The Hierarchy Problem on Neutral

Size: px
Start display at page:

Download "The Hierarchy Problem on Neutral"

Transcription

1 The Hierarchy Problem on Neutral Natural Theories with Colorless Top Partners Gustavo Burdman University of São Paulo - IAS Princeton

2 Is the discovery of the Higgs the End of Naturalness?

3 Naturalness and the LHC Is the Electroweak scale natural? The LHC found the Higgs Plus nothing else. M Planck E bounds v EW } Little hierarchy

4 Naturalness and the LHC Is the Electroweak scale natural? The LHC found the Higgs Plus nothing else. M Planck E bounds few TeV Tuned E bounds SM } Little hierarchy v EW

5 Naturalness and the LHC UV sensitivity of m 2 h dominated by top quark + ) { Top partners X carry color Easily produced at the LHC

6 Colorless Top Partners Last refuge of naturalness? Top partners need not carry color If symmetry protecting m 2 h does not commute with SU(3) c Exchanges SU(3) c! SU(3) 0 The X s are charged under SU(3) 0 Bounds on m X not as stringent Colorless X models are more natural

7 Colorless Top Partners General idea To solve the Little Hierarchy problem M Planck E bounds v EW } Little hierarchy SM + colorless top partners

8 Colorless Top Partners Ingredients for neutral naturalness Symmetry protecting the Higgs: spontaneously broken global symmetry, SUSY, Extend the color gauge symmetry to have at least [SU(3)] 2 Either impose a discrete symmetry or orbifold In general, CTP theories can be obtained from orbifolding N.Craig, S.Knapen, P. Longhi, , Models Twin Higgs Folded SUSY Z. Chacko, H. Goh and R. Harnik, hep-ph/ G.B., Z.Chacko, H. Goh, R. Harnik, hep-ph/ Quirky Little Higgs H. Cai, H.-C. Cheng, J. Terning,

9 The Twin Higgs Z. Chacko, H. Goh and R. Harnik, hep-ph/ Higgs is a pngb of a spontaneously broken global symmetry Starting with a fundamental with potential V (H) = m 2 H H + (H H) 2 SU(4)! SU(3) 7 NGBs

10 The Twin Higgs Gauge a subgroup: SU(2) A SU(2) B H = HA H B Choose hhi so that H A stays massless SM Higgs doublet Gauge interactions break global symmetry explicitly Quadratically divergent contributions to V

11 Gauge loops lead to The Twin Higgs gah 2 A H A 2 A + gbh 2 B H B 2 B But imposing a Z 2 symmetry g A = g B = g, A = B g2 2 H H is SU(4) symmetric

12 The Twin Higgs Extend to all SM interactions Mirror SM sector SM A SM B E.g. Top Yukawas: AH A q A t A + B H B q B t B generate A H A H A 2 A + 2 BH B H B 2 B Z H H

13 Twin Higgs in Non-linear Representation H = HA H B = e i f f 1 C A with = h h h 1 h C A and all the B NGBs were eaten by B gauge bosons The SM Higgs is h1 h = h 2

14 Cancellation t hq A t A + t f 1 2f h h q B t B t A t f h t t h q B t B q A h t/2f h But q B,t B have SU(3) B color

15 Breaking of Z 2 Symmetry If Z 2 is exact v EW = f Adding a soft breaking term µ 2 H A 2 allows v EW <f Couplings of the Higgs to SM fields suppressed by cos = cos v p 2 f

16 Twin Higgs Models Identical Twin: Chacko, Goh, Harnik Complete copy of the SM f v ' 3 10 ) 0 QCD > QCD Light quarks and leptons U(1) B?

17 Twin Higgs and Higgs Physics All Higgs couplings to SM states suppressed by cos E.g.: (pp! ) = SM(pp! h) cos 2 (! A cos 2 i )= SM(h! SM i ) Invisible width (! B) = SM (h) sin 2 with <1 for v EW <f

18 Identical Twin Higgs couplings G.B., Z.Chacko, R.Harnik, L. Lima, C. Verhaaren,

19 Twin Higgs Models Fraternal Twin: Craig, Katz, Strassler, Sundrum, Only minimal fermion content to solve hierarchy problem Q 3, t R, b R, L 3, R 3rd generation twin fermions Higgs glueballs SM c 0 18m 10 GeV m 0 7 f 750 GeV 4

20 Twin Higgs Dark Matter Twin strong sector generates a higher strong scale 0 QCD > QCD ) m n ' few m n Possible Asymmetric Dark Matter candidate

21 Twin Higgs Dark Matter Twin strong sector generates a higher strong scale 0 QCD > QCD ) m n ' few m n Possible Asymmetric Dark Matter candidate M. Farina, CDMSlite SuperCDMS Lux

22 Fraternal Twin Higgs Dark Matter Asymmetric DM: I. Garcia, R. Lasemby, J. March-Rusell, Twin bottom baryons b Thermal Relic (TWIMP?) Mostly I. Garcia, R. Lasemby, J. March-Rusell, N. Craig, A. Katz,

23 Colorless Top Partners in Supersymmetry

24 Folded Supersymmetry G.B., Z.Chacko, H. Goh, R. Harnik, hep-ph/ Cancellation of top divergence u q, ũ H u t t H u q H u 2 t H u Squarks need to be charged under SU(2) L Need not be charged under SU(3) c But how?

25 Bifold Protection Global U(N) SQ i Qi i =1...,N M 2 S is quadratically divergent Supersymmetrize Duplicate index running in loop: i =1,...,2N

26 Bifold Protection Define = C A 1. N N +1. 2N Theory is invariant under { S! S Z 2 Q i! Q i Q i! Qi 2R{ fermions odd Z bosons even

27 Orbifold projection: Bifold Protection Project out states odd under Z 2 Z 2R Z 2 q 1... q q N q N+1... q 2N q N q N+1... q 2N 1 +1 Z 2R

28 Bifold Protection Project out states odd under Z 2 Z 2R Z 2 q 1... q q N q N+1... q 2N q N q N+1... q 2N 1 +1 Z 2R

29 Bifold Protection Accidental SUSY: spectrum not supersymmetric q 1. q N + q N+1. q 2N But still cancels one-loop quadratic divergence q i S S S S q j i =1,...,N j = N +1,...,2N Large-N orbifold correspondence: S.Kachru, E. Silverstein, hep-th/ ; M.Schmaltz, hep-th/ M.Bershadsky, A.Johansen, hep-th/ ;

30 Realistic Folded SUSY Model Gauge symmetry: SU(3) A SU(3) B Z 2 SU(2) L U(1) Y Orbifold so that: q A,u A + q B, ũ B remain in the spectrum No gauginos Yukawas obey ( t h u q A u A +h.c.)+ 2 t q B h u t ũ B 2 h u 2 Accidental SUSY still protects m 2 h

31 Folded SUSY UV Completion Can be realized in 5D compactified on S 1 /Z 2 H U,H D SU(3) A SU(3) B Z 2 SU(2) L U(1) Y SUSY broken by BCs (Scherk-Schwarz) ˆQ A, ˆQ B, ÛA, ÛB, ˆD A, ˆD B ˆL A, ˆL B, ÊA, ÊB BCs break Z 2 at R 0 R

32 Fermion zero modes from Folded SUSY Spectrum ˆQ A, ÛA, ˆD A, ˆL A, ÊA Scalar zero modes from ˆQ B, ÛB, ˆD B, ˆL B, ÊB Localize Higgses at y =0 (y) t {Q 3A H U U 3A + Q 3B H U U 3B } generates desired Yukawas at low energies

33 Folded SUSY Spectrum Zero-mode Folded sfermions: A. Delgado, A. Pomarol, M Quiros, hep-ph/ m 2 Q = K m 2 U = K m 2 D = K m 2 L = K m 2 E = K g g g g g g2 1 R g g2 1 R g g2 1 R 2 1 R 2 1 R 2 plus Yukawa contributions for 3rd generation m 2 Q 3 = K 2 t R 2 m 2 U 3 = K 2 t R 2

34 Folded SUSY R <4 1 R 5D SUSY Accidental SUSY 1 R (5 7) TeV v EW

35 Folded SUSY Signals

36 Folded SUSY Signals at the LHC Electroweak pair production of F-squarks But m T 0 QCD ' few GeV they do not hadronize q p p q squirks have to come back for annihilation

37 Squirk Annihilation G.B., Z.Chacko, H.Goh, R. Harnik, C. Krenke, q W ± ũ W ± q d Annihilation is prompt Onium is in s-wave before annihilation

38 Bounds from the LHC G.B., Z.Chacko, R.Harnik, L. Lima, C. Verhaaren, Assumes No smearing No decay m T m T >{ } GeV Direct search better than Higgs couplings

39 Folded Sleptons (G.B., R. D'Agnolo, 150x.xxxx) In the minimal model, lepton hypermultiplets ˆL A (1, 1, 2, 1/2) ˆLB (1, 1, 2, 1/2) Ê A (1, 1, 1, 1) Ê B (1, 1, 1, 1) Zero modes: Leptons F-sleptons Lightest F-slepton is stable! Need to add Z 2 preserving HDOs Z E.g. (y) d 2 UA U A D A E B + U BU B D B E A Highly displaced vertices

40 Folded SUSY Glueball Decays D. Curtin, m t (GeV) [Folded SUSY] m T (GeV) [Twin Higgs] m 0 (GeV) Will start being competitive at HL-LHC

41 Summary We still have natural theories of EWSB not ruled out by data Signals at colliders are different The LHC has sensitivity for a lot of the parameter space But not impossible that HL-LHC ends and some "natural" parameter space still there (e.g. Identical Twin Higgs) All these theories have low cutoffs (< 20 TeV) Experiment: Higher energies Theory: UV completions Interesting for DM model building (especially ADM)

Exotic Signals in Twin Higgs models. Yuhsin Tsai. University of Maryland BLV2017, 05/16/2017 H125

Exotic Signals in Twin Higgs models. Yuhsin Tsai. University of Maryland BLV2017, 05/16/2017 H125 Exotic Signals in Twin Higgs models Yuhsin Tsai University of Maryland BLV2017, 05/16/2017 H125 Twin Higgs model Chacko, Goh, Harnik 05 A solution to the little hierarchy problem without colored partners

More information

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez Twin Higgs Theories Z. Chacko, University of Arizona H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez Precision electroweak data are in excellent agreement with the Standard Model with a Higgs mass

More information

arxiv: v1 [hep-ph] 3 Aug 2016

arxiv: v1 [hep-ph] 3 Aug 2016 ACFI-T-19 The Radiative Z Breaking Twin Higgs arxiv:.131v1 hep-ph 3 Aug Jiang-Hao Yu 1 1 Amherst Center for Fundamental Interactions, Department of Physics, University of Massachusetts-Amherst, Amherst,

More information

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

Quirks. Z. Chacko University of Maryland, College Park

Quirks. Z. Chacko University of Maryland, College Park Quirks Z. Chacko University of Maryland, College Park Disclaimer Only a small portion of this talk is based on my own work, in collaboration with Burdman, Goh, Harnik and Krenke. In particular, I have

More information

Composite gluino at the LHC

Composite gluino at the LHC Composite gluino at the LHC Thomas Grégoire University of Edinburgh work in progress with Ami Katz What will we see at the LHC? Natural theory of EWSB? Supersymmetry? Higgs as PGSB (LH, RS-like)? Extra-

More information

The Twin Higgs. with Zackaria Chacko and Hock-Seng Goh hep-ph/

The Twin Higgs. with Zackaria Chacko and Hock-Seng Goh hep-ph/ with Zackaria Chacko and Hock-Seng Goh hep-ph/0506256 Naturalness and LHC LHC is going to be exciting from the start (first 10 fb -1 ). t L +? = Natural SMt R NP Naturalness and LHC LHC is going to be

More information

Composite Higgs Overview

Composite Higgs Overview Composite Higgs Overview Tony Gherghetta Fundamental Composite Dynamics, IBS CTPU, Daejeon, Korea, December 6, 2017 1 IBS Daejeon - 6 December 2017 Composite Higgs New strong force with coupling, g s g

More information

Little Higgs Models Theory & Phenomenology

Little Higgs Models Theory & Phenomenology Little Higgs Models Theory Phenomenology Wolfgang Kilian (Karlsruhe) Karlsruhe January 2003 How to make a light Higgs (without SUSY) Minimal models The Littlest Higgs and the Minimal Moose Phenomenology

More information

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G and Signatures of D-Type Gauge Mediation Ken Hsieh Michigan State Univeristy KH, Ph. D. Thesis (2007) ArXiv:0708.3970 [hep-ph] Other works with M. Luty and Y. Cai (to appear) MSU HEP Seminar November 6,

More information

Beyond the SM: SUSY. Marina Cobal University of Udine

Beyond the SM: SUSY. Marina Cobal University of Udine Beyond the SM: SUSY Marina Cobal University of Udine Why the SM is not enough The gauge hierarchy problem Characteristic energy of the SM: M W ~100 GeV Characteristic energy scale of gravity: M P ~ 10

More information

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002 Physics at e + e - Linear Colliders 4. Supersymmetric particles M. E. Peskin March, 2002 In this final lecture, I would like to discuss supersymmetry at the LC. Supersymmetry is not a part of the Standard

More information

Discovering Neutral Naturalness

Discovering Neutral Naturalness Discovering Neutral Naturalness Theory Seminar NHETC Rutgers University mirror glueball 20. October 2015 T m t (GeV) [Folded SUSY] 1500 1000 500 H s = 14 TeV, 3000fb -1 (MS)x(MS or IT) (VBF h bb) x (IT,

More information

Kaluza-Klein Dark Matter

Kaluza-Klein Dark Matter Kaluza-Klein Dark Matter Hsin-Chia Cheng UC Davis Pre-SUSY06 Workshop Complementary between Dark Matter Searches and Collider Experiments Introduction Dark matter is the best evidence for physics beyond

More information

Electroweak and Higgs Physics

Electroweak and Higgs Physics Electroweak and Higgs Physics Lecture 2 : Higgs Mechanism in the Standard and Supersymmetric Models Alexei Raspereza DESY Summer Student Program Hamburg August 2017 Standard Model (Summary) Building blocks

More information

The Standard Model and Beyond

The Standard Model and Beyond The Standard Model and Beyond Nobuchika Okada Department of Physics and Astronomy The University of Alabama 2011 BCVSPIN ADVANCED STUDY INSTITUTE IN PARTICLE PHYSICS AND COSMOLOGY Huê, Vietnam, 25-30,

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March EW Naturalness in Light of the LHC Data Maxim Perelstein, Cornell U. ACP Winter Conference, March 3 SM Higgs: Lagrangian and Physical Parameters The SM Higgs potential has two terms two parameters: Higgs

More information

Associated production of the charged Higgs boson and single top quark at the LHC

Associated production of the charged Higgs boson and single top quark at the LHC Associated production of the charged Higgs boson and single top quark at the LHC arxiv:0704.0840v2 [hep-ph] 8 Mar 2008 Yao-Bei Liu 1, Jie-Fen Shen 2 1: Henan Institute of Science and Technology, Xinxiang

More information

INTRODUCTION TO EXTRA DIMENSIONS

INTRODUCTION TO EXTRA DIMENSIONS INTRODUCTION TO EXTRA DIMENSIONS MARIANO QUIROS, ICREA/IFAE MORIOND 2006 INTRODUCTION TO EXTRA DIMENSIONS p.1/36 OUTLINE Introduction Where do extra dimensions come from? Strings and Branes Experimental

More information

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model Lecture 03 The Standard Model of Particle Physics Part III Extensions of the Standard Model Where the SM Works Excellent description of 3 of the 4 fundamental forces Explains nuclear structure, quark confinement,

More information

Unified Dark Matter. SUSY2014 Stephen J. Lonsdale. The University of Melbourne. In collaboration with R.R. Volkas. arxiv:

Unified Dark Matter. SUSY2014 Stephen J. Lonsdale. The University of Melbourne. In collaboration with R.R. Volkas. arxiv: arxiv:1407.4192 Unified Dark Matter SUSY2014 Stephen J. Lonsdale The University of Melbourne In collaboration with R.R. Volkas Unified Dark Matter Motivation: Asymmetric dark matter models Asymmetric symmetry

More information

Universal Extra Dimensions

Universal Extra Dimensions Universal Extra Dimensions Add compact dimension(s) of radius R ~ ant crawling on tube Kaluza-Klein tower of partners to SM particles due to curled-up extra dimensions of radius R n = quantum number for

More information

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00 Kaluza-Klein Theories - basic idea Fig. from B. Greene, 00 Kaluza-Klein Theories - basic idea mued mass spectrum Figure 3.2: (Taken from [46]). The full spectrum of the UED model at the first KK level,

More information

Beyond the MSSM (BMSSM)

Beyond the MSSM (BMSSM) Beyond the MSSM (BMSSM) Nathan Seiberg Strings 2007 SUSY 2012 Based on M. Dine, N.S., and S. Thomas, to appear Assume The LHC (or the Tevatron) will discover some of the particles in the MSSM. These include

More information

PHYSICS BEYOND SM AND LHC. (Corfu 2010)

PHYSICS BEYOND SM AND LHC. (Corfu 2010) PHYSICS BEYOND SM AND LHC (Corfu 2010) We all expect physics beyond SM Fantastic success of SM (LEP!) But it has its limits reflected by the following questions: What is the origin of electroweak symmetry

More information

Discovering Neutral Naturalness (in long-lived particle searches)

Discovering Neutral Naturalness (in long-lived particle searches) Discovering Neutral Naturalness (in long-lived particle searches) LHC Searches for Long-Lived BSM Particles: Theory Meets Experiment UMass Amherst m t (GeV) [Folded SUSY] 1500 1000 500 H s = 14 TeV, 3000fb

More information

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers DPG Frühjahrstagung 014 in Mainz Based on Phys. Rev. Lett. 110, 31801 (013), Phys. Rev. D 88, 051701(R) (013), arxiv:1309.3970

More information

Double Higgs production via gluon fusion (gg hh) in composite models

Double Higgs production via gluon fusion (gg hh) in composite models Double Higgs production via gluon fusion (gg hh) in composite models Ennio Salvioni CERN and University of Padova based on work in collaboration with C.Grojean (CERN), M.Gillioz (Zürich), R.Gröber and

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Introduction to Supersymmetry I. Antoniadis Albert Einstein Center - ITP Lecture 5 Grand Unification I. Antoniadis (Supersymmetry) 1 / 22 Grand Unification Standard Model: remnant of a larger gauge symmetry

More information

Naturalizing Supersymmetry with the Relaxion

Naturalizing Supersymmetry with the Relaxion Naturalizing Supersymmetry with the Relaxion Tony Gherghetta University of Minnesota Beyond the Standard Model OIST Workshop, Okinawa, Japan, March 4, 2016 Jason Evans, TG, Natsumi Nagata, Zach Thomas

More information

SUSY Phenomenology & Experimental searches

SUSY Phenomenology & Experimental searches SUSY Phenomenology & Experimental searches Slides available at: Alex Tapper http://www.hep.ph.ic.ac.uk/~tapper/lecture.html Objectives - Know what Supersymmetry (SUSY) is - Understand qualitatively the

More information

Dynamical supersymmetry breaking, with Flavor

Dynamical supersymmetry breaking, with Flavor Dynamical supersymmetry breaking, with Flavor Cornell University, November 2009 Based on arxiv: 0911.2467 [Craig, Essig, Franco, Kachru, GT] and arxiv: 0812.3213 [Essig, Fortin, Sinha, GT, Strassler] Flavor

More information

Lecture 39, 40 Supplement: Particle physics in the LHC era

Lecture 39, 40 Supplement: Particle physics in the LHC era Lecture 39, 40 Supplement: Particle physics in the LHC era The Matter Particles (Fermions) plus their antiparticles... What is measured? quarks confined into hadrons A zoo of strongly interacting particles...

More information

The Super-little Higgs

The Super-little Higgs The Super-little Higgs Csaba Csaki (Cornell) with Guido Marandella (UC Davis) Yuri Shirman (Los Alamos) Alessandro Strumia (Pisa) hep-ph/0510294, Phys.Rev.D73:035006,2006 Padua University, July 4, 2006

More information

125 GeV Higgs Boson and Gauge Higgs Unification

125 GeV Higgs Boson and Gauge Higgs Unification 125 GeV Higgs Boson and Gauge Higgs Unification Nobuchika Okada The University of Alabama Miami 2013, Fort Lauderdale, Dec. 12 18, 2013 Discovery of Higgs boson at LHC! 7/04/2012 Standard Model Higgs boson

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

Exotic Dark Matter as Spin-off of Proton Stability. Kaustubh Agashe (University of Maryland)

Exotic Dark Matter as Spin-off of Proton Stability. Kaustubh Agashe (University of Maryland) Exotic Dark Matter as Spin-off of Proton Stability Kaustubh Agashe (University of Maryland) Outline and Summary Warped extra dimensions address Planckweak and flavor hierarchies: new (KK) particles at

More information

Gauge-Higgs Unification on Flat Space Revised

Gauge-Higgs Unification on Flat Space Revised Outline Gauge-Higgs Unification on Flat Space Revised Giuliano Panico ISAS-SISSA Trieste, Italy The 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions Irvine,

More information

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model Scalar from November 24, 2014 1 2 3 4 5 What is the? Gauge theory that explains strong weak, and electromagnetic forces SU(3) C SU(2) W U(1) Y Each generation (3) has 2 quark flavors (each comes in one

More information

Exceptional Supersymmetry. at the Large Hadron Collider

Exceptional Supersymmetry. at the Large Hadron Collider Exceptional Supersymmetry at the Large Hadron Collider E 6 SSM model and motivation Contents Why go beyond the Standard Model? Why consider non-minimal SUSY? Exceptional SUSY Structure, particle content

More information

How high could SUSY go?

How high could SUSY go? How high could SUSY go? Luc Darmé LPTHE (Paris), UPMC November 24, 2015 Based on works realised in collaboration with K. Benakli, M. Goodsell and P. Slavich (1312.5220, 1508.02534 and 1511.02044) Introduction

More information

Mirror World and Improved Naturalness

Mirror World and Improved Naturalness Mirror World and Improved Naturalness Thomas Grégoire Boston University Based on hep-ph/0509242 R. Barbieri, T.G., L. Hall Mirror Worlds Motivations Originally introduced to restore parity Dark Matter

More information

New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group

New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group CP3 Origins, September 16 th, 2013 At this seminar I will touch upon... σ 2 Issues of the Standard Model Dramatically

More information

Naturalizing SUSY with the relaxion and the inflaton

Naturalizing SUSY with the relaxion and the inflaton Naturalizing SUSY with the relaxion and the inflaton Tony Gherghetta KEK Theory Meeting on Particle Physics Phenomenology, (KEK-PH 2018) KEK, Japan, February 15, 2018 [Jason Evans, TG, Natsumi Nagata,

More information

Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN)

Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN) Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN) Rutgers University, December 8, 2009 Preview Found a SUSY model, where: Weird higgs decays

More information

E 6 Spectra at the TeV Scale

E 6 Spectra at the TeV Scale E 6 Spectra at the TeV Scale Instituts-Seminar Kerne und Teilchen, TU Dresden Alexander Knochel Uni Freiburg 24.06.2010 Based on: F. Braam, AK, J. Reuter, arxiv:1001.4074 [hep-ph], JHEP06(2010)013 Outline

More information

New Phenomenology of Littlest Higgs Model with T-parity

New Phenomenology of Littlest Higgs Model with T-parity New Phenomenology of Littlest Higgs Model with T-parity Alexander Belyaev Michigan State University A.B., C.-R. Chen, K. Tobe, C.-P. Yuan hep-ph/0609179 A.B., A. Pukhov, C.-P. Yuan hep-ph/07xxxxx UW-Madison,

More information

Split SUSY and the LHC

Split SUSY and the LHC Split SUSY and the LHC Pietro Slavich LAPTH Annecy IFAE 2006, Pavia, April 19-21 Why Split Supersymmetry SUSY with light (scalar and fermionic) superpartners provides a technical solution to the electroweak

More information

The SCTM Phase Transition

The SCTM Phase Transition The SCTM Phase Transition ICTP / SAIFR 2015 Mateo García Pepin In collaboration with: Mariano Quirós Motivation The Model The phase transition Summary EW Baryogenesis A mechanism to explain the observed

More information

Composite Higgs, Quarks and Leptons, a contemporary view

Composite Higgs, Quarks and Leptons, a contemporary view Composite Higgs, Quarks and Leptons, a contemporary view 1 Thanks to Sid Drell Always be positive, curious, constructive Α others will think your questions are dumb 2 3 Brodsky-Drell anomalous magnetic

More information

LECTURE 2: Super theories

LECTURE 2: Super theories LECTURE 2: Super theories Carlos Muñoz Universidad Autónoma de Madrid & Instituto de Física Teórica UAM/CSIC ISAPP09-Como, July 8-16 Carlos Muñoz Super theories 2 ~0.00000001 Carlos Muñoz Super theories

More information

The Higgs discovery - a portal to new physics

The Higgs discovery - a portal to new physics The Higgs discovery - a portal to new physics Department of astronomy and theoretical physics, 2012-10-17 1 / 1 The Higgs discovery 2 / 1 July 4th 2012 - a historic day in many ways... 3 / 1 July 4th 2012

More information

Supersymmetry Basics. J. Hewett SSI J. Hewett

Supersymmetry Basics. J. Hewett SSI J. Hewett Supersymmetry Basics J. Hewett SSI 2012 J. Hewett Basic SUSY References A Supersymmetry Primer, Steve Martin hep-ph/9709356 Theory and Phenomenology of Sparticles, Manual Drees, Rohini Godbole, Probir

More information

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV Radovan Dermíšek Institute for Advanced Study, Princeton R.D. and J. F. Gunion, hep-ph/0502105 R.D. and J. F. Gunion, hep-ph/0510322

More information

SUPERSYMETRY FOR ASTROPHYSICISTS

SUPERSYMETRY FOR ASTROPHYSICISTS Dark Matter: From the Cosmos to the Laboratory SUPERSYMETRY FOR ASTROPHYSICISTS Jonathan Feng University of California, Irvine 29 Jul 1 Aug 2007 SLAC Summer Institute 30 Jul 1 Aug 07 Feng 1 Graphic: N.

More information

Tests at Colliders. Summer School on the SME June 17, 2018 Mike Berger. I. Top quark production and decay II. Neutral meson oscillations

Tests at Colliders. Summer School on the SME June 17, 2018 Mike Berger. I. Top quark production and decay II. Neutral meson oscillations Tests at Colliders Summer School on the SME June 17, 2018 Mike Berger I. Top quark production and decay II. Neutral meson oscillations Collider Physics 1. In principle, one has access (statistically) to

More information

A Simulated Study Of The Potential For The Discovery of the Supersymmetric Sbottom Squark at the ATLAS Experiment

A Simulated Study Of The Potential For The Discovery of the Supersymmetric Sbottom Squark at the ATLAS Experiment A Simulated Study Of The Potential For The Discovery of the Supersymmetric Sbottom Squark at the ATLAS Experiment By Rishiraj Pravahan University of Texas at Arlington Outline Why do we need Supersymmetry?

More information

Introduction to SUSY. Giacomo Polesello. INFN, Sezione di Pavia

Introduction to SUSY. Giacomo Polesello. INFN, Sezione di Pavia . Introduction to SUSY Giacomo Polesello INFN, Sezione di Pavia Why physics beyond the Standard Model? Gravity is not yet incorporated in the Standard Model Hierarchy/Naturalness problem Standard Model

More information

Strongly Coupled Dark Matter at the LHC

Strongly Coupled Dark Matter at the LHC Strongly Coupled Dark Matter at the LHC Graham Kribs University of Oregon Appelquist et al (LSD Collaboration): 1402.6656; 1503.04203; 1503.04205 GK, Adam Martin, Ethan Neil, Bryan Ostdiek, Tom Tong [in

More information

Non-Abelian SU(2) H and Two-Higgs Doublets

Non-Abelian SU(2) H and Two-Higgs Doublets Non-Abelian SU(2) H and Two-Higgs Doublets Technische Universität Dortmund Wei- Chih Huang 25 Sept 2015 Kavli IPMU arxiv:1510.xxxx(?) with Yue-Lin Sming Tsai, Tzu-Chiang Yuan Plea Please do not take any

More information

Hunting for the top partner in the littlest Higgs model with T parity at the CERN LHC

Hunting for the top partner in the littlest Higgs model with T parity at the CERN LHC PHYSICAL REVIEW D 75, 556 (27) Hunting for the top partner in the littlest Higgs model with T parity at the CERN LHC Shigeki Matsumoto,* Mihoko M. Nojiri, and Daisuke Nomura Theory Group, KEK, 1-1 Oho,

More information

+ µ 2 ) H (m 2 H 2

+ µ 2 ) H (m 2 H 2 I. THE HIGGS POTENTIAL AND THE LIGHT HIGGS BOSON In the previous chapter, it was demonstrated that a negative mass squared in the Higgs potential is generated radiatively for a large range of boundary

More information

Supersymmetry Breaking

Supersymmetry Breaking Supersymmetry Breaking LHC Search of SUSY: Part II Kai Wang Phenomenology Institute Department of Physics University of Wisconsin Madison Collider Phemonology Gauge Hierarchy and Low Energy SUSY Gauge

More information

EDMs and flavor violation in SUSY models

EDMs and flavor violation in SUSY models EDMs and flavor violation in SUSY models Junji Hisano Institute for Cosmic Ray Research (ICRR), University of Tokyo The 3rd International Symposium on LEPTON MOMENTS Cape Cod, June 2006 Contents of my

More information

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC Jürgen Reuter Albert-Ludwigs-Universität Freiburg W. Kilian, JR, PLB B642 (2006), 81; and work in progress (with F. Deppisch, W. Kilian)

More information

Lecture 4 - Beyond the Standard Model (SUSY)

Lecture 4 - Beyond the Standard Model (SUSY) Lecture 4 - Beyond the Standard Model (SUSY) Christopher S. Hill University of Bristol Warwick Flavour ++ Week April 11-15, 2008 Recall the Hierarchy Problem In order to avoid the significant finetuning

More information

Searching for sneutrinos at the bottom of the MSSM spectrum

Searching for sneutrinos at the bottom of the MSSM spectrum Searching for sneutrinos at the bottom of the MSSM spectrum Arindam Chatterjee Harish-Chandra Research Insitute, Allahabad In collaboration with Narendra Sahu; Nabarun Chakraborty, Biswarup Mukhopadhyay

More information

The Yang and Yin of Neutrinos

The Yang and Yin of Neutrinos The Yang and Yin of Neutrinos Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA The Yang and Yin of Neutrinos (2018) back to start 1 Contents Introduction The

More information

Heterotic Supersymmetry

Heterotic Supersymmetry Heterotic Supersymmetry Hans Peter Nilles Physikalisches Institut Universität Bonn Heterotic Supersymmetry, Planck2012, Warsaw, May 2012 p. 1/35 Messages from the heterotic string Localization properties

More information

Phase Transi+ons in Twin Higgs Models

Phase Transi+ons in Twin Higgs Models Phase Transi+ons in Twin Higgs Models Kohei Fujikura (TITECH) Collaborators: Kohei Kamada (IBS), Yuichiro Nakai (Rutgers.U), Masahide Yamaguchi (TITECH). 1 Contents p Naturalness of the Higgs mass p Twin

More information

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Properties of the Higgs Boson, and its interpretation in Supersymmetry Properties of the Higgs Boson, and its interpretation in Supersymmetry U. Ellwanger, LPT Orsay The quartic Higgs self coupling and Supersymmetry The Next-to-Minimal Supersymmetric Standard Model Higgs

More information

Searches for Physics Beyond the Standard Model. Jay Wacker. APS April Meeting SLAC. A Theoretical Perspective. May 4, 2009

Searches for Physics Beyond the Standard Model. Jay Wacker. APS April Meeting SLAC. A Theoretical Perspective. May 4, 2009 Searches for Physics Beyond the Standard Model A Theoretical Perspective Jay Wacker SLAC APS April Meeting May 4, 2009 1 The Plan Motivations for Physics Beyond the Standard Model New Hints from Dark Matter

More information

But not exact. Extend to arbitrary orders in perturbation theory? [Active research area.]

But not exact. Extend to arbitrary orders in perturbation theory? [Active research area.] 1 2 Jet evolution Scattering occurs at scale Q 2 0 Λ 2. makes quark with virtuality q 2, with 0 < q 2 < Q 2. Now the quark emits collinear and soft radiation as before, with small changes. The initial

More information

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential)

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential) Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential) Satoshi Iso (KEK, Sokendai) Based on collaborations with H.Aoki (Saga) arxiv:1201.0857

More information

Dark matter and IceCube neutrinos

Dark matter and IceCube neutrinos IL NUOVO CIMENTO 38 C (2015) 31 DOI 10.1393/ncc/i2015-15031-4 Colloquia: IFAE 2014 Dark matter and IceCube neutrinos R. Biondi Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi di L Aquila,

More information

Higgs Decay with Displaced Vertices

Higgs Decay with Displaced Vertices Higgs Decay with Displaced Vertices Nathaniel Craig UC Santa Barbara Based on work in progress with S. Alipour-Fard International Workshop on CEPC, Beijing 207 Higgs Displaced Decays Much attention of

More information

STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT. (Two lectures)

STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT. (Two lectures) STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT (Two lectures) Lecture 1: Mass scales in particle physics - naturalness in QFT Lecture 2: Renormalisable or non-renormalisable effective electroweak

More information

Light generations partners at the LHC

Light generations partners at the LHC Light generations partners at the LHC Giuliano Panico CERN IPNL Lyon 21 March 2014 based on C. Delaunay, T. Flacke, J. Gonzales, S. Lee, G. P. and G. Perez 1311.2072 [hep-ph] Introduction Introduction

More information

A light singlet at the LHC and DM

A light singlet at the LHC and DM A light singlet at the LHC and DM of the R-symmetric supersymmetric model Jan Kalinowski University of Warsaw in collaboration with P.Diessner, W. Kotlarski and D.Stoeckinger Supported in part by Harmonia

More information

Hidden two-higgs doublet model

Hidden two-higgs doublet model Hidden two-higgs doublet model C, Uppsala and Lund University SUSY10, Bonn, 2010-08-26 1 Two Higgs doublet models () 2 3 4 Phenomenological consequences 5 Two Higgs doublet models () Work together with

More information

Dark Matter Searches and Fine-Tuning in Supersymmetry. Maxim Perelstein, Cornell University PACIFIC 2011 Symposium September 9, 2011

Dark Matter Searches and Fine-Tuning in Supersymmetry. Maxim Perelstein, Cornell University PACIFIC 2011 Symposium September 9, 2011 Dark Matter Searches and Fine-Tuning in Supersymmetry Maxim Perelstein, Cornell University PACIFIC 2011 Symposium September 9, 2011 Bibliography Primary reference: MP, Shakya, arxiv:1107.5048 [hep-ph]

More information

Partnerium at the LHC

Partnerium at the LHC Peking University Quarkonium 2017 10 Nov 2017 Partnerium at the LHC Yevgeny Kats JHEP 1004, 016 (2010) [arxiv:0912.0526] w/schwartz JHEP 1109, 099 (2011) [arxiv:1103.3503] w/kahawala JHEP 1211, 097 (2012)

More information

Models as existence proofs, speculations or... peaces of physical reality

Models as existence proofs, speculations or... peaces of physical reality Models as existence proofs, speculations or... peaces of physical reality Riccardo Barbieri Zuoz II, July 16/21, 2006 An example of what could happen, based on: An ultra-bottom-up hypothesis 2 concrete

More information

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1 Physics 662 Particle Physics Phenomenology February 21, 2002 Physics 662, lecture 13 1 Physics Beyond the Standard Model Supersymmetry Grand Unified Theories: the SU(5) GUT Unification energy and weak

More information

Yasunori Nomura. UC Berkeley; LBNL. hep-ph/ [PLB] hep-ph/ [PLB] hep-ph/ [PRD] Based on work with Ryuichiro Kitano (SLAC)

Yasunori Nomura. UC Berkeley; LBNL. hep-ph/ [PLB] hep-ph/ [PLB] hep-ph/ [PRD] Based on work with Ryuichiro Kitano (SLAC) Yasunori Nomura UC Berkeley; LBNL Based on work with Ryuichiro Kitano (SLAC) hep-ph/0509039 [PLB] hep-ph/0509221 [PLB] hep-ph/0602096 [PRD] We will be living in the Era of Hadron Collider Exploring highest

More information

Theoretical Developments Beyond the Standard Model

Theoretical Developments Beyond the Standard Model Theoretical Developments Beyond the Standard Model by Ben Allanach (DAMTP, Cambridge University) Talk outline Bestiary of some relevant models SUSY dark matter Spins and alternatives B.C. Allanach p.1/18

More information

The bestest little Higgs

The bestest little Higgs The bestest little Higgs The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Schmaltz, Martin, Daniel

More information

Open Questions for the New Physics Working Group! (Theory)

Open Questions for the New Physics Working Group! (Theory) Open Questions for the New Physics Working Group! (Theory) Les Houches Thursday 15th June, 2017 Matthew McCullough Topics of Focus I am a model builder: Throughout I will illustrate the topics by considering

More information

Andrey Katz C. Brust, AK, S. Lawrence, and R. Sundrum; arxiv:

Andrey Katz C. Brust, AK, S. Lawrence, and R. Sundrum; arxiv: SUSY, the Third Generation and the LHC Andrey Katz C. Brust, AK, S. Lawrence, and R. Sundrum; arxiv:1011.6670 Harvard University January 9, 2012 Andrey Katz (Harvard) SUSY petite January 9, 2012 1 / 27

More information

Accidental SUSY at the LHC

Accidental SUSY at the LHC Accidental SUSY at the LHC Tony Gherghetta (University of Melbourne) PACIFIC 2011, Moorea, French Polynesia, September 12, 2011 with Benedict von Harling and Nick Setzer [arxiv:1104.3171] 1 What is the

More information

U(1) Gauge Extensions of the Standard Model

U(1) Gauge Extensions of the Standard Model U(1) Gauge Extensions of the Standard Model Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA U(1) Gauge Extensions of the Standard Model (int08) back to start

More information

Minimal Supersymmetric Standard Model (MSSM). Nausheen R. Shah

Minimal Supersymmetric Standard Model (MSSM). Nausheen R. Shah Minimal Supersymmetric Standard Model (MSSM). Nausheen R. Shah June 8, 2003 1 Introduction Even though the Standard Model has had years of experimental success, it has been known for a long time that it

More information

Composite Higgs/ Extra Dimensions

Composite Higgs/ Extra Dimensions Composite Higgs/ Extra Dimensions Eduardo Pontón Instituto de Física Teórica -UNESP & ICTP-SAIFR Snowmass on the Pacific, KITP May 30, 2013 Fundamental Question raised by the SM How and why is the Electroweak

More information

Where are we heading?

Where are we heading? Where are we heading? PiTP 2013 Nathan Seiberg IAS Purpose of this talk A brief, broad brush status report of particle physics Where we are How we got here (some historical perspective) What are the problems

More information

Particle Physics Today, Tomorrow and Beyond. John Ellis

Particle Physics Today, Tomorrow and Beyond. John Ellis Particle Physics Today, Tomorrow and Beyond John Ellis Summary of the Standard Model Particles and SU(3) SU(2) U(1) quantum numbers: Lagrangian: gauge interactions matter fermions Yukawa interactions Higgs

More information

arxiv:hep-ph/ v3 19 Oct 2001

arxiv:hep-ph/ v3 19 Oct 2001 A Note on Regularization methods in Kaluza-Klein Theories Roberto Contino, Luigi Pilo arxiv:hep-ph/0104130v3 19 Oct 2001 Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy & INFN Abstract

More information

DARK MATTER CANDIDATES IN COMPOSITE HIGGS MODELS

DARK MATTER CANDIDATES IN COMPOSITE HIGGS MODELS DARK MATTER CANDIDATES IN COMPOSITE HIGGS MODELS Daniel Murnane University of Adelaide, University of Southern Denmark Supervisors: Anthony G. Williams, Martin White, Francesco Sannino A NATURAL DM PARTICLE

More information

Baryon-Lepton Duplicity as the Progenitor of Long-Lived Dark Matter

Baryon-Lepton Duplicity as the Progenitor of Long-Lived Dark Matter UCRHEP-T593 Aug 018 arxiv:1808.05417v [hep-ph] 5 Jan 019 Baryon-Lepton Duplicity as the Progenitor of Long-Lived Dark Matter Ernest Ma Physics and Astronomy Department, University of California, Riverside,

More information

Probing SUSY Dark Matter at the LHC

Probing SUSY Dark Matter at the LHC Probing SUSY Dark Matter at the LHC Kechen Wang Mitchell Institute for Fundamental Physics and Astronomy Texas A&M University Preliminary Examination, Feb, 24 OUTLINE Supersymmetry dark matter (DM) Relic

More information