Math 1. 2-hours test May 13, 2017

Size: px
Start display at page:

Download "Math 1. 2-hours test May 13, 2017"

Transcription

1 Math. -hors test May, 7 JE/JKL.5.7 Problem restart:with(plots): A fnction f of two real variables is for x, y, given by f:=(x,y)-y/(x^+y^); f x, y y x y f(x,y); y x y (.) (.) Qestion In the x, y plane the three points A= (, ), B = (, ) and C= (, ) are considered. 'f(,)'=f(,); 'f(,-)'=f(,-); 'f(/,/)'=f(/,/); f f, = f, =, Since f(a) = f(c) =, A and C lie on the same level crve for f viz. on the level crve y f x, y =, x, y, x =, (x, y, y x y y =, x, y, x y =, (x, y),, 4 that is, the circle with centre at (, ) and radis except the point (,). Since f(b) =, B does not lie on this level crve for f, bt on the level crve f x, y =, x, y, x y =, (x, y),, 4 that is, the circle with centre at (, ) and radis except the point (,). The gradient for f is given by = (..) (..) (..) f x, y = f x (x, y), f y (x, y) = Qestion xy x y, x y x y, (x, y),.

2 If the first coordinate has to be zero, then either x of y mst be zero. This implies that if the second coordinate also has to be zero, then both x and y mst be zero. Bt f is not defind for (,). Since f x, y, for all x, y,, f has no stationary points. We consider the bonded and closed set of points M = x, y x y 4. I.e. M is the closed circlar disc between the two discs x y = (centre, and radis ) and x y = 4 (centre, and radis ). C:=implicitplot(x^+y^<4,x=-..,y=-..,scaling=constrained, linestyle=): C:=implicitplot(x^+y^,x=-..,y=-..,filled=tre, coloring=[gray,white],scaling=constrained,linestyle=): R:=implicitplot(x^+y^=,x=-..,y=-..,color=black,scaling= constrained,linestyle=,thickness=): R:=implicitplot(x^+y^=4,x=-..,y=-..,color=black,scaling= constrained,linestyle=,thickness=): C:=implicitplot(x^+y^4,x=-..,y=-..,scaling=constrained, filled=tre,coloring=[white,white],linestyle=): display(c,c,c,r,r,title="cirkelringen M"); Note that it is not a reqirement to the answer that yo can draw this figre of M in Maple. Qestion Since M is bonded and closed and since f is continos in M, then f has a global minimm and a global maximm in M. Since f has neither stationary points nor exception points in the interior

3 of M, these vales are attained at the bodary of M. Bondary investigation: (): x y = x = y, y ;. g y = f y, y = y, y ;. g y = for all y ;. I.e. g is increasing. g = f, = is smallest and g = f, = is largest. (): x y = 4 x = 4 y, y ;. h y = f 4 y, y = 4 y, y ;. h y = 4 for all y ;. I.e. h is increasing. h = f, = is smallest and h = f, = is largest. By nmerical comparison of these investigation we find that the global minimm is and is attained at point B and that the global maximm is, that is attained in point A. Note that since M is connected, the range is f M = ;. Problem restart: The approximating second-degree polynomial abot the point (, ) of a real fnction f x, y is given by P x, y = f, f x, x f y, y f xx, x f xy, xy f yy, y = x y = x y. while the approximating second-degree polynomial abot the point ( Q x, y = f = 4, f x f xx, x e e x, x f y f xy, x e y = 4 e, y e x,) is given by y f yy, y e y. Qestion From the given expression for P x, y we read that f, =, f x, =, f y, =, f xx, =, f xy, = and f yy, =.

4 Qestion If f has a proper local maximm or a proper local minimm in a point, then the point mst be a stationary point, since f has no exception points. Since f, = f x, ), f y (, ) =,, (,) is a stationary point for f. The Hessian matrix for f in the point (,) is H(, ) = f xx, f xy, f xy, f yy, = that has the eigenvales and. Since both eigenvales for H(, ) are positive, then f, = is a proper local minimm., Qestion From the given expression for Q x, y we read that f, = 4 e, f x, =, f y, =, f xx f yy, = Since f point for f. e., = f x The Hessian matrix for f in the point H, =,, f y f xx, f xy f xy, f yy, is, = e, f xy, =,, (,, = e, = and,) is also a stationary e, that has the eigenvales e and e. Since the two eigenvales for H, are of opposite sign, then f proper local minimm nor a proper local maximm., is neither a Problem restart:with(linearalgebra):with(plots): prik:=(x,y)-vectorcalcls[dotprodct](x,y):

5 kryds:=(x,y)-convert(vectorcalcls[crossprodct](x,y),vector) : A cylindrical srface F in the x, y, z -space is given by the parametric representation r:=(,v)-<^-,^+,v*: r(,v); v (.) where ; and v ;. plotd(r(,v),=..sqrt()/,v=..,orientation=[-4,8],axes= normal,view=[-...,..,-...]); Qestion r:=diff~(r(,v),); r v (..)

6 rv:=diff~(r(,v),v); rv (..) The normal vector is N:=kryds(r,rv); N (..) The Jacobi fnction corresponding to r is Jacobi:=simplify(sqrt(prik(N,N))); Jacobi 4 4 (..4) Ar(F) = d = Jacobi, v d dv F Int(Int(Jacobi,=..sqrt()/),v=..)=int(int(Jacobi,=.. sqrt()/),v=..); 4 4 d dv = 7 (..5) Let L denote the directrix in the (x,y)-plane corresponding to F. Qestion L is the crve of intersection between the srface F and the x, y -plane. a parametric representation for L is then s:=r(,); s (..) where,. s:=diff~(s,); s (..) The Jacobi fnction corresponding to L hørende Jacobifnktion is Jacobi:=simplify(sqrt(prik(s,s))); Jacobi 8 (..)

7 Qestion L y x d = y x Jacobi d = Jacobi d Int(*Jacobi,=..sqrt()/)=int(*Jacobi,=..sqrt()/); Problem 4 8 d = 7 restart:with(linearalgebra):with(plots): prik:=(x,y)-vectorcalcls[dotprodct](x,y): kryds:=(x,y)-convert(vectorcalcls[crossprodct](x,y),vector) : div:=v-vectorcalcls[divergence](v): rot:=proc(x) ses VectorCalcls;BasisFormat(false);Crl(X)end proc: (..) A vector field in the x, y, z -space is given by V:=(x,y,z)-<x^,-*y*x,z: V(x,y,z); In the x, z -plane we consider a profile region A given by the parametric representation s:=(,v)-<,,v*sin(): s(,v); x y x z v sin (4.) (4.) where ; and v ;. plotd(s(,v),=..pi/,v=..,axes=normal,scaling=constrained) ;

8 A solid of revoltion Ω appears by rotation of A throgh the angle 4 abot the z-axis conterclockwise as seen from the positive end of the z-axis. Qestion The parametric representation for Ω r:=(,v,w)-<*cos(w),*sin(w),v*sin(): r(,v,w); cos w sin w v sin (4..) where ;, v ; and w ; 4. Qestion is the closed srface of Ω oriented with otward-pointing nit normal vector. From Gass' theorem we then get fås da

9 Flx(V, ) = Div (V) d = div(v)(x,y,z); 4 Div (V)(r(, v, w)) Jacobi(, v, w) d dv dw M:=<diff~(r(,v,w),) diff~(r(,v,w),v) diff~(r(,v,w),w); cos w sin w M sin w cos w v cos sin Jr:=simplify(Determinant(M)); Jr sin that is, since ; Jacobi:=-Jr;. The jacobi fnction corresponding to r is then Jacobi integranden:=*jacobi; integranden sin sin (4..) (4..) (4..) (4..4) (4..5) Int(Int(Int(integranden,=..Pi/),v=..),w=..Pi/4)=int(int (int(integranden,=..pi/),v=..),w=..pi/4); 4 sin d dv dw = 4 (4..) Qestion Let G denote the part of the srface of Ω, that bonds Ω above. Ths G is the srface of revoltion that appears by rotating the pper bondary crve for A in the x, z -plane throng the angle 4 abot the z-axis conter-clockwize as seen from the poitive side of the z-axis. A parametric representation G is then R:=r(,,w); R where ; and w ; 4 R:=diff~(R,); R Rw:=diff~(R,w);. cos w sin w sin cos w sin w cos (4..) (4..) (4..)

10 Rw sin w cos w (4..) Thenormal vector of the srface is N:=simplify(kryds(R,Rw)); cos cos w N cos sin w (4..4) N, w forms an acte angle with the z-axis, since its z-coordinat z, w = ;. for flade:=plotd(r,=..pi/,w=..pi/4,scaling=constrained): pil:=arrow(sbs(=,w=pi/8,r),sbs(=,w=pi/8,n)): display(flade,pil,orientation=[-,7]); With the chosen orientation of the closed bondary crve G for G we then have n G = N, w N, w for ; (the right-hand rle). From Stokes' theorem we then have

11 Cirk(V, G = Flx(Crl(V), G) = d dw rot(v)(x,y,z); n G Crl V d = G 4 N, w Crl V (R(,w)) (4..5) y The crl of the vector field on the srface is Crl:=<,,-**sin(w); Rot integranden:=prik(n,crl); integranden sin w sin w Int(Int(integranden,=..Pi/),w=..Pi/4)=int(int (integranden,=..pi/),w=..pi/4); 4 sin w d dw = 4 (4..) (4..7) (4..8)

Right Trapezoid Cover for Triangles of Perimeter Two

Right Trapezoid Cover for Triangles of Perimeter Two Kasetsart J (Nat Sci) 45 : 75-7 (0) Right Trapezoid Cover for Triangles of Perimeter Two Banyat Sroysang ABSTRACT A convex region covers a family of arcs if it contains a congrent copy of every arc in

More information

Math Maximum and Minimum Values, I

Math Maximum and Minimum Values, I Math 213 - Maximum and Minimum Values, I Peter A. Perry University of Kentucky October 8, 218 Homework Re-read section 14.7, pp. 959 965; read carefully pp. 965 967 Begin homework on section 14.7, problems

More information

OPTIMUM EXPRESSION FOR COMPUTATION OF THE GRAVITY FIELD OF A POLYHEDRAL BODY WITH LINEARLY INCREASING DENSITY 1

OPTIMUM EXPRESSION FOR COMPUTATION OF THE GRAVITY FIELD OF A POLYHEDRAL BODY WITH LINEARLY INCREASING DENSITY 1 OPTIMUM EXPRESSION FOR COMPUTATION OF THE GRAVITY FIEL OF A POLYHERAL BOY WITH LINEARLY INCREASING ENSITY 1 V. POHÁNKA2 Abstract The formla for the comptation of the gravity field of a polyhedral body

More information

MATH Max-min Theory Fall 2016

MATH Max-min Theory Fall 2016 MATH 20550 Max-min Theory Fall 2016 1. Definitions and main theorems Max-min theory starts with a function f of a vector variable x and a subset D of the domain of f. So far when we have worked with functions

More information

Math 263 Assignment #3 Solutions. 1. A function z = f(x, y) is called harmonic if it satisfies Laplace s equation:

Math 263 Assignment #3 Solutions. 1. A function z = f(x, y) is called harmonic if it satisfies Laplace s equation: Math 263 Assignment #3 Soltions 1. A fnction z f(x, ) is called harmonic if it satisfies Laplace s eqation: 2 + 2 z 2 0 Determine whether or not the following are harmonic. (a) z x 2 + 2. We se the one-variable

More information

18-660: Numerical Methods for Engineering Design and Optimization

18-660: Numerical Methods for Engineering Design and Optimization 8-66: Nmerical Methos for Engineering Design an Optimization in Li Department of ECE Carnegie Mellon University Pittsbrgh, PA 53 Slie Overview Geometric Problems Maximm inscribe ellipsoi Minimm circmscribe

More information

1. Find and classify the extrema of h(x, y) = sin(x) sin(y) sin(x + y) on the square[0, π] [0, π]. (Keep in mind there is a boundary to check out).

1. Find and classify the extrema of h(x, y) = sin(x) sin(y) sin(x + y) on the square[0, π] [0, π]. (Keep in mind there is a boundary to check out). . Find and classify the extrema of hx, y sinx siny sinx + y on the square[, π] [, π]. Keep in mind there is a boundary to check out. Solution: h x cos x sin y sinx + y + sin x sin y cosx + y h y sin x

More information

2. Find the coordinates of the point where the line tangent to the parabola 2

2. Find the coordinates of the point where the line tangent to the parabola 2 00. lim 3 3 3 = (B) (C) 0 (D) (E). Find the coordinates of the point where the line tangent to the parabola y = 4 at = 4 intersects the ais of symmetry of the parabola. 3. If f () = 7 and f () = 3, then

More information

Curves - Foundation of Free-form Surfaces

Curves - Foundation of Free-form Surfaces Crves - Fondation of Free-form Srfaces Why Not Simply Use a Point Matrix to Represent a Crve? Storage isse and limited resoltion Comptation and transformation Difficlties in calclating the intersections

More information

Theorem (Change of Variables Theorem):

Theorem (Change of Variables Theorem): Avance Higher Notes (Unit ) Prereqisites: Integrating (a + b) n, sin (a + b) an cos (a + b); erivatives of tan, sec, cosec, cot, e an ln ; sm/ifference rles; areas ner an between crves. Maths Applications:

More information

Section 14.8 Maxima & minima of functions of two variables. Learning outcomes. After completing this section, you will inshaallah be able to

Section 14.8 Maxima & minima of functions of two variables. Learning outcomes. After completing this section, you will inshaallah be able to Section 14.8 Maxima & minima of functions of two variables 14.8 1 Learning outcomes After completing this section, you will inshaallah be able to 1. explain what is meant by relative maxima or relative

More information

Mat 241 Homework Set 3 Due Professor David Schultz

Mat 241 Homework Set 3 Due Professor David Schultz Mat 4 Homework Set De Professor David Schltz Directions: Show all algebraic steps neatly and concisely sing proper mathematical symbolism. When graphs and technology are to be implemented, do so appropriately.

More information

Methods for Advanced Mathematics (C3) FRIDAY 11 JANUARY 2008

Methods for Advanced Mathematics (C3) FRIDAY 11 JANUARY 2008 ADVANCED GCE 4753/ MATHEMATICS (MEI) Methods for Advanced Mathematics (C3) FRIDAY JANUARY 8 Additional materials: Answer Booklet (8 pages) Graph paper MEI Eamination Formlae and Tables (MF) Morning Time:

More information

A Blue Lagoon Function

A Blue Lagoon Function Downloaded from orbit.dt.dk on: Oct 11, 2018 A Ble Lagoon Fnction Markorsen, Steen Pblication date: 2007 Link back to DTU Orbit Citation (APA): Markorsen, S., (2007). A Ble Lagoon Fnction General rights

More information

WEAR PREDICTION OF A TOTAL KNEE PROSTHESIS TIBIAL TRAY

WEAR PREDICTION OF A TOTAL KNEE PROSTHESIS TIBIAL TRAY APPLIED PHYSICS MEDICAL WEAR PREDICTION OF A TOTAL KNEE PROSTHESIS TIBIAL TRAY L. CÃPITANU, A. IAROVICI, J. ONIªORU Institte of Solid Mechanics, Romanian Academy, Constantin Mille 5, Bcharest Received

More information

m = Average Rate of Change (Secant Slope) Example:

m = Average Rate of Change (Secant Slope) Example: Average Rate o Change Secant Slope Deinition: The average change secant slope o a nction over a particlar interval [a, b] or [a, ]. Eample: What is the average rate o change o the nction over the interval

More information

Math 116 First Midterm October 14, 2009

Math 116 First Midterm October 14, 2009 Math 116 First Midterm October 14, 9 Name: EXAM SOLUTIONS Instrctor: Section: 1. Do not open this exam ntil yo are told to do so.. This exam has 1 pages inclding this cover. There are 9 problems. Note

More information

Formal Methods for Deriving Element Equations

Formal Methods for Deriving Element Equations Formal Methods for Deriving Element Eqations And the importance of Shape Fnctions Formal Methods In previos lectres we obtained a bar element s stiffness eqations sing the Direct Method to obtain eact

More information

A Contraction of the Lucas Polygon

A Contraction of the Lucas Polygon Western Washington University Western CEDAR Mathematics College of Science and Engineering 4 A Contraction of the Lcas Polygon Branko Ćrgs Western Washington University, brankocrgs@wwed Follow this and

More information

1 The space of linear transformations from R n to R m :

1 The space of linear transformations from R n to R m : Math 540 Spring 20 Notes #4 Higher deriaties, Taylor s theorem The space of linear transformations from R n to R m We hae discssed linear transformations mapping R n to R m We can add sch linear transformations

More information

MATH2715: Statistical Methods

MATH2715: Statistical Methods MATH275: Statistical Methods Exercises VI (based on lectre, work week 7, hand in lectre Mon 4 Nov) ALL qestions cont towards the continos assessment for this modle. Q. The random variable X has a discrete

More information

Bertrand s Theorem. October 8, µr 2 + V (r) 0 = dv eff dr. 3 + dv. f (r 0 )

Bertrand s Theorem. October 8, µr 2 + V (r) 0 = dv eff dr. 3 + dv. f (r 0 ) Bertrand s Theorem October 8, Circlar orbits The eective potential, V e = has a minimm or maximm at r i and only i so we mst have = dv e L µr + V r = L µ 3 + dv = L µ 3 r r = L µ 3 At this radis, there

More information

A Single Species in One Spatial Dimension

A Single Species in One Spatial Dimension Lectre 6 A Single Species in One Spatial Dimension Reading: Material similar to that in this section of the corse appears in Sections 1. and 13.5 of James D. Mrray (), Mathematical Biology I: An introction,

More information

Higher Maths A1.3 Recurrence Relations - Revision

Higher Maths A1.3 Recurrence Relations - Revision Higher Maths A Recrrence Relations - Revision This revision pack covers the skills at Unit Assessment exam level or Recrrence Relations so yo can evalate yor learning o this otcome It is important that

More information

Math 2204 Multivariable Calculus Chapter 14: Partial Derivatives Sec. 14.7: Maximum and Minimum Values

Math 2204 Multivariable Calculus Chapter 14: Partial Derivatives Sec. 14.7: Maximum and Minimum Values Math 2204 Multivariable Calculus Chapter 14: Partial Derivatives Sec. 14.7: Maximum and Minimum Values I. Review from 1225 A. Definitions 1. Local Extreme Values (Relative) a. A function f has a local

More information

SOLUTIONS to Problems for Review Chapter 15 McCallum, Hughes, Gleason, et al. ISBN by Vladimir A. Dobrushkin

SOLUTIONS to Problems for Review Chapter 15 McCallum, Hughes, Gleason, et al. ISBN by Vladimir A. Dobrushkin SOLUTIONS to Problems for Review Chapter 1 McCallum, Hughes, Gleason, et al. ISBN 978-0470-118-9 by Vladimir A. Dobrushkin For Exercises 1, find the critical points of the given function and classify them

More information

Two identical, flat, square plates are immersed in the flow with velocity U. Compare the drag forces experienced by the SHADED areas.

Two identical, flat, square plates are immersed in the flow with velocity U. Compare the drag forces experienced by the SHADED areas. Two identical flat sqare plates are immersed in the flow with velocity U. Compare the drag forces experienced by the SHAE areas. F > F A. A B F > F B. B A C. FA = FB. It depends on whether the bondary

More information

MATH2715: Statistical Methods

MATH2715: Statistical Methods MATH275: Statistical Methods Exercises III (based on lectres 5-6, work week 4, hand in lectre Mon 23 Oct) ALL qestions cont towards the continos assessment for this modle. Q. If X has a niform distribtion

More information

Change of Variables. (f T) JT. f = U

Change of Variables. (f T) JT. f = U Change of Variables 4-5-8 The change of ariables formla for mltiple integrals is like -sbstittion for single-ariable integrals. I ll gie the general change of ariables formla first, and consider specific

More information

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours) SOLUTIONS TO THE 18.02 FINAL EXAM BJORN POONEN December 14, 2010, 9:00am-12:00 (3 hours) 1) For each of (a)-(e) below: If the statement is true, write TRUE. If the statement is false, write FALSE. (Please

More information

BROWN UNIVERSITY MATH 0350 MIDTERM 19 OCTOBER 2017 INSTRUCTOR: SAMUEL S. WATSON. a b. Name: Problem 1

BROWN UNIVERSITY MATH 0350 MIDTERM 19 OCTOBER 2017 INSTRUCTOR: SAMUEL S. WATSON. a b. Name: Problem 1 BROWN UNIVERSITY MATH 0350 MIDTERM 19 OCTOBER 2017 INSTRUCTOR: SAMUEL S. WATSON Name: Problem 1 In this problem, we will use vectors to show that an angle formed by connecting a point on a circle to two

More information

Ground Rules. PC1221 Fundamentals of Physics I. Position and Displacement. Average Velocity. Lectures 7 and 8 Motion in Two Dimensions

Ground Rules. PC1221 Fundamentals of Physics I. Position and Displacement. Average Velocity. Lectures 7 and 8 Motion in Two Dimensions PC11 Fndamentals of Physics I Lectres 7 and 8 Motion in Two Dimensions A/Prof Tay Sen Chan 1 Grond Rles Switch off yor handphone and paer Switch off yor laptop compter and keep it No talkin while lectre

More information

MATH 0350 PRACTICE FINAL FALL 2017 SAMUEL S. WATSON. a c. b c.

MATH 0350 PRACTICE FINAL FALL 2017 SAMUEL S. WATSON. a c. b c. MATH 35 PRACTICE FINAL FALL 17 SAMUEL S. WATSON Problem 1 Verify that if a and b are nonzero vectors, the vector c = a b + b a bisects the angle between a and b. The cosine of the angle between a and c

More information

ENGI Partial Differentiation Page y f x

ENGI Partial Differentiation Page y f x ENGI 3424 4 Partial Differentiation Page 4-01 4. Partial Differentiation For functions of one variable, be found unambiguously by differentiation: y f x, the rate of change of the dependent variable can

More information

Cubic graphs have bounded slope parameter

Cubic graphs have bounded slope parameter Cbic graphs have bonded slope parameter B. Keszegh, J. Pach, D. Pálvölgyi, and G. Tóth Agst 25, 2009 Abstract We show that every finite connected graph G with maximm degree three and with at least one

More information

Math 234. What you should know on day one. August 28, You should be able to use general principles like. x = cos t, y = sin t, 0 t π.

Math 234. What you should know on day one. August 28, You should be able to use general principles like. x = cos t, y = sin t, 0 t π. Math 234 What you should know on day one August 28, 2001 1 You should be able to use general principles like Length = ds, Area = da, Volume = dv For example the length of the semi circle x = cos t, y =

More information

Math 263 Final. (b) The cross product is. i j k c. =< c 1, 1, 1 >

Math 263 Final. (b) The cross product is. i j k c. =< c 1, 1, 1 > Math 63 Final Problem 1: [ points, 5 points to each part] Given the points P : (1, 1, 1), Q : (1,, ), R : (,, c 1), where c is a parameter, find (a) the vector equation of the line through P and Q. (b)

More information

FRTN10 Exercise 12. Synthesis by Convex Optimization

FRTN10 Exercise 12. Synthesis by Convex Optimization FRTN Exercise 2. 2. We want to design a controller C for the stable SISO process P as shown in Figre 2. sing the Yola parametrization and convex optimization. To do this, the control loop mst first be

More information

Math 118, Fall 2014 Final Exam

Math 118, Fall 2014 Final Exam Math 8, Fall 4 Final Exam True or false Please circle your choice; no explanation is necessary True There is a linear transformation T such that T e ) = e and T e ) = e Solution Since T is linear, if T

More information

V. Graph Sketching and Max-Min Problems

V. Graph Sketching and Max-Min Problems V. Graph Sketching and Max-Min Problems The signs of the first and second derivatives of a function tell us something about the shape of its graph. In this chapter we learn how to find that information.

More information

ρ u = u. (1) w z will become certain time, and at a certain point in space, the value of

ρ u = u. (1) w z will become certain time, and at a certain point in space, the value of THE CONDITIONS NECESSARY FOR DISCONTINUOUS MOTION IN GASES G I Taylor Proceedings of the Royal Society A vol LXXXIV (90) pp 37-377 The possibility of the propagation of a srface of discontinity in a gas

More information

4 Exact laminar boundary layer solutions

4 Exact laminar boundary layer solutions 4 Eact laminar bondary layer soltions 4.1 Bondary layer on a flat plate (Blasis 1908 In Sec. 3, we derived the bondary layer eqations for 2D incompressible flow of constant viscosity past a weakly crved

More information

u P(t) = P(x,y) r v t=0 4/4/2006 Motion ( F.Robilliard) 1

u P(t) = P(x,y) r v t=0 4/4/2006 Motion ( F.Robilliard) 1 y g j P(t) P(,y) r t0 i 4/4/006 Motion ( F.Robilliard) 1 Motion: We stdy in detail three cases of motion: 1. Motion in one dimension with constant acceleration niform linear motion.. Motion in two dimensions

More information

Chapter 2. Polynomial and Rational Functions. 2.3 Polynomial Functions and Their Graphs. Copyright 2014, 2010, 2007 Pearson Education, Inc.

Chapter 2. Polynomial and Rational Functions. 2.3 Polynomial Functions and Their Graphs. Copyright 2014, 2010, 2007 Pearson Education, Inc. Chapter Polynomial and Rational Functions.3 Polynomial Functions and Their Graphs Copyright 014, 010, 007 Pearson Education, Inc. 1 Objectives: Identify polynomial functions. Recognize characteristics

More information

2. Partial Differentiation

2. Partial Differentiation . Partial Differentiation A. Fnctions and Partial Derivatives A- In the pictres below, not all of the level crves are labeled. In (c) and (d), the pictre is the same, bt the labelings are different. In

More information

MATH H53 : Final exam

MATH H53 : Final exam MATH H53 : Final exam 11 May, 18 Name: You have 18 minutes to answer the questions. Use of calculators or any electronic items is not permitted. Answer the questions in the space provided. If you run out

More information

DO NOT BEGIN THIS TEST UNTIL INSTRUCTED TO START

DO NOT BEGIN THIS TEST UNTIL INSTRUCTED TO START Math 265 Student name: KEY Final Exam Fall 23 Instructor & Section: This test is closed book and closed notes. A (graphing) calculator is allowed for this test but cannot also be a communication device

More information

3 Applications of partial differentiation

3 Applications of partial differentiation Advanced Calculus Chapter 3 Applications of partial differentiation 37 3 Applications of partial differentiation 3.1 Stationary points Higher derivatives Let U R 2 and f : U R. The partial derivatives

More information

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt Jim Lambers MAT 28 ummer emester 212-1 Practice Final Exam olution 1. Evaluate the line integral xy dx + e y dy + xz dz, where is given by r(t) t 4, t 2, t, t 1. olution From r (t) 4t, 2t, t 2, we obtain

More information

Math Review for Exam Compute the second degree Taylor polynomials about (0, 0) of the following functions: (a) f(x, y) = e 2x 3y.

Math Review for Exam Compute the second degree Taylor polynomials about (0, 0) of the following functions: (a) f(x, y) = e 2x 3y. Math 35 - Review for Exam 1. Compute the second degree Taylor polynomial of f e x+3y about (, ). Solution. A computation shows that f x(, ), f y(, ) 3, f xx(, ) 4, f yy(, ) 9, f xy(, ) 6. The second degree

More information

e x3 dx dy. 0 y x 2, 0 x 1.

e x3 dx dy. 0 y x 2, 0 x 1. Problem 1. Evaluate by changing the order of integration y e x3 dx dy. Solution:We change the order of integration over the region y x 1. We find and x e x3 dy dx = y x, x 1. x e x3 dx = 1 x=1 3 ex3 x=

More information

The Linear Quadratic Regulator

The Linear Quadratic Regulator 10 The Linear Qadratic Reglator 10.1 Problem formlation This chapter concerns optimal control of dynamical systems. Most of this development concerns linear models with a particlarly simple notion of optimality.

More information

University of California, Berkeley Physics H7C Fall 1999 (Strovink) SOLUTION TO FINAL EXAMINATION

University of California, Berkeley Physics H7C Fall 1999 (Strovink) SOLUTION TO FINAL EXAMINATION University of California Berkeley Physics H7C Fall 999 (Strovink SOUTION TO FINA EXAMINATION Directions. Do all six problems (weights are indicated. This is a closed-book closed-note exam except for three

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com Qestion Answer Marks (i) a = ½ B allow = ½ y y d y ( ). d ( ) 6 ( ) () dy * d y ( ) dy/d = 0 when = 0 ( ) = 0, = 0 or ¾ y = (¾) /½ = 7/, y = 0.95 (sf) [] B [9] y dy/d Gi Qotient (or prodct) rle consistent

More information

Restricted Three-Body Problem in Different Coordinate Systems

Restricted Three-Body Problem in Different Coordinate Systems Applied Mathematics 3 949-953 http://dx.doi.org/.436/am..394 Pblished Online September (http://www.scirp.org/jornal/am) Restricted Three-Body Problem in Different Coordinate Systems II-In Sidereal Spherical

More information

The Heat Equation and the Li-Yau Harnack Inequality

The Heat Equation and the Li-Yau Harnack Inequality The Heat Eqation and the Li-Ya Harnack Ineqality Blake Hartley VIGRE Research Paper Abstract In this paper, we develop the necessary mathematics for nderstanding the Li-Ya Harnack ineqality. We begin with

More information

UNIT V BOUNDARY LAYER INTRODUCTION

UNIT V BOUNDARY LAYER INTRODUCTION UNIT V BOUNDARY LAYER INTRODUCTION The variation of velocity from zero to free-stream velocity in the direction normal to the bondary takes place in a narrow region in the vicinity of solid bondary. This

More information

1.1 Functions and Their Representations

1.1 Functions and Their Representations Arkansas Tech University MATH 2914: Calculus I Dr. Marcel B. Finan 1.1 Functions and Their Representations Functions play a crucial role in mathematics. A function describes how one quantity depends on

More information

Complex Variables. For ECON 397 Macroeconometrics Steve Cunningham

Complex Variables. For ECON 397 Macroeconometrics Steve Cunningham Comple Variables For ECON 397 Macroeconometrics Steve Cnningham Open Disks or Neighborhoods Deinition. The set o all points which satis the ineqalit

More information

Lecture Notes: Finite Element Analysis, J.E. Akin, Rice University

Lecture Notes: Finite Element Analysis, J.E. Akin, Rice University 9. TRUSS ANALYSIS... 1 9.1 PLANAR TRUSS... 1 9. SPACE TRUSS... 11 9.3 SUMMARY... 1 9.4 EXERCISES... 15 9. Trss analysis 9.1 Planar trss: The differential eqation for the eqilibrim of an elastic bar (above)

More information

Math 141: Section 4.1 Extreme Values of Functions - Notes

Math 141: Section 4.1 Extreme Values of Functions - Notes Math 141: Section 4.1 Extreme Values of Functions - Notes Definition: Let f be a function with domain D. Thenf has an absolute (global) maximum value on D at a point c if f(x) apple f(c) for all x in D

More information

08.06 Shooting Method for Ordinary Differential Equations

08.06 Shooting Method for Ordinary Differential Equations 8.6 Shooting Method for Ordinary Differential Eqations After reading this chapter, yo shold be able to 1. learn the shooting method algorithm to solve bondary vale problems, and. apply shooting method

More information

Math 234 Final Exam (with answers) Spring 2017

Math 234 Final Exam (with answers) Spring 2017 Math 234 Final Exam (with answers) pring 217 1. onsider the points A = (1, 2, 3), B = (1, 2, 2), and = (2, 1, 4). (a) [6 points] Find the area of the triangle formed by A, B, and. olution: One way to solve

More information

Conceptual Questions. Problems. 852 CHAPTER 29 Magnetic Fields

Conceptual Questions. Problems. 852 CHAPTER 29 Magnetic Fields 852 CHAPTER 29 Magnetic Fields magnitde crrent, and the niform magnetic field points in the positive direction. Rank the loops by the magnitde of the torqe eerted on them by the field from largest to smallest.

More information

Chapter 6: Vector Analysis

Chapter 6: Vector Analysis Chapter 6: Vector Analysis We use derivatives and various products of vectors in all areas of physics. For example, Newton s 2nd law is F = m d2 r. In electricity dt 2 and magnetism, we need surface and

More information

Krauskopf, B., Lee, CM., & Osinga, HM. (2008). Codimension-one tangency bifurcations of global Poincaré maps of four-dimensional vector fields.

Krauskopf, B., Lee, CM., & Osinga, HM. (2008). Codimension-one tangency bifurcations of global Poincaré maps of four-dimensional vector fields. Kraskopf, B, Lee,, & Osinga, H (28) odimension-one tangency bifrcations of global Poincaré maps of for-dimensional vector fields Early version, also known as pre-print Link to pblication record in Explore

More information

sin u 5 opp } cos u 5 adj } hyp opposite csc u 5 hyp } sec u 5 hyp } opp Using Inverse Trigonometric Functions

sin u 5 opp } cos u 5 adj } hyp opposite csc u 5 hyp } sec u 5 hyp } opp Using Inverse Trigonometric Functions 13 Big Idea 1 CHAPTER SUMMARY BIG IDEAS Using Trigonometric Fnctions Algebra classzone.com Electronic Fnction Library For Yor Notebook hypotense acent osite sine cosine tangent sin 5 hyp cos 5 hyp tan

More information

SOLUTIONS TO HOMEWORK ASSIGNMENT #2, Math 253

SOLUTIONS TO HOMEWORK ASSIGNMENT #2, Math 253 SOLUTIONS TO HOMEWORK ASSIGNMENT #, Math 5. Find the equation of a sphere if one of its diameters has end points (, 0, 5) and (5, 4, 7). The length of the diameter is (5 ) + ( 4 0) + (7 5) = =, so the

More information

1 Differential Equations for Solid Mechanics

1 Differential Equations for Solid Mechanics 1 Differential Eqations for Solid Mechanics Simple problems involving homogeneos stress states have been considered so far, wherein the stress is the same throghot the component nder std. An eception to

More information

Evaluation of the Fiberglass-Reinforced Plastics Interfacial Behavior by using Ultrasonic Wave Propagation Method

Evaluation of the Fiberglass-Reinforced Plastics Interfacial Behavior by using Ultrasonic Wave Propagation Method 17th World Conference on Nondestrctive Testing, 5-8 Oct 008, Shanghai, China Evalation of the Fiberglass-Reinforced Plastics Interfacial Behavior by sing Ultrasonic Wave Propagation Method Jnjie CHANG

More information

ENGI 4430 Line Integrals; Green s Theorem Page 8.01

ENGI 4430 Line Integrals; Green s Theorem Page 8.01 ENGI 4430 Line Integrals; Green s Theorem Page 8.01 8. Line Integrals Two applications of line integrals are treated here: the evaluation of work done on a particle as it travels along a curve in the presence

More information

BROWN UNIVERSITY MATH 0350 MIDTERM 19 OCTOBER 2017 INSTRUCTOR: SAMUEL S. WATSON

BROWN UNIVERSITY MATH 0350 MIDTERM 19 OCTOBER 2017 INSTRUCTOR: SAMUEL S. WATSON BROWN UNIVERSITY MATH 0350 MIDTERM 19 OCTOBER 2017 INSTRUCTOR: SAMUEL S. WATSON Name: Problem 1 In this problem, we will use vectors to show that an angle formed by connecting a point on a circle to two

More information

Chapter 2: Functions, Limits and Continuity

Chapter 2: Functions, Limits and Continuity Chapter 2: Functions, Limits and Continuity Functions Limits Continuity Chapter 2: Functions, Limits and Continuity 1 Functions Functions are the major tools for describing the real world in mathematical

More information

ENGI 4430 Line Integrals; Green s Theorem Page 8.01

ENGI 4430 Line Integrals; Green s Theorem Page 8.01 ENGI 443 Line Integrals; Green s Theorem Page 8. 8. Line Integrals Two applications of line integrals are treated here: the evaluation of work done on a particle as it travels along a curve in the presence

More information

All India Mock GATE Test Series Test series 4 Civil Engineering

All India Mock GATE Test Series Test series 4 Civil Engineering All India Mock GATE Test Series Test series 4 Civil Engineering Answer Keys and Explanations General Aptitde: 1 [Ans A] Meaning: slow to move or act Part of Speech: Adjective 2 [Ans *] Range: 9 to 9 So,

More information

Let f(x) = x, but the domain of f is the interval 0 x 1. Note

Let f(x) = x, but the domain of f is the interval 0 x 1. Note I.g Maximum and Minimum. Lagrange Multipliers Recall: Suppose we are given y = f(x). We recall that the maximum/minimum points occur at the following points: (1) where f = 0; (2) where f does not exist;

More information

Subcritical bifurcation to innitely many rotating waves. Arnd Scheel. Freie Universitat Berlin. Arnimallee Berlin, Germany

Subcritical bifurcation to innitely many rotating waves. Arnd Scheel. Freie Universitat Berlin. Arnimallee Berlin, Germany Sbcritical bifrcation to innitely many rotating waves Arnd Scheel Institt fr Mathematik I Freie Universitat Berlin Arnimallee 2-6 14195 Berlin, Germany 1 Abstract We consider the eqation 00 + 1 r 0 k2

More information

PLANETARY ORBITS. According to MATTER (Re-examined) Nainan K. Varghese,

PLANETARY ORBITS. According to MATTER (Re-examined) Nainan K. Varghese, PLANETARY ORBITS According to MATTER (Re-examined) Nainan K. Varghese, matterdoc@gmail.com http://www.matterdoc.info Abstract: It is an established fact that sn is a moving macro body in space. By simple

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com C Integration - By sbstittion PhysicsAndMathsTtor.com. Using the sbstittion cos +, or otherwise, show that e cos + sin d e(e ) (Total marks). (a) Using the sbstittion cos, or otherwise, find the eact vale

More information

STATIC, STAGNATION, AND DYNAMIC PRESSURES

STATIC, STAGNATION, AND DYNAMIC PRESSURES STATIC, STAGNATION, AND DYNAMIC PRESSURES Bernolli eqation is g constant In this eqation is called static ressre, becase it is the ressre that wold be measred by an instrment that is static with resect

More information

Math 265H: Calculus III Practice Midterm II: Fall 2014

Math 265H: Calculus III Practice Midterm II: Fall 2014 Name: Section #: Math 65H: alculus III Practice Midterm II: Fall 14 Instructions: This exam has 7 problems. The number of points awarded for each question is indicated in the problem. Answer each question

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , PK K I N E M A T I C S Syllabs : Frame of reference. Motion in a straight line : Position-time graph, speed and velocity. Uniform and non-niform motion, average speed and instantaneos velocity. Uniformly

More information

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr.

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr. 1. Let F(x, y) xyi+(y 3x)j, and let be the curve r(t) ti+(3t t 2 )j for t 2. ompute F dr. Solution. F dr b a 2 2 F(r(t)) r (t) dt t(3t t 2 ), 3t t 2 3t 1, 3 2t dt t 3 dt 1 2 4 t4 4. 2. Evaluate the line

More information

Math 23b Practice Final Summer 2011

Math 23b Practice Final Summer 2011 Math 2b Practice Final Summer 211 1. (1 points) Sketch or describe the region of integration for 1 x y and interchange the order to dy dx dz. f(x, y, z) dz dy dx Solution. 1 1 x z z f(x, y, z) dy dx dz

More information

UNIT 2 MATHEMATICAL METHODS 2013 MASTER CLASS PROGRAM WEEK 11 EXAMINATION 2 SOLUTIONS SECTION 1 MULTIPLE CHOICE QUESTIONS

UNIT 2 MATHEMATICAL METHODS 2013 MASTER CLASS PROGRAM WEEK 11 EXAMINATION 2 SOLUTIONS SECTION 1 MULTIPLE CHOICE QUESTIONS UNIT MATHEMATICAL METHODS 01 MASTER CLASS PROGRAM WEEK 11 EXAMINATION SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/MC-UPDATES SECTION 1 MULTIPLE CHOICE QUESTIONS QUESTION 1 QUESTION QUESTION

More information

The Derivative. Appendix B. B.1 The Derivative of f. Mappings from IR to IR

The Derivative. Appendix B. B.1 The Derivative of f. Mappings from IR to IR Appendix B The Derivative B.1 The Derivative of f In this chapter, we give a short summary of the derivative. Specifically, we want to compare/contrast how the derivative appears for functions whose domain

More information

FRÉCHET KERNELS AND THE ADJOINT METHOD

FRÉCHET KERNELS AND THE ADJOINT METHOD PART II FRÉCHET KERNES AND THE ADJOINT METHOD 1. Setp of the tomographic problem: Why gradients? 2. The adjoint method 3. Practical 4. Special topics (sorce imaging and time reversal) Setp of the tomographic

More information

4 Primitive Equations

4 Primitive Equations 4 Primitive Eqations 4.1 Spherical coordinates 4.1.1 Usefl identities We now introdce the special case of spherical coordinates: (,, r) (longitde, latitde, radial distance from Earth s center), with 0

More information

ENGI Partial Differentiation Page y f x

ENGI Partial Differentiation Page y f x ENGI 344 4 Partial Differentiation Page 4-0 4. Partial Differentiation For functions of one variable, be found unambiguously by differentiation: y f x, the rate of change of the dependent variable can

More information

Solutions for the Practice Final - Math 23B, 2016

Solutions for the Practice Final - Math 23B, 2016 olutions for the Practice Final - Math B, 6 a. True. The area of a surface is given by the expression d, and since we have a parametrization φ x, y x, y, f x, y with φ, this expands as d T x T y da xy

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com . Two smooth niform spheres S and T have eqal radii. The mass of S is 0. kg and the mass of T is 0.6 kg. The spheres are moving on a smooth horizontal plane and collide obliqely. Immediately before the

More information

+ 2gx + 2fy + c = 0 if S

+ 2gx + 2fy + c = 0 if S CIRCLE DEFINITIONS A circle is the locus of a point which moves in such a way that its distance from a fixed point, called the centre, is always a constant. The distance r from the centre is called the

More information

Elements of Coordinate System Transformations

Elements of Coordinate System Transformations B Elements of Coordinate System Transformations Coordinate system transformation is a powerfl tool for solving many geometrical and kinematic problems that pertain to the design of gear ctting tools and

More information

MAT 211 Final Exam. Spring Jennings. Show your work!

MAT 211 Final Exam. Spring Jennings. Show your work! MAT 211 Final Exam. pring 215. Jennings. how your work! Hessian D = f xx f yy (f xy ) 2 (for optimization). Polar coordinates x = r cos(θ), y = r sin(θ), da = r dr dθ. ylindrical coordinates x = r cos(θ),

More information

called the potential flow, and function φ is called the velocity potential.

called the potential flow, and function φ is called the velocity potential. J. Szantr Lectre No. 3 Potential flows 1 If the flid flow is irrotational, i.e. everwhere or almost everwhere in the field of flow there is rot 0 it means that there eists a scalar fnction ϕ,, z), sch

More information

Caculus 221. Possible questions for Exam II. March 19, 2002

Caculus 221. Possible questions for Exam II. March 19, 2002 Caculus 221 Possible questions for Exam II March 19, 2002 These notes cover the recent material in a style more like the lecture than the book. The proofs in the book are in section 1-11. At the end there

More information

Kevin James. MTHSC 206 Section 12.5 Equations of Lines and Planes

Kevin James. MTHSC 206 Section 12.5 Equations of Lines and Planes MTHSC 206 Section 12.5 Equations of Lines and Planes Definition A line in R 3 can be described by a point and a direction vector. Given the point r 0 and the direction vector v. Any point r on the line

More information

Math 31CH - Spring Final Exam

Math 31CH - Spring Final Exam Math 3H - Spring 24 - Final Exam Problem. The parabolic cylinder y = x 2 (aligned along the z-axis) is cut by the planes y =, z = and z = y. Find the volume of the solid thus obtained. Solution:We calculate

More information

7a3 2. (c) πa 3 (d) πa 3 (e) πa3

7a3 2. (c) πa 3 (d) πa 3 (e) πa3 1.(6pts) Find the integral x, y, z d S where H is the part of the upper hemisphere of H x 2 + y 2 + z 2 = a 2 above the plane z = a and the normal points up. ( 2 π ) Useful Facts: cos = 1 and ds = ±a sin

More information