Radiation-MHD Simulations of Black Hole Accretion Flows & Outflows

Size: px
Start display at page:

Download "Radiation-MHD Simulations of Black Hole Accretion Flows & Outflows"

Transcription

1 Radiation-MHD Simulations of Black Hole Accretion Flows & Outflows clumpy outflow jet accretion disk Ken OHSUGA (NAOJ)

2 WHY RADIATION-MHD? Disk viscosity is magnetic origin. Dissipation of the magnetic energy heats up the gas. Difference of the radiative cooling rate leads to the difference of the disk structure (thick or thin, hot or cold). Radiation- and/or magnetic pressusure drive jets and disk outflows. Clumpy, time-dependent outflow is produced by thermal instability (that is, radiative cooling). Performing radiation-mhd simulations, we investigate the inflow-outflow structure.

3 BASIC EQUATIONS OF RADIATION-MHD ρ + (ρv) =0 t (ρv) + ρvv BB t 4π e t E 0 t = p + B 2 8π + (ev) = p v + 4π c 2 ηj2 4πκB + cκe 0 + χ c F 0 ρ ψ + (E 0 v)= F 0 v : P 0 +4πκB cκe 0 B t = v B 4πc ηj J = 4π c B RHD terms MHD terms

4 NUMERICAL METHOD Cylindrical coordinate (r, ϕ, z); r=2-100rs, z=0-100rs Axisymmetry & Mid-plane Symmetry Initial Conditions & density parameter ρ0[g/cm3]=1.0 BH Torus Magnetic Fields No disk initially! -Rotating torus (plasma-beta=100, closed poloidal magnetic fields; Bϕ=0) -We set the density parameter, ρ0 (density at the center of the torus). Super- Eddington Flow Standard disk RIAF

5 SUPER-EDDINGTON FLOWS ρ/ρ0, [ρ0=1.0 g cm -3 ] Radiation-pressure supported disk + radiatively-driven jet -Mdot~60Ledd/c 2 -Lbol Ledd -Ltrap Ledd MBH=10Msun Ohsuga et al. 2009, PASJ, 61, L7; Ohsuga, Mineshige 2011, ApJ, 726, 2

6 SUPER-EDDINGTON FLOWS ρ/ρ0, [ρ0=1.0 g cm -3 ] Radiation-pressure supported disk + radiatively-driven jet -Mdot~60Ledd/c 2 -Lbol Ledd -Ltrap Ledd MBH=10Msun Ohsuga et al. 2009, PASJ, 61, L7; Ohsuga, Mineshige 2011, ApJ, 726, 2

7 STANDARD DISK & RIAF ρ/ρ0, [ρ0=10-4 g cm -3 ] ρ/ρ0, [ρ0=10-8 g cm -3 ] Lbol~10-4 Ledd, Mdot~10-3 Ledd/c 2 Cold, thin disk L~10-12 Ledd, Mdot~10-5 Ledd/c 2 Hot, thick disk & magnetic jet MBH=10Msun

8 STANDARD DISK & RIAF ρ/ρ0, [ρ0=10-4 g cm -3 ] ρ/ρ0, [ρ0=10-8 g cm -3 ] Lbol~10-4 Ledd, Mdot~10-3 Ledd/c 2 Cold, thin disk L~10-12 Ledd, Mdot~10-5 Ledd/c 2 Hot, thick disk & magnetic jet MBH=10Msun

9 STANDARD DISK & RIAF ρ/ρ0, [ρ0=10-4 g cm -3 ] ρ/ρ0, [ρ0=10-8 g cm -3 ] Lbol~10-4 Ledd, Mdot~10-3 Ledd/c 2 Cold, thin disk L~10-12 Ledd, Mdot~10-5 Ledd/c 2 Hot, thick disk & magnetic jet MBH=10Msun

10 Super-Eddington (Slim) type Standard type RIAF type Radiation Energy & Magnetic Fields Normalized Densiy Our RMHD simulations succeeded in reproducing three types of flows (Super-Eddington, standard, RIAF)

11 OBSERVED LUMINOSITY L>20Ledd % $ " Lbol Ledd L Ledd Radiative Flux is mildly collimated, 20 Luminosity is estimated as L>20Ledd for a face-on observer. In contrast, the objects might be observed to be L Ledd, if observer s viewing angle is much larger than 20. " Radiation energy (E0, color) Radiation flux, (F0, vector)

12 RADIATION-MHD JETS Takeuchi, Ohsuga, Mineshige. 2010, PASJ, 62, L43 Our RMHD simulations reveal a new type of jet; Radiatively-accelerated and magnetically collimated jet

13 RADIATION-MHD JETS f z at r = 10 r s [dyn/g] gravity gas radiation Lorentz Radiation force Gravity z/r s Takeuchi, Ohsuga, Mineshige. 2010, PASJ, 62, L43 Our RMHD simulations reveal a new type of jet; Radiatively-accelerated and magnetically collimated jet

14 RADIATION-MHD JETS f r at z = 40 r s [dyn/g] Centrifugal Lorentz gravity centrifugal gas radiation Lorentz r/r s f z at r = 10 r s [dyn/g] gravity gas radiation Lorentz Radiation force Gravity z/r s Takeuchi, Ohsuga, Mineshige. 2010, PASJ, 62, L43 Our RMHD simulations reveal a new type of jet; Radiatively-accelerated and magnetically collimated jet

15 Ohsuga in prep. TIME-DEPENDENT CLUMPY OUTFLOW MBH=10Msun We found time-dependent, clumpy outflows, 20-50, from the super-eddington disks

16 Ohsuga in prep. TIME-DEPENDENT CLUMPY OUTFLOW MBH=10Msun We found time-dependent, clumpy outflows, 20-50, from the super-eddington disks

17 THERMAL INSTABILITY Slightly Dense Region Radiatively Driven Wind Slightly Less-Dense Region Radiative Cooling >> Joule Heating Low Temperature Compress via Gas Pressure Radiative Cooling < Joule Heating High Temperature Low Temperature, High Temperature, High Density Clouds Low Density Region (Tgas~ K, ρ~ g/cm 3 ) (Tgas~10 9 K, ρ<10-15 g/cm 3 )

18 Super-Eddington objects Lbol 10Ledd, Vjet~ c Time-dependent absorbing feature. Lbol Ledd Vout~0.03c-0.1c Log(NH)~23-25 SMBH (10 8 Msun) Luminous Disk (Lbol~Ledd)

19 Super-Eddington objects Lbol 10Ledd, Vjet~ c Time-dependent absorbing feature. Lbol Ledd Vout~0.03c-0.1c Log(NH)~23-25 SMBH (10 8 Msun) Luminous Disk (Lbol~Ledd) Schematic picture for ULXs (Middleton et al. 2011)

20 LIMIT-CYCLE OSCILLATION Ohsuga 2006, ApJ, 640, 923 Lbol~0.2Ledd Lbol~2Ledd Thermal viscous instability induces limit-cycle behavior.

21 LIMIT-CYCLE OSCILLATION Ohsuga 2006, ApJ, 640, 923 Lbol~0.2Ledd Lbol~2Ledd Thermal viscous instability induces limit-cycle behavior.

22 LIMIT-CYCLE OSCILLATION Mdot Our simulations nicely fit the observations of microquasar, GRS Luminosity 1. Luminosity variation 2Ledd 0.2Ledd 2. Timescale~several 10 sec. 3. Intermittent outflow.

23 AGN FEEDBACK Mass supply rate; from host galaxy to galactic center. We find that mass outflowrate can exceed Ledd/c 2, and momentum ejection-rate can exceed Ledd/c. Feedback from the super- Eddington flow would affect the evolution of the host galaxy and might contribute to establish M-σ relation (King 2003).

Numerical simulations of super-eddington accretion flow and outflow

Numerical simulations of super-eddington accretion flow and outflow Numerical simulations of super-eddington accretion flow and outflow Ken Ohsuga (NAOJ), Shin Mineshige (Kyoto), Hiroyuki Takahashi (NAOJ) Collaboration with T. Ogawa, T. Kawashima, & H. Kobayashi Today

More information

Disk modelling by global radiation-mhd simulations

Disk modelling by global radiation-mhd simulations Disk modelling by global radiation-mhd simulations ~Confrontation of inflow & outflow~ Shin Mineshige (Kyoto) & Ken Ohsuga (NAOJ) Magnetic tower jet by RMHD simulation (Takeuchi+11) Outline Introduction

More information

Key issues in black hole accretion - Science by ASTRO-H - Shin Mineshige (Kyoto Univ.)

Key issues in black hole accretion - Science by ASTRO-H - Shin Mineshige (Kyoto Univ.) Key issues in black hole accretion - Science by ASTRO-H - Shin Mineshige (Kyoto Univ.) Beyond Beyond the standard disk model Standard-type disk (standard disk or SS disk) Efficient machine to convert gravitational

More information

Radiation-hydrodynamic Models for ULXs and ULX-pulsars

Radiation-hydrodynamic Models for ULXs and ULX-pulsars Radiation-hydrodynamic Models for ULXs and ULX-pulsars Tomohisa KAWASHIMA Division of Theoretical Astrophysics, NAOJ in collaboration with Ken OHSUGA, Hiroyuki TAKAHASHI (NAOJ) Shin MINESHIGE, Takumi OGAWA

More information

Outflow from hot accretion flows Nature, origin and properties

Outflow from hot accretion flows Nature, origin and properties Outflow from hot accretion flows ------Nature, origin and properties (arxiv:1206.4173) Feng Yuan Shanghai Astronomical Observatory Chinese Academy of Sciences Accretion physics Motivation Outflow: important

More information

AGN Feedback at the Parsec Scale

AGN Feedback at the Parsec Scale AGN Feedback at the Parsec Scale Feng Yuan Shanghai Astronomical Observatory, CAS with: F. G. Xie (SHAO) J. P. Ostriker (Princeton University) M. Li (SHAO) OUTLINE Intermittent activity of compact radio

More information

Investigating Ultraluminous X-ray Sources through multi-wavelength variability, broadband spectra, and theoretical modelling

Investigating Ultraluminous X-ray Sources through multi-wavelength variability, broadband spectra, and theoretical modelling Investigating Ultraluminous X-ray Sources through multi-wavelength variability, broadband spectra, and theoretical modelling Luca Zampieri INAF-Astronomical Observatory of Padova In collaboration with:

More information

arxiv: v1 [astro-ph.he] 1 Sep 2010

arxiv: v1 [astro-ph.he] 1 Sep 2010 PASJ: Publ. Astron. Soc. Japan, 1??, publication date c 2010. Astronomical Society of Japan. A Novel Jet Model: Magnetically Collimated, Radiation-Pressure Driven Jet Shun TAKEUCHI, 1, 2 Ken OHSUGA, 3

More information

Black Hole Accretion and Wind

Black Hole Accretion and Wind Black Hole Accretion and Wind Feng Yuan Shanghai Astronomical Observatory, Chinese Academy of Sciences Accretion Regimes Hyper-accretion, slim disk, ADAF (Abramowicz et al. 1988) TDEs, ULXs, SS433 Thin

More information

Astrophysics of feedback in local AGN and starbursts

Astrophysics of feedback in local AGN and starbursts Astrophysics of feedback in local AGN and starbursts A personal view Gabriele Ponti co-chair of swg 2.3 Max Planck Institute for Extraterrestrial Physics (Garching) Outline 1) Why is feedback required?

More information

AST Cosmology and extragalactic astronomy. Lecture 20. Black Holes Part II

AST Cosmology and extragalactic astronomy. Lecture 20. Black Holes Part II AST4320 - Cosmology and extragalactic astronomy Lecture 20 Black Holes Part II 1 AST4320 - Cosmology and extragalactic astronomy Outline: Black Holes Part II Gas accretion disks around black holes, and

More information

Instabilities of relativistic jets

Instabilities of relativistic jets Instabilities of relativistic jets G. Bodo INAF Osservatorio Astrofisico di Torino, Italy A. Mignone, P. Rossi, G. Mamatsashvili, S. Massaglia, A. Ferrari show f Universality of relativistic jet phenomenon

More information

The Physics of Collisionless Accretion Flows. Eliot Quataert (UC Berkeley)

The Physics of Collisionless Accretion Flows. Eliot Quataert (UC Berkeley) The Physics of Collisionless Accretion Flows Eliot Quataert (UC Berkeley) Accretion Disks: Physical Picture Simple Consequences of Mass, Momentum, & Energy Conservation Matter Inspirals on Approximately

More information

Ultra-fast disk wind from a high accretion rate black hole 1H

Ultra-fast disk wind from a high accretion rate black hole 1H Ultra-fast disk wind from a high accretion rate black hole 1H 0707-495 Kouichi Hagino (ISAS/JAXA) H. Odaka, C. Done, R. Tomaru, S. Watanabe, T. Takahashi K. Hagino et al. 2016, MNRAS, 461, 3954 BREAKING

More information

AGN Feedback In an Isolated Elliptical Galaxy

AGN Feedback In an Isolated Elliptical Galaxy AGN Feedback In an Isolated Elliptical Galaxy Feng Yuan Shanghai Astronomical Observatory, CAS Collaborators: Zhaoming Gan (SHAO) Jerry Ostriker (Princeton) Luca Ciotti (Bologna) Greg Novak (Paris) 2014.9.10;

More information

Warm absorbers from torus evaporative flows(??) Tim Kallman (NASA/GSFC) + A. Dorodnitsyn (GSFC) + D. Proga (UNLV)

Warm absorbers from torus evaporative flows(??) Tim Kallman (NASA/GSFC) + A. Dorodnitsyn (GSFC) + D. Proga (UNLV) Warm absorbers from torus evaporative flows(??) Tim Kallman (NASA/GSFC) + A. Dorodnitsyn (GSFC) + D. Proga (UNLV).. Why should we care about warm absorbers Mass loss rate in wind < 0.1 M sun /yr Mass accretion

More information

TOWARDS UNIFYING BLACK HOLE ACCRETION FLOWS - SIMULATING STATE TRANSITIONS

TOWARDS UNIFYING BLACK HOLE ACCRETION FLOWS - SIMULATING STATE TRANSITIONS TOWARDS UNIFYING BLACK HOLE ACCRETION FLOWS - SIMULATING STATE TRANSITIONS Aleksander Sądowski Einstein Fellow, MIT in collaboration with: Ramesh Narayan, Andrew Chael, Maciek Wielgus Einstein Fellows

More information

AGN in hierarchical galaxy formation models

AGN in hierarchical galaxy formation models AGN in hierarchical galaxy formation models Nikos Fanidakis and C.M. Baugh, R.G. Bower, S. Cole, C. Done, C. S. Frenk Physics of Galactic Nuclei, Ringberg Castle, June 18, 2009 Outline Brief introduction

More information

Relativistic MHD Jets

Relativistic MHD Jets Formation and Kinematic Properties of Relativistic MHD Jets Nektarios Vlahakis Outline ideal MHD in general semianalytical modeling 12345678901 r-self similarity AGN outflows GRB outflows z-self similarity

More information

Theoretical aspects of microquasars

Theoretical aspects of microquasars Theoretical aspects of microquasars Bingxiao Xu Department of Physics & Astronomy, GSU ABSTRACT: Microquasars (black hole X-ray binaries with relativistic jets) are first found by means of multiwavelengths

More information

Roberto Soria (UCAS) Jets and outflows from super-eddington sources

Roberto Soria (UCAS) Jets and outflows from super-eddington sources Jets and outflows from super-eddington sources Roberto Soria (UCAS) Also thanks to: Ryan Urquhart (ICRAR PhD student) James Miller-Jones (ICRAR-Curtin) Manfred Pakull (Strasbourg Observatory) Christian

More information

The Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley)

The Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley) The Black Hole in the Galactic Center Eliot Quataert (UC Berkeley) Why focus on the Galactic Center? The Best Evidence for a BH: M 3.6 10 6 M (M = mass of sun) It s s close! only ~ 10 55 Planck Lengths

More information

Feedback from growth of supermassive black holes

Feedback from growth of supermassive black holes Research Collection Other Conference Item Feedback from growth of supermassive black holes Author(s): Begelman, Mitchell C.; Ruszkowksi, Mateusz Publication Date: 2003 Permanent Link: https://doi.org/10.3929/ethz-a-004585094

More information

Crossing the Eddington limit: examining disc spectra at high accretion rates. Andrew Sutton

Crossing the Eddington limit: examining disc spectra at high accretion rates. Andrew Sutton Crossing the Eddington limit: examining disc spectra at high accretion rates Introduction Super-Eddington accretion states in ultraluminous X-ray sources (ULXs) Broadened disc ULXs: ~Eddington rate accretion?

More information

Chapter 21 Galaxy Evolution. How do we observe the life histories of galaxies?

Chapter 21 Galaxy Evolution. How do we observe the life histories of galaxies? Chapter 21 Galaxy Evolution How do we observe the life histories of galaxies? Deep observations show us very distant galaxies as they were much earlier in time (old light from young galaxies). 1 Observing

More information

Simulations of Winds. Daniel Proga University of Nevada, Las Vegas Princeton University

Simulations of Winds. Daniel Proga University of Nevada, Las Vegas Princeton University Simulations of Winds Daniel Proga University of Nevada, Las Vegas Princeton University Collaborators J. Stone, T. Kallman, J. Raymond, M. Begelman, J. Ostriker, R. Kurosawa, J. Drew, A. Janiuk, M. Moscibrodzka,

More information

MHD Simulation of Solar Chromospheric Evaporation Jets in the Oblique Coronal Magnetic Field

MHD Simulation of Solar Chromospheric Evaporation Jets in the Oblique Coronal Magnetic Field MHD Simulation of Solar Chromospheric Evaporation Jets in the Oblique Coronal Magnetic Field Y. Matsui, T. Yokoyama, H. Hotta and T. Saito Department of Earth and Planetary Science, University of Tokyo,

More information

Active Galactic Nuclei - Zoology

Active Galactic Nuclei - Zoology Active Galactic Nuclei - Zoology Normal galaxy Radio galaxy Seyfert galaxy Quasar Blazar Example Milky Way M87, Cygnus A NGC 4151 3C273 BL Lac, 3C279 Galaxy Type spiral elliptical, lenticular spiral irregular

More information

From X-ray Binaries to AGN: the Disk/Jet Connection

From X-ray Binaries to AGN: the Disk/Jet Connection From X-ray Binaries to AGN: the Disk/Jet Connection Rich Plotkin University of Amsterdam ( Michigan) with Sera Markoff (Amsterdam), Scott Anderson (Washington), Niel Brandt (PSU), Brandon Kelly (UCSB),

More information

The Monster Roars: AGN Feedback & Co-Evolution with Galaxies

The Monster Roars: AGN Feedback & Co-Evolution with Galaxies The Monster Roars: AGN Feedback & Co-Evolution with Galaxies Philip Hopkins Ø (Nearly?) Every massive galaxy hosts a supermassive black hole Ø Mass accreted in ~couple bright quasar phase(s) (Soltan, Salucci+,

More information

Infrared Emission from the dusty veil around AGN

Infrared Emission from the dusty veil around AGN Infrared Emission from the dusty veil around AGN Thomas Beckert Max-Planck-Institut für Radioastronomie, Bonn Bonn, 2. October 2004 In collaboration with! Bernd Vollmer (Strasbourg)! Wolfgang Duschl &

More information

Superbubble Feedback in Galaxy Formation

Superbubble Feedback in Galaxy Formation Superbubble Feedback in Galaxy Formation Ben Keller (McMaster University) James Wadsley, Samantha Benincasa, Hugh Couchman Paper: astro-ph/1405.2625 (Accepted MNRAS) Keller, Wadsley, Benincasa & Couchman

More information

Global Simulations of Black Hole Accretion. John F. Hawley Department of Astronomy, University of Virginia

Global Simulations of Black Hole Accretion. John F. Hawley Department of Astronomy, University of Virginia Global Simulations of Black Hole Accretion John F. Hawley Department of Astronomy, University of Virginia Collaborators and Acknowledgements Julian Krolik, Johns Hopkins University Scott Noble, JHU Jeremy

More information

Broadband X-ray emission from radio-quiet Active Galactic Nuclei

Broadband X-ray emission from radio-quiet Active Galactic Nuclei 29 th ASI Meeting ASI Conference Series, 2011, Vol. 3, pp 19 23 Edited by Pushpa Khare & C. H. Ishwara-Chandra Broadband X-ray emission from radio-quiet Active Galactic Nuclei G. C. Dewangan Inter-University

More information

Jin Matsumoto. Relativistic HD/MHD Flow for GRB Jets. RIKEN Astrophysical Big Bang Laboratory

Jin Matsumoto. Relativistic HD/MHD Flow for GRB Jets. RIKEN Astrophysical Big Bang Laboratory Relativistic HD/MHD Flow for GRB Jets Jin Matsumoto RIKEN Astrophysical Big Bang Laboratory Collaborators: Nagataki, Ito, Mizuta, Barkov, Dainotti, Teraki (RIKEN), Masada (Kobe University) What a relativistic

More information

AGN Winds, Black Holes, and Galaxies

AGN Winds, Black Holes, and Galaxies AGN Winds, Black Holes, and Galaxies Andrew King Charleston, October 2011 three points 1. brightest AGN should have X-ray or UV outflows with Ṁv L Edd c,v ηc 0.1c 2. outflow shock against host ISM cools

More information

Accretion disks. AGN-7:HR-2007 p. 1. AGN-7:HR-2007 p. 2

Accretion disks. AGN-7:HR-2007 p. 1. AGN-7:HR-2007 p. 2 Accretion disks AGN-7:HR-2007 p. 1 AGN-7:HR-2007 p. 2 1 Quantitative overview Gas orbits in nearly circular fashion Each gas element has a small inward motion due to viscous torques, resulting in an outward

More information

Orianne ROOS CEA-Saclay Collaborators : F. Bournaud, J. Gabor, S. Juneau

Orianne ROOS CEA-Saclay Collaborators : F. Bournaud, J. Gabor, S. Juneau Orianne ROOS CEA-Saclay Collaborators : F. Bournaud, J. Gabor, S. Juneau Bachelor of Physics, Master of Astrophysics Université de Strasbourg PhD, Université Paris-Diderot Observatoire de Strasbourg Les

More information

Feedback from Radiation Pressure during Galaxy Formation

Feedback from Radiation Pressure during Galaxy Formation Feedback from Radiation Pressure during Galaxy Formation Eliot Quataert (UC Berkeley) w/ Norm Murray, Jackson Debuhr, Phil Hopkins... Spitzer s view of Carina Outline Feedback: What is it good for? Absolutely

More information

AGN jet launch scenarios

AGN jet launch scenarios AGN jet launch scenarios Rony Keppens Centre for mathematical Plasma Astrophysics Department of Mathematics, KU Leuven Rony Keppens (KU Leuven) Jet launch Nov. 2013, IAC winter school 1 / 48 Astrophysical

More information

Equilibrium Structure of Radiation-dominated Disk Segments

Equilibrium Structure of Radiation-dominated Disk Segments Equilibrium Structure of Radiation-dominated Disk Segments Shigenobu Hirose The Earth Simulator Center, JAMSTEC, Japan collaborators Julian Krolik (JHU) Omer Blaes (UCSB) Reconstruction of standard disk

More information

X-rays from AGN in a multiwavelength context. Chris Done, University of Durham Martin Ward, Chichuan Jin, Kouchi Hagino

X-rays from AGN in a multiwavelength context. Chris Done, University of Durham Martin Ward, Chichuan Jin, Kouchi Hagino X-rays from AGN in a multiwavelength context Chris Done, University of Durham Martin Ward, Chichuan Jin, Kouchi Hagino Plan! What can we learn about AGN variability from BHB? What can we learn about tidal

More information

A SIMPLIFIED GLOBAL SOLUTION FOR AN ADVECTION-DOMINATED ACCRETION FLOW

A SIMPLIFIED GLOBAL SOLUTION FOR AN ADVECTION-DOMINATED ACCRETION FLOW The Astrophysical Journal, 679:984 989, 2008 June 1 # 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A. A SIMPLIFIED GLOBAL SOLUTION FOR AN ADVECTION-DOMINATED ACCRETION FLOW

More information

Dynamics of Astrophysical Discs

Dynamics of Astrophysical Discs Dynamics of Astrophysical Discs 16 lectures, 3 example classes http://www.damtp.cam.ac.uk/user/hl278/dad.html Henrik Latter e-mail: hl278@cam.ac.uk 16 lectures Tu. Th. 10 Course Outline Office: F1.19 hl278@cam.

More information

ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT

ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT Julian H. Krolik ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT PRINCETON UNIVERSITY PRESS Princeton, New Jersey Preface Guide for Readers xv xix 1. What Are Active Galactic

More information

Galaxies with radio and optical jets Françoise Combes

Galaxies with radio and optical jets Françoise Combes Chaire Galaxies et Cosmologie Galaxies with radio and optical jets Françoise Combes The jet: component of the standard model Less than 10% of galaxies have an active nucleus. 10% of AGN have Radio jets

More information

Active Galactic Nuclei

Active Galactic Nuclei Active Galactic Nuclei Optical spectra, distance, line width Varieties of AGN and unified scheme Variability and lifetime Black hole mass and growth Geometry: disk, BLR, NLR Reverberation mapping Jets

More information

RELATIVISTIC SPECTROSCOPY OF BLACK HOLES

RELATIVISTIC SPECTROSCOPY OF BLACK HOLES RELATIVISTIC SPECTROSCOPY OF BLACK HOLES Michael Parker ESAC science seminar 24/5/18 BLACK HOLES 101 For an object to just escape a massive body, it needs the sum: Kinetic energy + gravitational binding

More information

High-Energy Astrophysics

High-Energy Astrophysics Oxford Physics: Part C Major Option Astrophysics High-Energy Astrophysics Garret Cotter garret@astro.ox.ac.uk Office 756 DWB Michaelmas 2011 Lecture 9 Today s lecture: Black Holes and jets Part I Evidence

More information

Ultra Luminous X-ray sources ~one of the most curious objects in the universe~

Ultra Luminous X-ray sources ~one of the most curious objects in the universe~ Ultra Luminous X-ray sources ~one of the most curious objects in the universe~ Shogo B. Kobayashi the University of Tokyo ULX workshop@isas 1 The discovery of the enigmatic sources pfabbiano & Trincheri

More information

Formation of z~6 Quasars from Hierarchical Galaxy Mergers

Formation of z~6 Quasars from Hierarchical Galaxy Mergers Formation of z~6 Quasars from Hierarchical Galaxy Mergers Yuexing Li et al Presentation by: William Gray Definitions and Jargon QUASAR stands for QUASI-stellAR radio source Extremely bright and active

More information

Black Holes in the Early Universe Accretion and Feedback

Black Holes in the Early Universe Accretion and Feedback 1 1 Black Holes in the Early Universe Accretion and Feedback 1 1 Black Holes in the Early Universe Accretion and Feedback Geoff Bicknell & Alex Wagner Australian National University 1 1 High redshift radio

More information

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Rough breakdown of MHD shocks Jump conditions: flux in = flux out mass flux: ρv n magnetic flux: B n Normal momentum flux: ρv n

More information

Galaxy Formation: Overview

Galaxy Formation: Overview Galaxy Formation: Overview Houjun Mo March 30, 2004 The basic picture Formation of dark matter halos. Gas cooling in dark matter halos Star formation in cold gas Evolution of the stellar populaion Metal

More information

Simultaneous X-ray and Radio Observations of Seyferts, and Disk-Jet Connections

Simultaneous X-ray and Radio Observations of Seyferts, and Disk-Jet Connections Simultaneous X-ray and Radio Observations of Seyferts, and Disk-Jet Connections Ashley Lianne King, University of Michigan Advisor: Jon M. Miller Collaborators: John Raymond, Michael Rupen, Kayhan Gültekin,

More information

Galaxy Activity in Semi Analytical Models. Fabio Fontanot (INAF OATs) Ljubljana 05/04/11

Galaxy Activity in Semi Analytical Models. Fabio Fontanot (INAF OATs) Ljubljana 05/04/11 Galaxy Activity in Semi Analytical Models Fabio Fontanot (INAF OATs) Ljubljana 05/04/11 Part I: Theoretical background 1. Baryonic gas falls in the gravitational potential of Dark Matter Halos 2. Baryonic

More information

Quasars ASTR 2120 Sarazin. Quintuple Gravitational Lens Quasar

Quasars ASTR 2120 Sarazin. Quintuple Gravitational Lens Quasar Quasars ASTR 2120 Sarazin Quintuple Gravitational Lens Quasar Quasars Quasar = Quasi-stellar (radio) source Optical: faint, blue, star-like objects Radio: point radio sources, faint blue star-like optical

More information

Vertical angular momentum transfer from accretion disks and the formation of large-scale collimated jets

Vertical angular momentum transfer from accretion disks and the formation of large-scale collimated jets Author manuscript, published in "Plasma Physics and Controlled Fusion 50 (2008) 4020" DOI : 10.1088/0741-3335/50/12/124020 35th EPS Conference on Plasma Physics Vertical angular momentum transfer from

More information

X-ray spectroscopy of nearby galactic nuclear regions

X-ray spectroscopy of nearby galactic nuclear regions X-ray spectroscopy of nearby galactic nuclear regions 1. How intermittent are AGNs? 2. What about the silent majority of the SMBHs? 3. How do SMBHs interplay with their environments? Q. Daniel Wang University

More information

PoS(ICRC2017)1086. Accretion onto Black Holes. Myeong-Gu Park. Kyungpook National University, Daegu 41566, KOREA

PoS(ICRC2017)1086. Accretion onto Black Holes. Myeong-Gu Park. Kyungpook National University, Daegu 41566, KOREA Accretion onto Black Holes Kyungpook National University, Daegu 41566, KOREA E-mail: mgp@knu.ac.kr Most energetic events or objects in the universe are explained by accretion onto black holes. However,

More information

Particle Acceleration by Reconnection and VHE emission Around Black Holes and Relativistic Jets

Particle Acceleration by Reconnection and VHE emission Around Black Holes and Relativistic Jets Particle Acceleration by Reconnection and VHE emission Around Black Holes and Relativistic Jets Deciphering the Violent Universe, Playa del Carmen, December 11-15, 2017 Accretion disk coronae Star Formation

More information

FORMATION OF SUPERMASSIVE BLACK HOLES Nestor M. Lasso Cabrera

FORMATION OF SUPERMASSIVE BLACK HOLES Nestor M. Lasso Cabrera FORMATION OF SUPERMASSIVE BLACK HOLES Nestor M. Lasso Cabrera In this presentation the different theories that can explain the formation of Supermassive Black Holes (SMBH) are presented. Before focus on

More information

Growing and merging massive black holes

Growing and merging massive black holes Growing and merging massive black holes Marta Volonteri Institut d Astrophysique de Paris S. Cielo (IAP) R. Bieri (MPA) Y. Dubois (IAP) M. Habouzit (Flatiron Institute) T. Hartwig (IAP) H. Pfister (IAP)

More information

Physics of Active Galactic nuclei

Physics of Active Galactic nuclei Physics of Active Galactic nuclei October, 2015 Isaac Shlosman University of Kentucky, Lexington, USA and Theoretical Astrophysics Osaka University, Japan 1 Lecture 2: supermassive black holes AND accretion

More information

The Impact of Quasar Feedback on the Formation & Evolution of Red Galaxies

The Impact of Quasar Feedback on the Formation & Evolution of Red Galaxies The Impact of Quasar Feedback on the Formation & Evolution of Red Galaxies Philip Hopkins 07/17/06 Lars Hernquist, Volker Springel, Gordon Richards, T. J. Cox, Brant Robertson, Tiziana Di Matteo, Yuexing

More information

MHD Simulations of Star-disk Interactions in Young Stars & Related Systems

MHD Simulations of Star-disk Interactions in Young Stars & Related Systems MHD Simulations of Star-disk Interactions in Young Stars & Related Systems Marina Romanova, Cornell University R. Kurosawa, P. Lii, G. Ustyugova, A. Koldoba, R. Lovelace 5 March 2012 1 1. Young stars 2.

More information

Jin Matsumoto. Numerical Experiments of GRB Jets. RIKEN Astrophysical Big Bang Laboratory

Jin Matsumoto. Numerical Experiments of GRB Jets. RIKEN Astrophysical Big Bang Laboratory Numerical Experiments of GRB Jets Jin Matsumoto RIKEN Astrophysical Big Bang Laboratory Collaborators: Nagataki, Ito, Mizuta, Barkov, Dainotti, Teraki (RIKEN) Schematic Picture of the GRB Jet Meszaros

More information

AGN Feedback. Andrew King. Dept of Physics and Astronomy, University of Leicester, UK Anton Pannekoek Institute, Amsterdam, NL Sterrewacht Leiden, NL

AGN Feedback. Andrew King. Dept of Physics and Astronomy, University of Leicester, UK Anton Pannekoek Institute, Amsterdam, NL Sterrewacht Leiden, NL AGN Feedback Andrew King Dept of Physics and Astronomy, University of Leicester, UK Anton Pannekoek Institute, Amsterdam, NL Sterrewacht Leiden, NL Potsdam, 2018 SMBH affects galaxy bulge more than enough

More information

Active Galactic Nuclei

Active Galactic Nuclei Active Galactic Nuclei How were they discovered? How common are they? How do we know they are giant black holes? What are their distinctive properties? Active Galactic Nuclei for most galaxies the luminosity

More information

Observational Evidence of AGN Feedback

Observational Evidence of AGN Feedback 10 de maio de 2012 Sumário Introduction AGN winds Galaxy outflows From the peak to the late evolution of AGN and quasars Mergers or secular evolution? The AGN feedback The interaction process between the

More information

How do disks transfer angular momentum to deliver gas onto compact objects? How do accretion disks launch winds and jets?

How do disks transfer angular momentum to deliver gas onto compact objects? How do accretion disks launch winds and jets? Astro2010 Science White Paper (GCT) Fundamental Accretion and Ejection Astrophysics J. Miller, M. Nowak, P. Nandra, N. Brandt, G. Matt, M. Cappi, G. Risaliti, S. Kitamoto, F. Paerels. M. Watson, R. Smith,

More information

Supernova Feedback in Low and High Mass Galaxies: Luke Hovey 10 December 2009

Supernova Feedback in Low and High Mass Galaxies: Luke Hovey 10 December 2009 Supernova Feedback in Low and High Mass Galaxies: Luke Hovey 10 December 2009 Galactic Winds: Mathews, W. et al. 1971 Effects of Supernovae on the Early Evolution of Galaxies: Larson, R. 1974 The origin

More information

Tidal Disruption Events

Tidal Disruption Events Tidal Disruption Events as a probe of super-eddington accretion Jane Lixin Dai 戴丽 心 Niels Bohr Institute UMD: Jonathan McKinney, Cole Miller, Nathan Roth, Erin Kara 1 UCSC/NBI: Enrico Ramirez-Ruiz Tidal

More information

TDE Disk Assembly: Connecting Disruption to Accretion / Light Curve Jane Lixin Dai

TDE Disk Assembly: Connecting Disruption to Accretion / Light Curve Jane Lixin Dai TDE Disk Assembly: Connecting Disruption to Accretion / Light Curve Jane Lixin Dai Assistant Professor / Carlsberg Fellow, Center for Transient Astrophysics / DARK Cosmology Center, Niels Bohr Institute

More information

Active galactic nuclei (AGN)

Active galactic nuclei (AGN) Active galactic nuclei (AGN) General characteristics and types Supermassive blackholes (SMBHs) Accretion disks around SMBHs X-ray emission processes Jets and their interaction with ambient medium Radio

More information

Magnetically-dominated relativistic jets.

Magnetically-dominated relativistic jets. Magnetically-dominated relativistic jets. Serguei Komissarov University of Leeds UK N.Vlahakis, Y.Granot, A.Konigl, A.Spitkovsky, M.Barkov, J.McKinney, Y.Lyubarsky, M.Lyutikov, N.Bucciantini Plan 1. Astrophysical

More information

Motivation Q: WHY IS STAR FORMATION SO INEFFICIENT? Ṁ M gas / dyn. Log SFR. Kennicutt Log. gas / dyn

Motivation Q: WHY IS STAR FORMATION SO INEFFICIENT? Ṁ M gas / dyn. Log SFR. Kennicutt Log. gas / dyn Motivation Q: WHY IS STAR FORMATION SO INEFFICIENT? Ṁ 0.017 M gas / dyn Log SFR Kennicutt 1998 Log gas / dyn Motivation Q: WHY IS STAR FORMATION SO INEFFICIENT? Moster 2009 No Feedback 10% of baryons Log(

More information

Galactic Scale Winds. Elizabeth Harper-Clark, Mubdi Rahman, Brice Ménard, Eve Lee, Eliot Quataert, Phil Hopkins,Todd Thompson

Galactic Scale Winds. Elizabeth Harper-Clark, Mubdi Rahman, Brice Ménard, Eve Lee, Eliot Quataert, Phil Hopkins,Todd Thompson Galactic Scale Winds Elizabeth Harper-Clark, Mubdi Rahman, Brice Ménard, Eve Lee, Eliot Quataert, Phil Hopkins,Todd Thompson Phenomenology Weiner, Koo: we see winds in most high z star forming galaxies

More information

Observing the Formation of Dense Stellar Nuclei at Low and High Redshift (?) Roderik Overzier Max-Planck-Institute for Astrophysics

Observing the Formation of Dense Stellar Nuclei at Low and High Redshift (?) Roderik Overzier Max-Planck-Institute for Astrophysics Observing the Formation of Dense Stellar Nuclei at Low and High Redshift (?) Roderik Overzier Max-Planck-Institute for Astrophysics with: Tim Heckman (JHU) GALEX Science Team (PI: Chris Martin), Lee Armus,

More information

AGN Feedback. Andrew King. Dept of Physics & Astronomy, University of Leicester Astronomical Institute, University of Amsterdam. Heidelberg, July 2014

AGN Feedback. Andrew King. Dept of Physics & Astronomy, University of Leicester Astronomical Institute, University of Amsterdam. Heidelberg, July 2014 AGN Feedback Andrew King Dept of Physics & Astronomy, University of Leicester Astronomical Institute, University of Amsterdam Heidelberg, July 2014 galaxy knows about central SBH mass velocity dispersion

More information

AGN/Galaxy Co-Evolution. Fabio Fontanot (HITS)

AGN/Galaxy Co-Evolution. Fabio Fontanot (HITS) AGN/Galaxy Co-Evolution Fabio Fontanot (HITS) 21/11/2012 AGN activity in theoretical models of galaxy formation Represents a viable solution for a number of long-standing theoretical problems Properties

More information

High-Energy Plasma Astrophysics and Next Generation Gamma-Ray Observatory Cherenkov Telescope Array

High-Energy Plasma Astrophysics and Next Generation Gamma-Ray Observatory Cherenkov Telescope Array High-Energy Plasma Astrophysics and Next Generation Gamma-Ray Observatory Cherenkov Telescope Array FAPESP CUNY Week, New York, November 2018 M82 Star Formation- Clouds-SNRturbulence connection Sun & Stars

More information

Star Cluster Formation

Star Cluster Formation Star Cluster Formation HST Colin Hill Princeton Astrophysics 4 December 2012 Trapezium VLT Outline Star Clusters: Background + Observations The Life of a Cluster - Fragmentation - Feedback Effects - Mass

More information

Black Holes and Active Galactic Nuclei

Black Holes and Active Galactic Nuclei Black Holes and Active Galactic Nuclei A black hole is a region of spacetime from which gravity prevents anything, including light, from escaping. The theory of general relativity predicts that a sufficiently

More information

Stellar Evolution: Outline

Stellar Evolution: Outline Stellar Evolution: Outline Interstellar Medium (dust) Hydrogen and Helium Small amounts of Carbon Dioxide (makes it easier to detect) Massive amounts of material between 100,000 and 10,000,000 solar masses

More information

CRITERION FOR GENERATION OF WINDS FROM MAGNETIZED ACCRETION DISKS

CRITERION FOR GENERATION OF WINDS FROM MAGNETIZED ACCRETION DISKS CRITERION FOR GENERATION OF WINDS FROM MAGNETIZED ACCRETION DISKS OSAMU KABURAKI 1 1 Astronomical Institute, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan; okabu@astr.tohoku.ac.jp

More information

Overview spherical accretion

Overview spherical accretion Spherical accretion - AGN generates energy by accretion, i.e., capture of ambient matter in gravitational potential of black hole -Potential energy can be released as radiation, and (some of) this can

More information

AGN Central Engines. Supermassive Black Holes (SMBHs) Masses and Accretion Rates SMBH Mass Determinations Accretion Disks

AGN Central Engines. Supermassive Black Holes (SMBHs) Masses and Accretion Rates SMBH Mass Determinations Accretion Disks AGN Central Engines Supermassive Black Holes (SMBHs) Masses and Accretion Rates SMBH Mass Determinations Accretion Disks 1 Supermassive Black Holes Need to generate L > 10 43 ergs/sec inside radius < 10

More information

Two Phase Formation of Massive Galaxies

Two Phase Formation of Massive Galaxies Two Phase Formation of Massive Galaxies Focus: High Resolution Cosmological Zoom Simulation of Massive Galaxies ApJ.L.,658,710 (2007) ApJ.,697, 38 (2009) ApJ.L.,699,L178 (2009) ApJ.,725,2312 (2010) ApJ.,744,63(2012)

More information

High-Energy Astrophysics

High-Energy Astrophysics Part C Major Option Astrophysics High-Energy Astrophysics Garret Cotter garret@astro.ox.ac.uk Office 756 DWB Lecture 10 - rescheduled to HT 2013 Week 1 Today s lecture AGN luminosity functions and their

More information

AGN and Radio Galaxy Studies with LOFAR and SKA

AGN and Radio Galaxy Studies with LOFAR and SKA AGN and Radio Galaxy Studies with LOFAR and SKA Andrei Lobanov MPIfR, Bonn AGN/RG Science AGN/RG drivers for LOFAR and SKA: astrophysical masers, nuclear regions of AGN, physics of relativistic and mildly

More information

Accretion onto the Massive Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley)

Accretion onto the Massive Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley) Accretion onto the Massive Black Hole in the Galactic Center Eliot Quataert (UC Berkeley) Why focus on the Galactic Center? GR! Best evidence for a BH (stellar orbits) M 4x10 6 M Largest BH on the sky

More information

(Numerical) study of the collapse and of the fragmentation of prestellar dense core

(Numerical) study of the collapse and of the fragmentation of prestellar dense core (Numerical) study of the collapse and of the fragmentation of prestellar dense core Benoît Commerçon Supervisors: E. Audit, G. Chabrier and P. Hennebelle Collaborator: R. Teyssier (3D - AMR) CEA/DSM/IRFU/SAp

More information

Empirical Evidence for AGN Feedback

Empirical Evidence for AGN Feedback Empirical Evidence for AGN Feedback Christy Tremonti MPIA (Heidelberg) / U. Wisconsin-Madison Aleks Diamond-Stanic (U. Arizona), John Moustakas (NYU) Much observational and theoretical evidence supports

More information

The Effects of Anisotropic Transport on Dilute Astrophysical Plasmas Eliot Quataert (UC Berkeley)

The Effects of Anisotropic Transport on Dilute Astrophysical Plasmas Eliot Quataert (UC Berkeley) The Effects of Anisotropic Transport on Dilute Astrophysical Plasmas Eliot Quataert (UC Berkeley) in collaboration with Ian Parrish, Prateek Sharma, Jim Stone, Greg Hammett Hydra A w/ Chandra Galactic

More information

Active Galactic Nuclei-I. The paradigm

Active Galactic Nuclei-I. The paradigm Active Galactic Nuclei-I The paradigm An accretion disk around a supermassive black hole M. Almudena Prieto, July 2007, Unv. Nacional de Bogota Centers of galaxies Centers of galaxies are the most powerful

More information

Exploring Astrophysical Magnetohydrodynamics Using High-power Laser Facilities

Exploring Astrophysical Magnetohydrodynamics Using High-power Laser Facilities Exploring Astrophysical Magnetohydrodynamics Using High-power Laser Facilities Mario Manuel Einstein Fellows Symposium Harvard-Smithsonian Center for Astrophysics October 28 th, 2014 Ø Collimation and

More information

NEW CONSTRAINTS ON THE BLACK HOLE SPIN IN RADIO LOUD QUASARS

NEW CONSTRAINTS ON THE BLACK HOLE SPIN IN RADIO LOUD QUASARS NEW CONSTRAINTS ON THE BLACK HOLE SPIN IN RADIO LOUD QUASARS Andreas Schulze (NAOJ, EACOA Fellow)) Chris Done, Youjun Lu, Fupeng Zhang, Yoshiyuki Inoue East Asian Young Astronomers Meeting, EAYAM 2017

More information

THE INVERSE-COMPTON X-RAY SIGNATURE OF AGN FEEDBACK

THE INVERSE-COMPTON X-RAY SIGNATURE OF AGN FEEDBACK THE INVERSE-COMPTON X-RAY SIGNATURE OF AGN FEEDBACK MARTIN BOURNE IN COLLABORATION WITH: SERGEI NAYAKSHIN WITH THANKS TO: ANDREW KING, KEN POUNDS, SERGEY SAZONOV AND KASTYTIS ZUBOVAS Black hole (g)astronomy

More information

Vera Genten. AGN (Active Galactic Nuclei)

Vera Genten. AGN (Active Galactic Nuclei) Vera Genten AGN (Active Galactic Nuclei) Topics 1)General properties 2)Model 3)Different AGN-types I. Quasars II.Seyfert-galaxies III.Radio galaxies IV.young radio-loud AGN (GPS, CSS and CFS) V.Blazars

More information