINGFUL STATEMENTS FROM JOINT PROBABILITY DISTRIBUTIONS. A graphical model (GM) represents a family of probability distributions

More information

Uncertainty Quantification for Inverse Problems. November 7, 2011

Uncertainty Quantification for Inverse Problems. November 7, 2011 Uncertainty Quantification for Inverse Problems November 7, 2011 Outline UQ and inverse problems Review: least-squares Review: Gaussian Bayesian linear model Parametric reductions for IP Bias, variance

More information

Name: SBI 4U. Gene Expression Quiz. Overall Expectation:

Name: SBI 4U. Gene Expression Quiz. Overall Expectation: Gene Expression Quiz Overall Expectation: - Demonstrate an understanding of concepts related to molecular genetics, and how genetic modification is applied in industry and agriculture Specific Expectation(s):

More information

IV121: Computer science applications in biology

IV121: Computer science applications in biology IV121: Computer science applications in biology Quantitative Models in Biology David Šafránek March 5, 2012 Obsah Continuous mass action Stochastic mass action Beyond elementary reaction kinetics What

More information

STA 414/2104, Spring 2014, Practice Problem Set #1

STA 414/2104, Spring 2014, Practice Problem Set #1 STA 44/4, Spring 4, Practice Problem Set # Note: these problems are not for credit, and not to be handed in Question : Consider a classification problem in which there are two real-valued inputs, and,

More information

1 Periodic stimulations of the Incoherent Feedforward Loop network

1 Periodic stimulations of the Incoherent Feedforward Loop network 1 Periodic stimulations of the Incoherent Feedforward Loop network In this Additional file, we give more details about the mathematical analysis of the periodic activation of the IFFL network by a train

More information