Efficient numerical solution of the Biot poroelasticity system in multilayered domains

Size: px
Start display at page:

Download "Efficient numerical solution of the Biot poroelasticity system in multilayered domains"

Transcription

1 Efficient numerical solution of the Biot poroelasticity system Anna Naumovich Oleg Iliev Francisco Gaspar Fraunhofer Institute for Industrial Mathematics Kaiserslautern, Germany, Spain Workshop on Model Concepts for Fluid-Fluid and Fluid-Solid Interactions Freudenstadt-Lauterbad, March 0-, 006

2 Outline Theory of poroelasticity and its practical applications Biot model of poroelasticity Layered domains, interface problem Finite volume discretization Multigrid method Multigrid for problem with discontinuous coefficients. Operator-dependent prolongation Numerical results Summary

3 Poroelasticity Poroelasticity change in fluid flow = elasticity + diffusion deformation of the elastic porous material change in stress of the solid fluid flow inside the pores In general case coupled problem for flow and stress fields Practical applications: -geomechanics(land subsidence, borehole problems, construction of embankments, etc.) - biomechanics - industrial applications (e.g. filter manufacture) etc...

4 Biot model Momentum balance equation Diffusion equation T ( ) p 0 μ u+ u + λ u I + α = n p κ β α p f( x, t) t + u η = additional stress in the structure due to the fluid pressure additional fluid content due to the deformation u = p ( uvw) - displacement of the solid - fluid pressure unknowns parameters n k λ, μ β η f ( xt, ) α - porosity - permeability - Lame coefficients of the solid skeleton - compressibility of the fluid - viscosity of the fluid -sourceterm - Biot-Willis constant (suppose = further on) Parabolic-type system * The solution exists and it is unique ** * & ** R.E. Showalter. Diffusion in poroelastic media. Jour. Math. Anal. Appl., 000

5 Interface problem porous medium parameters: λ μ ϕ κ Interface Γ porous medium parameters: λ μ ϕ κ Interface conditions for the Biot system: Material parameters of the media λ and λ, μ and μ κ and κ, ϕ and ϕ may differ several orders of magnitude and, S [ p] Γ = 0 [ u] = 0 Γ [ V n] Γ = 0 [ Sn ] Γ = 0 κ where V = - p η = μ u+ u T + λ u ( ( ) ) ( ) - fluid pressure continuity - displacement continuity - continuity of the normal fluid flux - continuity of the normal effective stress I - fluid velocity (relative to the solid) - effective stress

6 3D model with horizontal plane interface z = ξ Interface : λ μ λ μ κ κ z = ξ n n elasticity part [ u ] = 0 z =ξ u μ z v μ z u λ x w + x w + y + v y [ v ] = 0 [ w ] = 0 + z =ξ z =ξ z =ξ = = 0 0 w z z =ξ ( λ + μ ) = 0 z =ξ diffusion part [ p ] = 0 k p z z =ξ z =ξ = 0

7 Finite volume discretization. Staggered grid We use staggered grid to discretize the system * - the domain is divided into 4 sets of control volumes staggered grid in 3D The finite volume discretization is derived: - using the polinomials, which are piecewise linear, extended with one special bilinear term in respective direction (for displacement components) - using piecewise - trilinear polinomials (for fluid pressure) All these polinomials must satisfy interface continuity conditions - discretization near the interface resulted in some specific averaging expressions for coefficients; - numerical experiments showed that this discretization provides second order of convergence for basic variables as well as for fluxes of the problem in maximum norm. pressure (in the vertices) u component of the displacement v component of the displacement w component of the displacement * following the work of P. Vabischevich, F. Lisbona, F. Gaspar A FD analysis of Biot s consolidation model

8 Multigridmethodand itscomponents MG is a general strategy, which exploits the fact that a problem can be solved on different scales of resolution (grids, levels) MG is an optimal order method. Offers a possibility to solve problems with N unknowns with O(N) work and storage for a large class of problems MG convergence speed does not depend on a discretization mesh size h MG COMPONENTS: Type of the MG cycle Smoother Coarsening Coarse grid operator Restriction Prolongation! The components of a MG method have to be adjusted to particular class of problems

9 Multigrid for problems with strongly discontinuous coefficients Convergence of a multigrid solver is strongly influenced by the jumps of the coefficients For strongly jumping coefficients convergence may depend on the size of the jump and its location with respect to the grid lines. Even divergence may occur. IMPORTANT Smoother Restriction Coarse grid operator Prolongation operator PROLONGATION OPERATORS: - tri- (bi-) linear interpolation - bicubic interpolation, etc. - operator-dependent interpolation - Accounts for the jumps of coefficients Rely on the continuity of the errors and their gradients - Rely on the interface continuity conditions (not continuity of the gradients)

10 Operator-dependent prolongation We want the operator-dependent prolongation to be consistent with our FV discretization Matrix form of the FV discretization of the Biot system: A A f uu up u u = A A f p pp p u p A A A A A A A uu A A A CASES: uu uv uw = vu vv vw wu wv ww A uu A pp p discrete elasticity operator (second order) A u and are first order coupling operators. Interpolation of each variable does not depend on the others (when blocks and dominate, and A uu in the block subblocks A uu A vv A up A up = Avp and dominate) ww. Interpolation of the elasticity variables and diffusion are independent (when blocks and dominate) A A wp discrete diffusion operator (second order) 3. Completely consistent interpolation of elasticity and diffusion variables (no assumption concerning block dominance) A uu A uu Ap u A pp A pp considered we did not consider

11 Operator-dependent prolongation for diffusion part (block App) Valid for the cases.,. STEPS,, 3, 4: Prolongation is based on the trilinear interpolation STEP 5: 5 Operator-dependent prolondation in z-direction p exploits continuity of the k across the interface z 4 3 h ( L p) h i, j,k+ 0.5k 0.5k p +, 0.5 i, j, k p θ i, j,k+ ( θ) k + θk ( ) θ k + θk = 0.5k 0.5k p + p, θ > 0.5 i, j, k i, j,k+ ( θ) k + θk ( θ) k + θk * * The formula above can be derived in different ways: see, e.g. works of Wesseling, de Zeeuw, Knapek This formula also follows from the polinomials, used in the FV discretization of the problem

12 Operator-dependent prolongation for elasticity part (block Auu) DIFFICULTIES: location of the coarse ( ) and fine ( ) grids for the first displacement component:. Components of the displacement u, v, w, depend on each other. u, v, w are defined on different grids (staggered) 3. Fine and coarse grids for each of the components are non-nested Altogether 6 (3 coarse + 3 fine) different grids with no common vertices...

13 Operator-dependent prolongation for elasticity part. Case. Assumption: A uu in the block subblocks Auu A vv A and dominate ww Interpolation of each displacement component does not depend on the others For the considered interface problem we have to interpolate in the following way: Standard linear interpolation in x - and y - directions Operator-dependent interpolation in z - direction e.g., interpolation in z direction of the w-component: λ + μ λ + μ wxyz (,, k hz) = 0.5 wk 0.5( xy, ) wk+ 0.5( xy, ) λ μ + λ + μ λ+ μ λ+ μ wxyz (,, k hz) = 0.5 wk 0.5( xy, ) wk+ 0.5( xy, ) λ + μ λ + μ θ < 0.5 where μ + λ + μ = (0.5 θ)( λ + μ ) + (0.5 + θ)( λ + μ ) = ( θ ) μ θμ Rem: for u- and v- components the prolongation is done in a similar way

14 Operator-dependent prolongation for elasticity part. Case. No assumption about the subblock dominance in Auu ( θ 0.5)( λ λ ) For the considered interface problem we have to interpolate in the following way: Standard linear interpolation in x - and y - directions Operator-dependent interpolation in z - direction e.g., interpolation in z direction of the w-component: λ + μ λ + μ wxy (,, z h ) = 0.5 w ( x, y) 0.5 w ( x, y) λ μ + + λ + μ k 0.5 z k 0.5 k h h hy 4 λ + μ z x + uxk, x, y + vyk, x, y λ + μ λ + μ w( x, y, zk hz) = 0.5 wk 0.5( x, y) wk ( x, y) λ + μ λ + μ h 4 ( θ 0.5)( λ λ ) interpolation of displacement components depend on each other + h hy,, λ + μ z x u xk, x y + vy, k x y Account for components u,v during the interpolation of w-component Account for components u,v during the interpolation of w-component Rem: for u- and v- components the prolongation is done in a similar way

15 Numerical experiment. MG* convergence. Domain: [0;]x[0;]x[0;] Time: [0;0^-] Coefficients: (jumps one order of magnitude) ξ = 0.50 λ =, λ = 0 μ =, μ = 0 k =, k = 0 Based on the standard prolongation Cycle type: F Nr of pre-smoothing steps: 3 Nr of post-smoothing steps: Smoother: collective alternating lexicographic line GS Based on the operator-dependent prolongation * the MG code is an extension (for the case of discontinuous coefficients) of the MG poroelasticity code, written by C.W. Oosterlee and F. Gaspar

16 Numerical experiment. MG convergence. Domain: [0;]x[0;]x[0;] Time: [0;0^-] Coefficients: (jumps 7 orders of magnitude) ξ = λ =, λ = 0 7 μ =, μ = 0 7 k =, k = 0 Cycle type: F Nr of pre-smoothing steps: 3 Nr of post-smoothing steps: Smoother: collective alternating lexicographic line GS Based on the standard prolongation Based on the operator-dependent prolongation * * the prolongations and for this test example give identical results

17 Summary Biot model with discontinuous coefficients was considered Finite volume discretization, which provides second order of convergence for the primary as well as flux variables was derived Operator-dependent prolongation was derived in order to provide MG covergence in the case of discontinuous coefficients A set of numerical experiments was carried out

Aspects of Multigrid

Aspects of Multigrid Aspects of Multigrid Kees Oosterlee 1,2 1 Delft University of Technology, Delft. 2 CWI, Center for Mathematics and Computer Science, Amsterdam, SIAM Chapter Workshop Day, May 30th 2018 C.W.Oosterlee (CWI)

More information

On numerical solution of 1-D poroelasticity equations in a multilayered domain

On numerical solution of 1-D poroelasticity equations in a multilayered domain On numerical solution of -D poroelasticity equations in a multilayered domain A.Naumovich, O.Iliev Fraunhofer Institut fuer Techno- und Wirtschaftsmathematik, Gottlieb-Daimler Str. Geb.49, 67663 Kaiserslautern,

More information

Fluid structure interaction for fluid flow normal to deformable porous media

Fluid structure interaction for fluid flow normal to deformable porous media Fluid structure interaction for fluid flow normal to deformable porous media Sabine Muntz Vom Fachbereich Mathematik der Technischen Universität Kaiserslautern zur Verleihung des akademischen Grades Doktor

More information

Comparison of V-cycle Multigrid Method for Cell-centered Finite Difference on Triangular Meshes

Comparison of V-cycle Multigrid Method for Cell-centered Finite Difference on Triangular Meshes Comparison of V-cycle Multigrid Method for Cell-centered Finite Difference on Triangular Meshes Do Y. Kwak, 1 JunS.Lee 1 Department of Mathematics, KAIST, Taejon 305-701, Korea Department of Mathematics,

More information

INTERGRID OPERATORS FOR THE CELL CENTERED FINITE DIFFERENCE MULTIGRID ALGORITHM ON RECTANGULAR GRIDS. 1. Introduction

INTERGRID OPERATORS FOR THE CELL CENTERED FINITE DIFFERENCE MULTIGRID ALGORITHM ON RECTANGULAR GRIDS. 1. Introduction Trends in Mathematics Information Center for Mathematical Sciences Volume 9 Number 2 December 2006 Pages 0 INTERGRID OPERATORS FOR THE CELL CENTERED FINITE DIFFERENCE MULTIGRID ALGORITHM ON RECTANGULAR

More information

Numerical Analysis of the Double Porosity Consolidation Model

Numerical Analysis of the Double Porosity Consolidation Model XXI Congreso de Ecuaciones Diferenciales y Aplicaciones XI Congreso de Matemática Aplicada Ciudad Real 21-25 septiembre 2009 (pp. 1 8) Numerical Analysis of te Double Porosity Consolidation Model N. Boal

More information

Multigrid Methods and their application in CFD

Multigrid Methods and their application in CFD Multigrid Methods and their application in CFD Michael Wurst TU München 16.06.2009 1 Multigrid Methods Definition Multigrid (MG) methods in numerical analysis are a group of algorithms for solving differential

More information

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. 12/21/01 topic7_ns_equations 1

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. 12/21/01 topic7_ns_equations 1 AE/ME 339 Professor of Aerospace Engineering 12/21/01 topic7_ns_equations 1 Continuity equation Governing equation summary Non-conservation form D Dt. V 0.(2.29) Conservation form ( V ) 0...(2.33) t 12/21/01

More information

Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request.

Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request. UNIVERSITY OF EAST ANGLIA School of Mathematics Spring Semester Examination 2004 FLUID DYNAMICS Time allowed: 3 hours Attempt Question 1 and FOUR other questions. Candidates must show on each answer book

More information

A Simple Turbulence Closure Model. Atmospheric Sciences 6150

A Simple Turbulence Closure Model. Atmospheric Sciences 6150 A Simple Turbulence Closure Model Atmospheric Sciences 6150 1 Cartesian Tensor Notation Reynolds decomposition of velocity: V = V + v V = U i + u i Mean velocity: V = Ui + V j + W k =(U, V, W ) U i =(U

More information

A Simple Turbulence Closure Model

A Simple Turbulence Closure Model A Simple Turbulence Closure Model Atmospheric Sciences 6150 1 Cartesian Tensor Notation Reynolds decomposition of velocity: Mean velocity: Turbulent velocity: Gradient operator: Advection operator: V =

More information

Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems

Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems Roy Stogner Computational Fluid Dynamics Lab Institute for Computational Engineering and Sciences University of Texas at Austin March

More information

JJMIE Jordan Journal of Mechanical and Industrial Engineering

JJMIE Jordan Journal of Mechanical and Industrial Engineering JJMIE Jordan Journal of Mechanical and Industrial Engineering Volume Number, June.6 ISSN 995-6665 Pages 99-4 Computational Fluid Dynamics of Plate Fin and Circular Pin Fin Heat Sins Mohammad Saraireh *

More information

Recovery-Based A Posteriori Error Estimation

Recovery-Based A Posteriori Error Estimation Recovery-Based A Posteriori Error Estimation Zhiqiang Cai Purdue University Department of Mathematics, Purdue University Slide 1, March 2, 2011 Outline Introduction Diffusion Problems Higher Order Elements

More information

Splitting methods in the design of coupled flow and mechanics simulators

Splitting methods in the design of coupled flow and mechanics simulators Splitting methods in the design of coupled flow and mechanics simulators Sílvia Barbeiro CMUC, Department of Mathematics, University of Coimbra PhD Program in Mathematics Coimbra, November 17, 2010 Sílvia

More information

Multigrid Methods for Saddle Point Problems

Multigrid Methods for Saddle Point Problems Multigrid Methods for Saddle Point Problems Susanne C. Brenner Department of Mathematics and Center for Computation & Technology Louisiana State University Advances in Mathematics of Finite Elements (In

More information

Multigrid finite element methods on semi-structured triangular grids

Multigrid finite element methods on semi-structured triangular grids XXI Congreso de Ecuaciones Diferenciales y Aplicaciones XI Congreso de Matemática Aplicada Ciudad Real, -5 septiembre 009 (pp. 8) Multigrid finite element methods on semi-structured triangular grids F.J.

More information

A MULTIGRID ALGORITHM FOR. Richard E. Ewing and Jian Shen. Institute for Scientic Computation. Texas A&M University. College Station, Texas SUMMARY

A MULTIGRID ALGORITHM FOR. Richard E. Ewing and Jian Shen. Institute for Scientic Computation. Texas A&M University. College Station, Texas SUMMARY A MULTIGRID ALGORITHM FOR THE CELL-CENTERED FINITE DIFFERENCE SCHEME Richard E. Ewing and Jian Shen Institute for Scientic Computation Texas A&M University College Station, Texas SUMMARY In this article,

More information

Algebraic Multigrid as Solvers and as Preconditioner

Algebraic Multigrid as Solvers and as Preconditioner Ò Algebraic Multigrid as Solvers and as Preconditioner Domenico Lahaye domenico.lahaye@cs.kuleuven.ac.be http://www.cs.kuleuven.ac.be/ domenico/ Department of Computer Science Katholieke Universiteit Leuven

More information

Nonlinear Wave Theory for Transport Phenomena

Nonlinear Wave Theory for Transport Phenomena JOSO 2016 March 9-11 2015 Nonlinear Wave Theory for Transport Phenomena ILYA PESHKOV CHLOE, University of Pau, France EVGENIY ROMENSKI Sobolev Institute of Mathematics, Novosibirsk, Russia MICHAEL DUMBSER

More information

Spatial discretization scheme for incompressible viscous flows

Spatial discretization scheme for incompressible viscous flows Spatial discretization scheme for incompressible viscous flows N. Kumar Supervisors: J.H.M. ten Thije Boonkkamp and B. Koren CASA-day 2015 1/29 Challenges in CFD Accuracy a primary concern with all CFD

More information

THE EFFECT OF MULTIGRID PARAMETERS IN A 3D HEAT DIFFUSION EQUATION

THE EFFECT OF MULTIGRID PARAMETERS IN A 3D HEAT DIFFUSION EQUATION Int. J. of Applied Mechanics and Engineering, 2018, vol.23, No.1, pp.213-221 DOI: 10.1515/ijame-2018-0012 Brief note THE EFFECT OF MULTIGRID PARAMETERS IN A 3D HEAT DIFFUSION EQUATION F. DE OLIVEIRA *

More information

FMIA. Fluid Mechanics and Its Applications 113 Series Editor: A. Thess. Moukalled Mangani Darwish. F. Moukalled L. Mangani M.

FMIA. Fluid Mechanics and Its Applications 113 Series Editor: A. Thess. Moukalled Mangani Darwish. F. Moukalled L. Mangani M. FMIA F. Moukalled L. Mangani M. Darwish An Advanced Introduction with OpenFOAM and Matlab This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in

More information

Pseudospectral and High-Order Time-Domain Forward Solvers

Pseudospectral and High-Order Time-Domain Forward Solvers Pseudospectral and High-Order Time-Domain Forward Solvers Qing H. Liu G. Zhao, T. Xiao, Y. Zeng Department of Electrical and Computer Engineering Duke University DARPA/ARO MURI Review, August 15, 2003

More information

Inner Product Spaces 5.2 Inner product spaces

Inner Product Spaces 5.2 Inner product spaces Inner Product Spaces 5.2 Inner product spaces November 15 Goals Concept of length, distance, and angle in R 2 or R n is extended to abstract vector spaces V. Sucn a vector space will be called an Inner

More information

ME 608 Numerical Methods in Heat, Mass, and Momentum Transfer

ME 608 Numerical Methods in Heat, Mass, and Momentum Transfer ME 608 Numerical Methods in Heat, Mass, and Momentum Transfer Solution to Final Examination Date: May 4, 2011 1:00 3:00 PM Instructor: J. Murthy Open Book, Open Notes Total: 100 points Use the finite volume

More information

New Multigrid Solver Advances in TOPS

New Multigrid Solver Advances in TOPS New Multigrid Solver Advances in TOPS R D Falgout 1, J Brannick 2, M Brezina 2, T Manteuffel 2 and S McCormick 2 1 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, P.O.

More information

1. Fast Iterative Solvers of SLE

1. Fast Iterative Solvers of SLE 1. Fast Iterative Solvers of crucial drawback of solvers discussed so far: they become slower if we discretize more accurate! now: look for possible remedies relaxation: explicit application of the multigrid

More information

Parallel-in-Time Optimization with the General-Purpose XBraid Package

Parallel-in-Time Optimization with the General-Purpose XBraid Package Parallel-in-Time Optimization with the General-Purpose XBraid Package Stefanie Günther, Jacob Schroder, Robert Falgout, Nicolas Gauger 7th Workshop on Parallel-in-Time methods Wednesday, May 3 rd, 2018

More information

Space-time Discontinuous Galerkin Methods for Compressible Flows

Space-time Discontinuous Galerkin Methods for Compressible Flows Space-time Discontinuous Galerkin Methods for Compressible Flows Jaap van der Vegt Numerical Analysis and Computational Mechanics Group Department of Applied Mathematics University of Twente Joint Work

More information

Divergence-conforming multigrid methods for incompressible flow problems

Divergence-conforming multigrid methods for incompressible flow problems Divergence-conforming multigrid methods for incompressible flow problems Guido Kanschat IWR, Universität Heidelberg Prague-Heidelberg-Workshop April 28th, 2015 G. Kanschat (IWR, Uni HD) Hdiv-DG Práha,

More information

PREPRINT 2010:23. A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO

PREPRINT 2010:23. A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO PREPRINT 2010:23 A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO Department of Mathematical Sciences Division of Mathematics CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GOTHENBURG

More information

Operator Upscaling for the Wave Equation

Operator Upscaling for the Wave Equation Operator Upscaling for the Wave Equation Tetyana Vdovina Susan E. Minkoff UMBC), Oksana Korostyshevskaya Department of Computational and Applied Mathematics Rice University, Houston TX vdovina@caam.rice.edu

More information

Weight-adjusted DG methods for elastic wave propagation in arbitrary heterogeneous media

Weight-adjusted DG methods for elastic wave propagation in arbitrary heterogeneous media Weight-adjusted DG methods for elastic wave propagation in arbitrary heterogeneous media Jesse Chan Department of Computational and Applied Math, Rice University ICOSAHOM 2018 July 12, 2018 Chan (CAAM)

More information

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Eugene Vecharynski 1 Andrew Knyazev 2 1 Department of Computer Science and Engineering University of Minnesota 2 Department

More information

arxiv: v1 [math.na] 11 Jul 2011

arxiv: v1 [math.na] 11 Jul 2011 Multigrid Preconditioner for Nonconforming Discretization of Elliptic Problems with Jump Coefficients arxiv:07.260v [math.na] Jul 20 Blanca Ayuso De Dios, Michael Holst 2, Yunrong Zhu 2, and Ludmil Zikatanov

More information

Solving PDEs with Multigrid Methods p.1

Solving PDEs with Multigrid Methods p.1 Solving PDEs with Multigrid Methods Scott MacLachlan maclachl@colorado.edu Department of Applied Mathematics, University of Colorado at Boulder Solving PDEs with Multigrid Methods p.1 Support and Collaboration

More information

ScienceDirect. Model-based assessment of seismic monitoring of CO 2 in a CCS project in Alberta, Canada, including a poroelastic approach

ScienceDirect. Model-based assessment of seismic monitoring of CO 2 in a CCS project in Alberta, Canada, including a poroelastic approach Available online at www.sciencedirect.com ScienceDirect Energy Procedia 63 (2014 ) 4305 4312 GHGT-12 Model-based assessment of seismic monitoring of CO 2 in a CCS project in Alberta, Canada, including

More information

Block-Structured Adaptive Mesh Refinement

Block-Structured Adaptive Mesh Refinement Block-Structured Adaptive Mesh Refinement Lecture 2 Incompressible Navier-Stokes Equations Fractional Step Scheme 1-D AMR for classical PDE s hyperbolic elliptic parabolic Accuracy considerations Bell

More information

A Multigrid Method for Two Dimensional Maxwell Interface Problems

A Multigrid Method for Two Dimensional Maxwell Interface Problems A Multigrid Method for Two Dimensional Maxwell Interface Problems Susanne C. Brenner Department of Mathematics and Center for Computation & Technology Louisiana State University USA JSA 2013 Outline A

More information

. p.1/31. Department Mathematics and Statistics Arizona State University. Don Jones

. p.1/31. Department Mathematics and Statistics Arizona State University. Don Jones Modified-Truncation Finite Difference Schemes. p.1/31 Department Mathematics and Statistics Arizona State University Don Jones dajones@math.asu.edu . p.2/31 Heat Equation t u = λu xx + f . p.2/31 Heat

More information

Poroelasticity simulation in CLAWPACK for geophysical and biological applications

Poroelasticity simulation in CLAWPACK for geophysical and biological applications Poroelasticity simulation in CLAWPACK for geophysical and biological applications October 27, 2012 Joint work with Randall J. LeVeque (University of Washington) and Yvonne Ou (University of Delaware) Supported

More information

2 Introduction Standard conservative schemes will admit non-physical oscillations near material interfaces, which can be avoided by the application of

2 Introduction Standard conservative schemes will admit non-physical oscillations near material interfaces, which can be avoided by the application of A Conservative Approach to the Multiphase Euler Equations without Spurious Pressure Oscillations Xu-Dong Liu Ronald P. Fedkiw Stanley Osher June 8, 998 Abstract In [4], the pressure evolution equation

More information

Multigrid absolute value preconditioning

Multigrid absolute value preconditioning Multigrid absolute value preconditioning Eugene Vecharynski 1 Andrew Knyazev 2 (speaker) 1 Department of Computer Science and Engineering University of Minnesota 2 Department of Mathematical and Statistical

More information

Compact High Order Finite Difference Stencils for Elliptic Variable Coefficient and Interface Problems

Compact High Order Finite Difference Stencils for Elliptic Variable Coefficient and Interface Problems Compact High Order Finite Difference Stencils for Elliptic Variable Coefficient and Interface Problems Daniel Ritter 1, Ulrich Rüde 1, Björn Gmeiner 1, Rochus Schmid 2 Copper Mountain, March 18th, 2013

More information

Finite Volume Schemes: an introduction

Finite Volume Schemes: an introduction Finite Volume Schemes: an introduction First lecture Annamaria Mazzia Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate Università di Padova mazzia@dmsa.unipd.it Scuola di dottorato

More information

How are calculus, alchemy and forging coins related?

How are calculus, alchemy and forging coins related? BMOLE 452-689 Transport Chapter 8. Transport in Porous Media Text Book: Transport Phenomena in Biological Systems Authors: Truskey, Yuan, Katz Focus on what is presented in class and problems Dr. Corey

More information

Elliptic Problems / Multigrid. PHY 604: Computational Methods for Physics and Astrophysics II

Elliptic Problems / Multigrid. PHY 604: Computational Methods for Physics and Astrophysics II Elliptic Problems / Multigrid Summary of Hyperbolic PDEs We looked at a simple linear and a nonlinear scalar hyperbolic PDE There is a speed associated with the change of the solution Explicit methods

More information

Geometric Multigrid Methods

Geometric Multigrid Methods Geometric Multigrid Methods Susanne C. Brenner Department of Mathematics and Center for Computation & Technology Louisiana State University IMA Tutorial: Fast Solution Techniques November 28, 2010 Ideas

More information

arxiv: v1 [math.na] 3 Nov 2018

arxiv: v1 [math.na] 3 Nov 2018 arxiv:1811.1264v1 [math.na] 3 Nov 218 Monolithic mixed-dimensional multigrid methods for single-phase flow in fractured porous media Andrés Arrarás Francisco J. Gaspar Laura Portero Carmen Rodrigo November

More information

Space-time XFEM for two-phase mass transport

Space-time XFEM for two-phase mass transport Space-time XFEM for two-phase mass transport Space-time XFEM for two-phase mass transport Christoph Lehrenfeld joint work with Arnold Reusken EFEF, Prague, June 5-6th 2015 Christoph Lehrenfeld EFEF, Prague,

More information

Advanced numerical methods for nonlinear advectiondiffusion-reaction. Peter Frolkovič, University of Heidelberg

Advanced numerical methods for nonlinear advectiondiffusion-reaction. Peter Frolkovič, University of Heidelberg Advanced numerical methods for nonlinear advectiondiffusion-reaction equations Peter Frolkovič, University of Heidelberg Content Motivation and background R 3 T Numerical modelling advection advection

More information

Spectral element agglomerate AMGe

Spectral element agglomerate AMGe Spectral element agglomerate AMGe T. Chartier 1, R. Falgout 2, V. E. Henson 2, J. E. Jones 4, T. A. Manteuffel 3, S. F. McCormick 3, J. W. Ruge 3, and P. S. Vassilevski 2 1 Department of Mathematics, Davidson

More information

Interface conditions for Biot s equations of poroelasticity Boris Gurevich The Geophysical Institute of Israel, P.O. Box 2286, Holon 58122, Israel

Interface conditions for Biot s equations of poroelasticity Boris Gurevich The Geophysical Institute of Israel, P.O. Box 2286, Holon 58122, Israel Interface conditions for Biot s equations of poroelasticity Boris Gurevich The Geophysical Institute of Israel, P.O. Box 2286, Holon 58122, Israel Michael Schoenberg Schlumberger-Doll Research, Old Quarry

More information

FIRST-ORDER SYSTEM LEAST SQUARES (FOSLS) FOR GEOMETRICALLY NONLINEAR ELASTICITY

FIRST-ORDER SYSTEM LEAST SQUARES (FOSLS) FOR GEOMETRICALLY NONLINEAR ELASTICITY FIRST-ORDER SYSTEM LEAST SQUARES (FOSLS) FOR GEOMETRICALLY NONLINEAR ELASTICITY T. A. MANTEUFFEL, S. F. MCCORMICK, J. G. SCHMIDT, AND C. R. WESTPHAL Abstract. We present a first-order system least-squares

More information

A Recursive Trust-Region Method for Non-Convex Constrained Minimization

A Recursive Trust-Region Method for Non-Convex Constrained Minimization A Recursive Trust-Region Method for Non-Convex Constrained Minimization Christian Groß 1 and Rolf Krause 1 Institute for Numerical Simulation, University of Bonn. {gross,krause}@ins.uni-bonn.de 1 Introduction

More information

Upscaling of coupled geomechanics, flow, and heat in a poro-elastic medium in the quasi-static situation

Upscaling of coupled geomechanics, flow, and heat in a poro-elastic medium in the quasi-static situation Upscaling of coupled geomechanics, flow, and heat in a poro-elastic medium in the quasi-static situation Mats K. Brun, Florin A. Radu, Inga Berre, J. M. Nordbotten November 14, 2017 Abstract Motivated

More information

An Efficient Multigrid Solver for a Reformulated Version of the Poroelasticity System

An Efficient Multigrid Solver for a Reformulated Version of the Poroelasticity System An Efficient Multigrid Solver for a Reformulated Version of te Poroelasticity System F.J. Gaspar a F.J. Lisbona a, C.W. Oosterlee b P.N. Vabiscevic c a Departamento de Matemática Aplicada, University of

More information

The Discontinuous Galerkin Finite Element Method

The Discontinuous Galerkin Finite Element Method The Discontinuous Galerkin Finite Element Method Michael A. Saum msaum@math.utk.edu Department of Mathematics University of Tennessee, Knoxville The Discontinuous Galerkin Finite Element Method p.1/41

More information

The Simulation of Wraparound Fins Aerodynamic Characteristics

The Simulation of Wraparound Fins Aerodynamic Characteristics The Simulation of Wraparound Fins Aerodynamic Characteristics Institute of Launch Dynamics Nanjing University of Science and Technology Nanjing Xiaolingwei 00 P. R. China laithabbass@yahoo.com Abstract:

More information

FRACTURE REORIENTATION IN HORIZONTAL WELL WITH MULTISTAGE HYDRAULIC FRACTURING

FRACTURE REORIENTATION IN HORIZONTAL WELL WITH MULTISTAGE HYDRAULIC FRACTURING SPE Workshop OILFIELD GEOMECHANICS Slide 1 FRACTURE REORIENTATION IN HORIZONTAL WELL WITH MULTISTAGE HYDRAULIC FRACTURING A. Pimenov, R. Kanevskaya Ltd. BashNIPIneft March 27-28, 2017 Moscow, Russia Slide

More information

NumAn2014 Conference Proceedings

NumAn2014 Conference Proceedings OpenAccess Proceedings of the 6th International Conference on Numerical Analysis, pp 198-03 Contents lists available at AMCL s Digital Library. NumAn014 Conference Proceedings Digital Library Triton :

More information

Local discontinuous Galerkin methods for elliptic problems

Local discontinuous Galerkin methods for elliptic problems COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING Commun. Numer. Meth. Engng 2002; 18:69 75 [Version: 2000/03/22 v1.0] Local discontinuous Galerkin methods for elliptic problems P. Castillo 1 B. Cockburn

More information

ANALYSIS AND NUMERICAL METHODS FOR SOME CRACK PROBLEMS

ANALYSIS AND NUMERICAL METHODS FOR SOME CRACK PROBLEMS INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, SERIES B Volume 2, Number 2-3, Pages 155 166 c 2011 Institute for Scientific Computing and Information ANALYSIS AND NUMERICAL METHODS FOR SOME

More information

On Nonlinear Dirichlet Neumann Algorithms for Jumping Nonlinearities

On Nonlinear Dirichlet Neumann Algorithms for Jumping Nonlinearities On Nonlinear Dirichlet Neumann Algorithms for Jumping Nonlinearities Heiko Berninger, Ralf Kornhuber, and Oliver Sander FU Berlin, FB Mathematik und Informatik (http://www.math.fu-berlin.de/rd/we-02/numerik/)

More information

Robust Block Preconditioners for Biot s Model

Robust Block Preconditioners for Biot s Model Robust Block Preconditioners for Biot s Model James H. Adler, Francisco J. Gaspar, Xiaozhe Hu, Carmen Rodrigo, and Ludmil T. Zikatanov Abstract In this paper, we design robust and efficient block preconditioners

More information

Local Mesh Refinement with the PCD Method

Local Mesh Refinement with the PCD Method Advances in Dynamical Systems and Applications ISSN 0973-5321, Volume 8, Number 1, pp. 125 136 (2013) http://campus.mst.edu/adsa Local Mesh Refinement with the PCD Method Ahmed Tahiri Université Med Premier

More information

DEVELOPING A MICRO-SCALE MODEL OF SOIL FREEZING

DEVELOPING A MICRO-SCALE MODEL OF SOIL FREEZING Proceedings of ALGORITMY 2016 pp. 234 243 DEVELOPING A MICRO-SCALE MODEL OF SOIL FREEZING A. ŽÁK, M. BENEŠ, AND T.H. ILLANGASEKARE Abstract. In this contribution, we analyze thermal and mechanical effects

More information

INVITATION FOR BID Exploratory Geothermal Drilling Services Department of Natural Resources (DNR)

INVITATION FOR BID Exploratory Geothermal Drilling Services Department of Natural Resources (DNR) V F B 21064 xy G v f u u ( B u: y : : u : -B ( u /k Wy y 30 2 1500 ff y W 98501 Bx 41017 y W 98504-1017 W 360-407-9399 w@wv y 18 2012 2:00 1500 ff 2331 y W 98501 ://wwwwv//u-f ://wwwwv/v/-k B U B V BF

More information

Mathematics Research Report No. MRR 003{96, HIGH RESOLUTION POTENTIAL FLOW METHODS IN OIL EXPLORATION Stephen Roberts 1 and Stephan Matthai 2 3rd Febr

Mathematics Research Report No. MRR 003{96, HIGH RESOLUTION POTENTIAL FLOW METHODS IN OIL EXPLORATION Stephen Roberts 1 and Stephan Matthai 2 3rd Febr HIGH RESOLUTION POTENTIAL FLOW METHODS IN OIL EXPLORATION Stephen Roberts and Stephan Matthai Mathematics Research Report No. MRR 003{96, Mathematics Research Report No. MRR 003{96, HIGH RESOLUTION POTENTIAL

More information

Coupled seismoelectric wave propagation in porous media. Mehran Gharibi Robert R. Stewart Laurence R. Bentley

Coupled seismoelectric wave propagation in porous media. Mehran Gharibi Robert R. Stewart Laurence R. Bentley Coupled seismoelectric wave propagation in porous media Mehran Gharibi Robert R. Stewart Laurence R. Bentley a Introduction Seismic waves induce electric and magnetic fields. Conversion of acoustic energy

More information

Supplement A. Effective Coulomb Stress Analysis We assessed changes in Coulomb stress beneath reservoirs by the general theory of decoupled linear poroelasticity [Biot, 1956; Roeloffs, 1988; Wang 2000;

More information

3D simulations of an injection test done into an unsaturated porous and fractured limestone

3D simulations of an injection test done into an unsaturated porous and fractured limestone 3D simulations of an injection test done into an unsaturated porous and fractured limestone A. Thoraval *, Y. Guglielmi, F. Cappa INERIS, Ecole des Mines de Nancy, FRANCE *Corresponding author: Ecole des

More information

A multigrid method for large scale inverse problems

A multigrid method for large scale inverse problems A multigrid method for large scale inverse problems Eldad Haber Dept. of Computer Science, Dept. of Earth and Ocean Science University of British Columbia haber@cs.ubc.ca July 4, 2003 E.Haber: Multigrid

More information

A monolithic FEM solver for fluid structure

A monolithic FEM solver for fluid structure A monolithic FEM solver for fluid structure interaction p. 1/1 A monolithic FEM solver for fluid structure interaction Stefan Turek, Jaroslav Hron jaroslav.hron@mathematik.uni-dortmund.de Department of

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Soft body physics Soft bodies In reality, objects are not purely rigid for some it is a good approximation but if you hit

More information

Preconditioned Locally Minimal Residual Method for Computing Interior Eigenpairs of Symmetric Operators

Preconditioned Locally Minimal Residual Method for Computing Interior Eigenpairs of Symmetric Operators Preconditioned Locally Minimal Residual Method for Computing Interior Eigenpairs of Symmetric Operators Eugene Vecharynski 1 Andrew Knyazev 2 1 Department of Computer Science and Engineering University

More information

Multigrid Methods for A Mixed Finite Element Method of The Darcy-Forchheimer Model

Multigrid Methods for A Mixed Finite Element Method of The Darcy-Forchheimer Model Noname manuscript No. (will be inserted by the editor) Multigrid Methods for A Mixed Finite Element Method of he Darcy-Forchheimer Model Jian Huang Long Chen Hongxing Rui Received: date / Accepted: date

More information

Goal-oriented error control of the iterative solution of finite element equations

Goal-oriented error control of the iterative solution of finite element equations J. Numer. Math., Vol. 0, No. 0, pp. 1 31 (2009) DOI 10.1515/ JNUM.2009.000 c de Gruyter 2009 Prepared using jnm.sty [Version: 20.02.2007 v1.3] Goal-oriented error control of the iterative solution of finite

More information

Seismic stimulation for enhanced oil production

Seismic stimulation for enhanced oil production Seismic stimulation for enhanced oil production Eirik G. Flekkøy, University of Oslo Mihailo Jankov, Olav Aursjø, Henning Knutsen, Grunde Løvold and Knut Jørgen Måløy, UiO Renaud Toussaint, University

More information

HIGH-ORDER ACCURATE METHODS BASED ON DIFFERENCE POTENTIALS FOR 2D PARABOLIC INTERFACE MODELS

HIGH-ORDER ACCURATE METHODS BASED ON DIFFERENCE POTENTIALS FOR 2D PARABOLIC INTERFACE MODELS HIGH-ORDER ACCURATE METHODS BASED ON DIFFERENCE POTENTIALS FOR 2D PARABOLIC INTERFACE MODELS JASON ALBRIGHT, YEKATERINA EPSHTEYN, AND QING XIA Abstract. Highly-accurate numerical methods that can efficiently

More information

Wave Propagation in Fractured Poroelastic Media

Wave Propagation in Fractured Poroelastic Media Wave Propagation in Fractured Poroelastic Media WCCM, MS170: Advanced Computational Techniques in Geophysical Sciences, Barcelona, Spain, July 2014 Juan E. Santos Instituto del Gas y del Petróleo (IGPUBA),

More information

Flow and Transport. c(s, t)s ds,

Flow and Transport. c(s, t)s ds, Flow and Transport 1. The Transport Equation We shall describe the transport of a dissolved chemical by water that is traveling with uniform velocity ν through a long thin tube G with uniform cross section

More information

Discontinuous Galerkin Methods

Discontinuous Galerkin Methods Discontinuous Galerkin Methods Joachim Schöberl May 20, 206 Discontinuous Galerkin (DG) methods approximate the solution with piecewise functions (polynomials), which are discontinuous across element interfaces.

More information

On a Discontinuous Galerkin Method for Surface PDEs

On a Discontinuous Galerkin Method for Surface PDEs On a Discontinuous Galerkin Method for Surface PDEs Pravin Madhavan (joint work with Andreas Dedner and Bjo rn Stinner) Mathematics and Statistics Centre for Doctoral Training University of Warwick Applied

More information

Introduction to Partial Differential Equations

Introduction to Partial Differential Equations Introduction to Partial Differential Equations Partial differential equations arise in a number of physical problems, such as fluid flow, heat transfer, solid mechanics and biological processes. These

More information

Modeling Scattering from Rough Poroelastic Surfaces Using COMSOL Multiphysics

Modeling Scattering from Rough Poroelastic Surfaces Using COMSOL Multiphysics Modeling Scattering from Rough Poroelastic Surfaces Using COMSOL Multiphysics Anthony L. Bonomo *1 Marcia J. Isakson 1 and Nicholas P. Chotiros 1 1 Applied Research Laboratories The University of Texas

More information

Numerical analysis of dissipation of pore water pressure using Natural Element Method

Numerical analysis of dissipation of pore water pressure using Natural Element Method Bulletin of Environment, Pharmacology and Life Sciences Bull. Env.Pharmacol. Life Sci., Vol 4 [Spl issue 1] 2015: 371-375 2014 Academy for Environment and Life Sciences, India Online ISSN 2277-1808 Journal

More information

Governing Equations of Fluid Dynamics

Governing Equations of Fluid Dynamics Chapter 3 Governing Equations of Fluid Dynamics The starting point of any numerical simulation are the governing equations of the physics of the problem to be solved. In this chapter, we first present

More information

An Introduction to COMSOL Multiphysics v4.3b & Subsurface Flow Simulation. Ahsan Munir, PhD Tom Spirka, PhD

An Introduction to COMSOL Multiphysics v4.3b & Subsurface Flow Simulation. Ahsan Munir, PhD Tom Spirka, PhD An Introduction to COMSOL Multiphysics v4.3b & Subsurface Flow Simulation Ahsan Munir, PhD Tom Spirka, PhD Agenda Provide an overview of COMSOL 4.3b Our products, solutions and applications Subsurface

More information

Numerical Modeling of Methane Hydrate Evolution

Numerical Modeling of Methane Hydrate Evolution Numerical Modeling of Methane Hydrate Evolution Nathan L. Gibson Joint work with F. P. Medina, M. Peszynska, R. E. Showalter Department of Mathematics SIAM Annual Meeting 2013 Friday, July 12 This work

More information

On propagation of Love waves in an infinite transversely isotropic poroelastic layer

On propagation of Love waves in an infinite transversely isotropic poroelastic layer Journal of Physics: Conference Series PAPER OPEN ACCESS On propagation of Love waves in an infinite transversely isotropic poroelastic layer To cite this article: C Nageswara Nath et al 2015 J. Phys.:

More information

Elmer :Heat transfert with phase change solid-solid in transient problem Application to silicon properties. SIF file : phasechange solid-solid

Elmer :Heat transfert with phase change solid-solid in transient problem Application to silicon properties. SIF file : phasechange solid-solid Elmer :Heat transfert with phase change solid-solid in transient problem Application to silicon properties 3 6 1. Tb=1750 [K] 2 & 5. q=-10000 [W/m²] 0,1 1 Ω1 4 Ω2 7 3 & 6. α=15 [W/(m²K)] Text=300 [K] 4.

More information

Numerical Methods for PDEs Homework 2

Numerical Methods for PDEs Homework 2 22.520 Numerical Methods for PDEs Homework 2 Instructor : Prof. D. Willis Email: david willis@uml.edu In this homework problem you will investigate finite difference methods on rectangular and nonrectangular

More information

Some approaches to modeling of the effective properties for thermoelastic composites

Some approaches to modeling of the effective properties for thermoelastic composites Some approaches to modeling of the ective properties for thermoelastic composites Anna Nasedkina Andrey Nasedkin Vladimir Remizov To cite this version: Anna Nasedkina Andrey Nasedkin Vladimir Remizov.

More information

Exercise 5: Exact Solutions to the Navier-Stokes Equations I

Exercise 5: Exact Solutions to the Navier-Stokes Equations I Fluid Mechanics, SG4, HT009 September 5, 009 Exercise 5: Exact Solutions to the Navier-Stokes Equations I Example : Plane Couette Flow Consider the flow of a viscous Newtonian fluid between two parallel

More information

Conservation Laws and Finite Volume Methods

Conservation Laws and Finite Volume Methods Conservation Laws and Finite Volume Methods AMath 574 Winter Quarter, 2011 Randall J. LeVeque Applied Mathematics University of Washington January 3, 2011 R.J. LeVeque, University of Washington AMath 574,

More information

This paper was prepared for presentation at the Unconventional Resources Technology Conference held in Denver, Colorado, USA, August 2013.

This paper was prepared for presentation at the Unconventional Resources Technology Conference held in Denver, Colorado, USA, August 2013. 1 SPE 168873 / URTeC 1606914 Numerical Upcaling of Coupled Flow and Geomechanics in Highly Heterogeneous Porous Media Daegil Yang, Texas A&M University; George J. Moridis, Lawrence Berkeley National Laboratory;

More information

Introduction to Finite Volume projection methods. On Interfaces with non-zero mass flux

Introduction to Finite Volume projection methods. On Interfaces with non-zero mass flux Introduction to Finite Volume projection methods On Interfaces with non-zero mass flux Rupert Klein Mathematik & Informatik, Freie Universität Berlin Summerschool SPP 1506 Darmstadt, July 09, 2010 Introduction

More information

International Workshop on Flow in Deformable Porous Media: Numerics and Benchmarks

International Workshop on Flow in Deformable Porous Media: Numerics and Benchmarks International Workshop on Flow in Deformable Porous Media: Numerics and Benchmarks 4 6 December 2017 Hamburg Foto: Reinhard Scheiblich, HSU www.hsu-hh.de/benchmark Organizers Markus Bause Helmut Schmidt

More information