Numerical Simulation of the Response of Sandy Soils Treated with Prefabricated Vertical Drains

Size: px
Start display at page:

Download "Numerical Simulation of the Response of Sandy Soils Treated with Prefabricated Vertical Drains"

Transcription

1 Numerical Simulation of the Response of Sandy Soils Treated with Prefabricated Vertical Drains Antonios Vytiniotis MIT Student Seminars, April 2009

2 Outline Introduce soil improvement with Prefabricated Vertical Drains (PV-Drains) Discuss modeling issues of the response of sandy soils treated with PV-Drains Validation against Centrifuge Test

3 1. PV-Drains

4 PV-Drains GW Level Clay Storage Capacity Sand Bedrock Applied acceleration

5 PV-Drains: Cross Section

6 PV-Drains: Installation

7 2. Previous research

8 Analytical Solutions Radial Dissipation of Excess Pore Pressure: Unit Cell Excess Pore Pressure Accumulation: Key References Seed & Booker: Perfect drains Onoue et al. Effect of well resistance Pestana et al.: FEQDRAIN (includes storage effect)

9 Validation: Importance of Drain Resistance Predictions of Seed & Booker Read r u Much lower than measured data Measured r u fit modified theory (well resistance) Onoue, 1987

10 2-D (Plane-Strain) Modeling Approximation Match the degree of consolidation (average diffusion) within soil Doesn t match the pore pressures at all points Equivalent plane strain PV PV Drain Drain k ax k pl For infinite permeability drains inside a uniform soil: k ax : true soil permeability, k pl : equivalent soil permeability in a plane stain analysis n :drain spacing ratio Hird et al., 1992

11 Equivalence between radial and plane strain drainage around a pre-fabricated drain Normalized Excess Pore Pressure Ratio around a perfect PV drain 1 Normalized Excess Pore Pressure e Ratio ABAQUS results R R/Ro or x/ro Axisymmetric, t=1s Plane Strain, t=1s Axisymmetric, t=0.1s Plane Strain, t=0.1s Great match using Hird et al equation!!! x,r 0

12 3. Modeling of PV-Drains

13 PV-Drains: Hydraulics Darcy Weisbach Equation λ, dimensionless flow coefficient L, length of pipe D, diameter of pipe ρ, mass density of fluid V, average velocity of the flow

14 PV-Drain Elements: Laminar flow

15 PV-Drain Elements: Fully turbulent flow

16 OpenSees Object Oriented Finite Element Framework Developed for Research Purposes Capability to solve dynamic fully coupled pore pressure displacement analyses Modular But with minimal documentation, no pre- and postprocessing, and small bugs here and there! Most importantly: FUN: interface in tcl/tk and source in C++

17 PV-Drains: Opensees Implementation Laminar flow: element Pipelin2 eleid node1 node2 Material Area C l γ w Turbulent Flow element Pipe4 eleid node1 node2 Material Area C t γ w d c

18 4. Centrifuge Testing

19 Centrifuge Testing Prototype Scale Model Scale

20 Centrifuge Testing: UC Davis Centrifuge Device 8.5m 2m

21 PV-Drains: Scaling Principles Scaling of Dimensions: X P = X M N Scaling of Stresses: σ P = σ M Scaling of Acceleration: a P = a M / N Scaling of Time: t P = t M N Scaling of Permeability: k P = k M N

22 PV-Drains: Scale Modeling Issues (I) Scaling of flow: Q P = Q M N 2 Scaling of Drain Flow Properties: Laminar flow C lp = C lm N 3 Fully turbulent flow C tp = C tm N 5/2

23 PV-Drains: Scale Modeling Issues (II) Scaling of Reynolds number For the same pore fluid: Re P = Re M N For different pore fluid (diffusion scaled) Re P = Re M N 2 Problem Statement: What is the model scale diameter of a PVdrain (where flow is laminar) that corresponds to a selected prototype scale diameter (where flow is turbulent)?

24 PV-Drains: Scale Modeling Issues (III) Flow Rate, Q Q Laminar Drains max Fully Turbulent Drains i max Pressure Gradient, i The model scale diameter that minimizes differences between model scale laminar and prototype scale turbulent flow is:

25 5. Validation

26 PV-Drains Validation: Centrifuge Model PV drains Yolo Loam 437mm 6.56m Loose Sand Loose Sand Dense Sand Dense Sand Applied acceleration 1650mm 24.75m

27 PV-Drains Validation: Centrifuge Model Kamai et al, 2008

28 PV-Drains Validation: Centrifuge Model Shaking sequence

29 PV-Drains Validation: Centrifuge Model Kamai et al, 2008

30 PV-Drains Validation: Base Case Scenario No-tension connection Yolo Loam* Drains Periodic Boundary Conditions #1 #2 #3 #4 #5 #6 #7 437 mm 6.56 m Loose Sand**, k pl Loose Sand**, k ax Nodal mass Dense Sand**, k pl 1650 mm m Applied acceleration *pressure independent multiyield model, QUAD Elements ** pressure dependent multiyield model, QUADUP Elements Dense Sand**, k ax

31 PV-Drains Validation: Final Deformed Shape Numerical simulations indicate the effectiveness of PV-Drains!!

32 PV-Drains Validation: Pore Pressure

33 PV-Drains Validation: PV-drain outflow Flow Rate (m 3 /s) Volume (m 3 ) Displacement (m) 4 x a. Flow coming out of drain No2 vs Time Solution Laminar limit (prototype scale) Laminar limit (model scale) Time (s) x 10-3 b. Volume of water coming out of drain No2 vs Time Time (s) 4 x c. Vertical displacement on top of drain No2 Indirect Direct Time (s)

34 PV-Drains Validation: Pore Pressures, amax=0.07g Treated side Untreated side A D Pore Pressure, p (kpa) B C E F Time, t (s) Time, t (s) Experiment Simulation

35 PV-Drains Validation: Horizontal Accelerations, amax=0.07g 2 Treated side Untreated side 1 A D 0-1 Horizontal Acceleration, α (m/s 2 ) B C E F Time, t (s) Time, t (s) Experiment Simulation

36 PV-Drains Validation: Surface Horizontal Displacements, amax=0.07g 0.2 Treated side Untreated side 0.1 C F Horizontal, u (m) B E A D Time, t (s) Time, t (s) Experiment Simulation

37 PV-Drains Validation: Surface Settlements, amax=0.07g Treated side Untreated side C F 0.04 Vertical Settlement, u y (m) B E A D Time, t (s) Time, t (s) Experiment Simulation

38 PV-Drains: Validation Observations Excess Pore Pressures Reasonable agreement at mid layer Underestimate at top of sand Horizontal Accelerations Good agreement on treated side No de-amplification in untreated sand No prediction of liquefaction event Horizontal Displacements Reasonable magnitudes No slippage between sand and loam Vertical Displacements (surface) Mismatched across model Effect of variable g field (centrifuge) and/or slope failure mechanism?

39 Coming up Investigation of the non-uniformity of the acceleration field inside the centrifuge device (CMMI 2009) Submission of code and manuals to OpenSees (PV-drain elements, element wrappers, and material models) Examination of the effect of numerical model by comparing with Dafalias Manzari model (5 th IC on RAGEESD) Field performance Long term performance? Effect of buckling, clogging, sedimentation & biofouling? Free Field Analyses (Incl. Transmitting Boundaries) Colloidal Silica Grout Simulation

40 Thank you!

Numerical Simulation of the Response of Sandy Soils Treated with PV-drains

Numerical Simulation of the Response of Sandy Soils Treated with PV-drains Numerical Simulation of the Response of Sandy Soils Treated with PV-drains Antonios Vytiniotis, Andrew J. Whittle & Eduardo Kausel MIT Department of Civil & Environmental Engineering Progress Report for

More information

Effect of Non-Uniform Gravitational Field on Seismically-Induced Ground Movements in Centrifuge Models Antonios Vytiniotis Andrew J.

Effect of Non-Uniform Gravitational Field on Seismically-Induced Ground Movements in Centrifuge Models Antonios Vytiniotis Andrew J. NSF GRANT # CMS-0530478 ana NSF PROGRAM NAME: Seismic Risk Management for Port Systems Effect of Non-Uniform Gravitational Field on Seismically-Induced Ground Movements in Centrifuge Models Antonios Vytiniotis

More information

EFFECT OF STORAGE CAPACITY ON VERTICAL DRAIN PERFORMANCE IN LIQUEFIABLE SAND DEPOSITS

EFFECT OF STORAGE CAPACITY ON VERTICAL DRAIN PERFORMANCE IN LIQUEFIABLE SAND DEPOSITS EFFECT OF STORAGE CAPACITY ON VERTICAL DRAIN PERFORMANCE IN LIQUEFIABLE SAND DEPOSITS Juan M. Pestana 1, M. ASCE Christopher E. Hunt 2, Student M. ASCE R. Robert Goughnour 3, M. ASCE Ann M. Kammerer 2,

More information

Shaking Table Testing to Evaluate Effectiveness of Prefabricated Vertical Drains for Liquefaction Mitigation

Shaking Table Testing to Evaluate Effectiveness of Prefabricated Vertical Drains for Liquefaction Mitigation Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2015-12-01 Shaking Table Testing to Evaluate Effectiveness of Prefabricated Vertical Drains for Liquefaction Mitigation Caleb Robert

More information

GEO-SLOPE International Ltd, Calgary, Alberta, Canada Wick Drain

GEO-SLOPE International Ltd, Calgary, Alberta, Canada   Wick Drain 1 Introduction Wick Drain This example is about modeling the behavior of a wick drain. The primary purpose here is to illustrate how interface elements can conveniently be used to include the effects of

More information

Time Rate of Consolidation Settlement

Time Rate of Consolidation Settlement Time Rate of Consolidation Settlement We know how to evaluate total settlement of primary consolidation S c which will take place in a certain clay layer. However this settlement usually takes place over

More information

Cyclic Behavior of Soils

Cyclic Behavior of Soils Cyclic Behavior of Soils Antonios Vytiniotis Cyclic Shearing of Sands Dry Sand 1 Triaxial Undrained Monotonic Shearing CIUC tests Ishihara Critical State Toyoura Sand Ishihara 2 Critical State Ishihara

More information

Developing software to evaluate the liquefaction potential by using 2D numerical modeling: Applications.

Developing software to evaluate the liquefaction potential by using 2D numerical modeling: Applications. Developing software to evaluate the liquefaction potential by using 2D numerical modeling: Applications www.ingenieriasismica.utpl.edu.ec 1 Content 1. Introduction 2. Methods to evaluate the liquefaction

More information

Geotechnical Properties of Soil

Geotechnical Properties of Soil Geotechnical Properties of Soil 1 Soil Texture Particle size, shape and size distribution Coarse-textured (Gravel, Sand) Fine-textured (Silt, Clay) Visibility by the naked eye (0.05 mm is the approximate

More information

2005 OpenSees Symposium OpenSees

2005 OpenSees Symposium OpenSees P E E R 25 OpenSees Symposium OpenSees Geotechnical Capabilities and Applications Dr. Liangcai He Prof. Ahmed Elgamal Dr. Zhaohui Yang Mr. James L. Yan Mr. Jinchi Lu (U.C. San Diego) Soil Materials and

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 31 Module 7: Lecture - 6 on Geotechnical Physical Modelling Scaling laws in centrifuge modelling Force, work, and energy Consider the definition of potential energy PE normally expressed as energy lost

More information

SHEAR STRENGTH OF SOIL

SHEAR STRENGTH OF SOIL Soil Failure Criteria SHEAR STRENGTH OF SOIL Knowledge about the shear strength of soil important for the analysis of: Bearing capacity of foundations, Slope stability, Lateral pressure on retaining structures,

More information

Numerical simulation of inclined piles in liquefiable soils

Numerical simulation of inclined piles in liquefiable soils Proc. 20 th NZGS Geotechnical Symposium. Eds. GJ Alexander & CY Chin, Napier Y Wang & R P Orense Department of Civil and Environmental Engineering, University of Auckland, NZ. ywan833@aucklanduni.ac.nz

More information

MEDAT-2: Some Geotechnical Opportunities. Site Characterization -- Opportunities. Down-hole CPT & vane (Fugro)

MEDAT-2: Some Geotechnical Opportunities. Site Characterization -- Opportunities. Down-hole CPT & vane (Fugro) MEDAT-2: Some Geotechnical Opportunities Ross W. Boulanger Department of Civil & Environmental Engineering University of California Davis, California 95616-5294 rwboulanger@ucdavis.edu Presentation for

More information

Experimental Study on The Seismic Assessment of Pile Foundation in Volcanic Ash Ground

Experimental Study on The Seismic Assessment of Pile Foundation in Volcanic Ash Ground Experimental Study on The Seismic Assessment of Pile Foundation in Volcanic Ash Ground Takuya EGAWA, Satoshi NISHIMOTO & Koichi TOMISAWA Civil Engineering Research Institute for Cold Region, Public Works

More information

Oedometer and direct shear tests to the study of sands with various viscosity pore fluids

Oedometer and direct shear tests to the study of sands with various viscosity pore fluids 3 r d International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, Oedometer and direct shear tests to the study of sands with various viscosity pore fluids Rozhgar Abdullah

More information

Seismic Stability of Tailings Dams, an Overview

Seismic Stability of Tailings Dams, an Overview Seismic Stability of Tailings Dams, an Overview BY Gonzalo Castro, Ph.D., P.E. Principal International Workshop on Seismic Stability of Tailings Dams Case Western Reserve University, November 2003 Small

More information

A STUDY ON NUMERICAL SIMULATION DURING CHEMICAL GROUTING

A STUDY ON NUMERICAL SIMULATION DURING CHEMICAL GROUTING A STUDY ON NUMERICAL SIMULATION DURING CHEMICAL GROUTING Takashi Nakayama 1,a, Naoki Tachibana 2, Noriyuki Okano 1,b and Hirokazu Akagi 3 1,a Assistant Senior Researcher, b Senior Researcher, Railway Technical

More information

Pacific Earthquake Engineering Research Center

Pacific Earthquake Engineering Research Center Pacific Earthquake Engineering Research Center Centrifuge Modeling of Settlement and Lateral Spreading with Comparisons to Numerical Analyses Sivapalan Gajan and Bruce L. Kutter University of California,

More information

Instructor : Dr. Jehad Hamad. Chapter (7)

Instructor : Dr. Jehad Hamad. Chapter (7) Instructor : Dr. Jehad Hamad Chapter (7) 2017-2016 Soil Properties Physical Properties Mechanical Properties Gradation and Structure Compressibility Soil-Water Relationships Shear Strength Bearing Capacity

More information

INTI COLLEGE MALAYSIA

INTI COLLEGE MALAYSIA EGC373 (F) / Page 1 of 5 INTI COLLEGE MALAYSIA UK DEGREE TRANSFER PROGRAMME INTI ADELAIDE TRANSFER PROGRAMME EGC 373: FOUNDATION ENGINEERING FINAL EXAMINATION : AUGUST 00 SESSION This paper consists of

More information

USER S MANUAL 1D Seismic Site Response Analysis Example University of California: San Diego August 30, 2017

USER S MANUAL 1D Seismic Site Response Analysis Example   University of California: San Diego August 30, 2017 USER S MANUAL 1D Seismic Site Response Analysis Example http://www.soilquake.net/ucsdsoilmodels/ University of California: San Diego August 30, 2017 Table of Contents USER'S MANUAL TABLE OF CONTENTS Page

More information

Application of cyclic accumulation models for undrained and partially drained general boundary value problems

Application of cyclic accumulation models for undrained and partially drained general boundary value problems Application of cyclic accumulation models for undrained and partially drained general boundary value problems A. M. Page Risueño Yngres Dag 2014, May 15 th 2014 Introduction Cyclic loads in geotechnical

More information

Finite Deformation Analysis of Dynamic Behavior of Embankment on Liquefiable Sand Deposit Considering Pore Water Flow and Migration

Finite Deformation Analysis of Dynamic Behavior of Embankment on Liquefiable Sand Deposit Considering Pore Water Flow and Migration 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 215 Christchurch, New Zealand Finite Deformation Analysis of Dynamic Behavior of Embankment on Liquefiable Sand Deposit

More information

Monitoring of underground construction

Monitoring of underground construction Monitoring of underground construction Geotechnical Aspects of Underground Construction in Soft Ground Yoo, Park, Kim & Ban (Eds) 2014 Korean Geotechnical Society, Seoul, Korea, ISBN 978-1-138-02700-8

More information

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION October 1-17,, Beijing, China DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION Mohammad M. Ahmadi 1 and Mahdi Ehsani 1 Assistant Professor, Dept. of Civil Engineering, Geotechnical Group,

More information

Geotechnical Modeling Issues

Geotechnical Modeling Issues Nonlinear Analysis of Viaducts and Overpasses Geotechnical Modeling Issues Steve Kramer Pedro Arduino Hyung-Suk Shin University of Washington The Problem Approach Soil Soil Soil Soil Soil Soil Soil Soil

More information

TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL

TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL Qassun S. Mohammed Shafiqu and Maarib M. Ahmed Al-Sammaraey Department of Civil Engineering, Nahrain University, Iraq

More information

Remediation against Soil Liquefaction Induced Uplift of Manhole

Remediation against Soil Liquefaction Induced Uplift of Manhole 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Remediation against Soil Liquefaction Induced Uplift of Manhole Z. Zhang 1, S. C. Chian

More information

LIQUEFACTION ASSESSMENT BY THE ENERGY METHOD THROUGH CENTRIFUGE MODELING

LIQUEFACTION ASSESSMENT BY THE ENERGY METHOD THROUGH CENTRIFUGE MODELING LIQUEFACTION ASSESSMENT BY THE ENERGY METHOD THROUGH CENTRIFUGE MODELING Hesham M. Dief, Associate Professor, Civil Engineering Department, Zagazig University, Zagazig, Egypt J. Ludwig Figueroa, Professor

More information

Numerical modeling of liquefaction effects: Development & initial applications of a sand plasticity model

Numerical modeling of liquefaction effects: Development & initial applications of a sand plasticity model 4 th IASPEI / IAEE International Symposium Santa Barbara, California, Aug 23-26, 2011 Numerical modeling of liquefaction effects: Development & initial applications of a sand plasticity model Ross W. Boulanger

More information

Erosion of sand under high flow velocities

Erosion of sand under high flow velocities Delft University of Technology Faculty of Mechanical, Maritime and Materials Engineering Department of Offshore Engineering Erosion of sand under high flow velocities Author: Juneed Sethi MSc Thesis Thesis

More information

New Criterion For The Liquefaction Resistance Under Strain-Controlled Multi-Directional Cyclic Shear

New Criterion For The Liquefaction Resistance Under Strain-Controlled Multi-Directional Cyclic Shear New Criterion For The Liquefaction Resistance Under Strain-Controlled Multi-Directional Cyclic Shear H. Matsuda, T.T. Nhan, R. Ishikura & T. Inazawa Yamaguchi University, Ube, Japan P.H. Andre Brawijaya

More information

NUMERICAL SIMULATION OF DRAIN PERFORMANCE IN LIQUEFIABLE SOILS

NUMERICAL SIMULATION OF DRAIN PERFORMANCE IN LIQUEFIABLE SOILS Paper No. ARABO NUMERICAL SIMULATION OF DRAIN PERFORMANCE IN LIQUEFIABLE SOILS George BOUCKOVALAS, Vasiliki DIMITRIADI 2 Yannis TSIAPAS 3, Alexandra TSIOULOU 4 ABSTRACT Modern approaches for the design

More information

USER S MANUAL. 1D Seismic Site Response Analysis Example. University of California: San Diego.

USER S MANUAL. 1D Seismic Site Response Analysis Example.  University of California: San Diego. USER S MANUAL 1D Seismic Site Response Analysis Example http://www.soilquake.net/ucsdsoilmodels/ University of California: San Diego August 2, 2017 Table of Contents USER'S MANUAL TABLE OF CONTENTS Page

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 42 Module 3: Lecture - 4 on Compressibility and Consolidation Contents Stresses in soil from surface loads; Terzaghi s 1-D consolidation theory; pplication in different boundary conditions; Ramp loading;

More information

Liquefaction is the sudden loss of shear strength of a saturated sediment due to earthquake shaking. Nisqually earthquake 02/28/2001: Olympia, WA

Liquefaction is the sudden loss of shear strength of a saturated sediment due to earthquake shaking. Nisqually earthquake 02/28/2001: Olympia, WA Liquefaction is the sudden loss of shear strength of a saturated sediment due to earthquake shaking Nisqually earthquake 02/28/2001: Olympia, WA The shear strength is controlled by the degree of grain-to-grain

More information

DYNAMIC CENTRIFUGE TEST OF PILE FOUNDATION STRUCTURE PART TWO : BEHAVIOR OF STRUCTURE AND GROUND DURING EXTREME EARTHQUAKE CONDITIONS

DYNAMIC CENTRIFUGE TEST OF PILE FOUNDATION STRUCTURE PART TWO : BEHAVIOR OF STRUCTURE AND GROUND DURING EXTREME EARTHQUAKE CONDITIONS DYNAMIC CENTRIFUGE TEST OF PILE FOUNDATION STRUCTURE PART TWO : BEHAVIOR OF STRUCTURE AND GROUND DURING EXTREME EARTHQUAKE CONDITIONS Ryouichi BABASAKI 1, Katsuo TOGASHI 2, Satoru NAKAFUSA 3, Toshio HASHIBA

More information

The Effects of Different Surcharge Pressures on 3-D Consolidation of Soil

The Effects of Different Surcharge Pressures on 3-D Consolidation of Soil The Effects of Different Surcharge Pressures on 3-D Consolidation of Soil Arpan Laskar *1 and Sujit Kumar Pal 2 *1 Department of Civil Engineering, National Institute of Technology Agartala, Tripura, India.

More information

Analytical and Numerical Investigations on the Vertical Seismic Site Response

Analytical and Numerical Investigations on the Vertical Seismic Site Response Analytical and Numerical Investigations on the Vertical Seismic Site Response Bo Han, Lidija Zdravković, Stavroula Kontoe Department of Civil and Environmental Engineering, Imperial College, London SW7

More information

NUMERICAL EVALUATION OF LIQUEFACTION-INDUCED UPLIFT FOR AN IMMERSED TUNNEL

NUMERICAL EVALUATION OF LIQUEFACTION-INDUCED UPLIFT FOR AN IMMERSED TUNNEL October 12-17, 28, Beijing, China NUMERICAL EVALUATION OF LIQUEFACTION-INDUCED UPLIFT FOR AN IMMERSED TUNNEL ABSTRACT : Dongdong. Chang 1, Thaleia Travasarou 2, and Jacob Chacko 3 1 Ph.D., Staff Engineer,

More information

Date: April 2, 2014 Project No.: Prepared For: Mr. Adam Kates CLASSIC COMMUNITIES 1068 E. Meadow Circle Palo Alto, California 94303

Date: April 2, 2014 Project No.: Prepared For: Mr. Adam Kates CLASSIC COMMUNITIES 1068 E. Meadow Circle Palo Alto, California 94303 City of Newark - 36120 Ruschin Drive Project Draft Initial Study/Mitigated Negative Declaration Appendix C: Geologic Information FirstCarbon Solutions H:\Client (PN-JN)\4554\45540001\ISMND\45540001 36120

More information

Module 6 LIQUEFACTION (Lectures 27 to 32)

Module 6 LIQUEFACTION (Lectures 27 to 32) Module 6 LIQUEFACTION (Lectures 27 to 32) Lecture 31 Topics 6.6 EFFECTS OF LIQUEFACTION 6.6.1 Alteration of Ground Motion 6.6.2 Development of Sand Boils 6.6.3 Settlement 6.6.4 Settlement of Dry Sands

More information

Soil strength. the strength depends on the applied stress. water pressures are required

Soil strength. the strength depends on the applied stress. water pressures are required Soil Strength Soil strength u Soils are essentially frictional materials the strength depends on the applied stress u Strength is controlled by effective stresses water pressures are required u Soil strength

More information

Chapter 7 Permeability and Seepage

Chapter 7 Permeability and Seepage Permeability and Seepage - N. Sivakugan (2005) 1 7.1 INTRODUCTION Chapter 7 Permeability and Seepage Permeability, as the name implies (ability to permeate), is a measure of how easily a fluid can flow

More information

1.8 Unconfined Compression Test

1.8 Unconfined Compression Test 1-49 1.8 Unconfined Compression Test - It gives a quick and simple measurement of the undrained strength of cohesive, undisturbed soil specimens. 1) Testing method i) Trimming a sample. Length-diameter

More information

Intro to Soil Mechanics: the what, why & how. José E. Andrade, Caltech

Intro to Soil Mechanics: the what, why & how. José E. Andrade, Caltech Intro to Soil Mechanics: the what, why & how José E. Andrade, Caltech The What? What is Soil Mechanics? erdbaumechanik The application of the laws of mechanics (physics) to soils as engineering materials

More information

Offshore sediments. Numerical analysis of pipeline-seabed interaction using a constitutive model that considers clay destructuration

Offshore sediments. Numerical analysis of pipeline-seabed interaction using a constitutive model that considers clay destructuration Offshore sediments The main research goal of the Offshore Sediments stream is to identify the key mechanisms at a micro-structural level that dictate critical aspects of behaviour, and quantify that behaviour

More information

NUMERICAL ANALYSIS OF DAMAGE OF RIVER EMBANKMENT ON SOFT SOIL DEPOSIT DUE TO EARTHQUAKES WITH LONG DURATION TIME

NUMERICAL ANALYSIS OF DAMAGE OF RIVER EMBANKMENT ON SOFT SOIL DEPOSIT DUE TO EARTHQUAKES WITH LONG DURATION TIME Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, March 1-4, 2012, Tokyo, Japan NUMERICAL ANALYSIS OF DAMAGE OF RIVER EMBANKMENT ON SOFT

More information

USER S MANUAL 1D Seismic Site Response Analysis Example University of California: San Diego August 30, 2017

USER S MANUAL 1D Seismic Site Response Analysis Example   University of California: San Diego August 30, 2017 USER S MANUAL 1D Seismic Site Response Analysis Example http://www.soilquake.net/ucsdsoilmodels/ University of California: San Diego August 30, 2017 Table of Contents USER'S MANUAL TABLE OF CONTENTS Page

More information

YOUR HW MUST BE STAPLED YOU MUST USE A PENCIL (no pens)

YOUR HW MUST BE STAPLED YOU MUST USE A PENCIL (no pens) Spring 2008 CIVE 462 HOMEWORK #1 1. Print out the syllabus. Read it. Write the grade percentages in the first page of your notes. 2. Go back to your 301 notes, internet, etc. and find the engineering definition

More information

Landslide FE Stability Analysis

Landslide FE Stability Analysis Landslide FE Stability Analysis L. Kellezi Dept. of Geotechnical Engineering, GEO-Danish Geotechnical Institute, Denmark S. Allkja Altea & Geostudio 2000, Albania P. B. Hansen Dept. of Geotechnical Engineering,

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 56 Module 4: Lecture 7 on Stress-strain relationship and Shear strength of soils Contents Stress state, Mohr s circle analysis and Pole, Principal stressspace, Stress pathsin p-q space; Mohr-Coulomb failure

More information

Finite Element Investigation of the Interaction between a Pile and a Soft Soil focussing on Negative Skin Friction

Finite Element Investigation of the Interaction between a Pile and a Soft Soil focussing on Negative Skin Friction NGM 2016 Reykjavik Proceedings of the 17 th Nordic Geotechnical Meeting Challenges in Nordic Geotechnic 25 th 28 th of May Finite Element Investigation of the Interaction between a Pile and a Soft Soil

More information

Validation Protocols for Constitutive Modeling of Liquefaction

Validation Protocols for Constitutive Modeling of Liquefaction 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Validation Protocols for Constitutive Modeling of Liquefaction K. Ziotopoulou 1 and R. W.

More information

Improvement mechanisms of stone columns as a mitigation measure against liquefaction-induced lateral spreading

Improvement mechanisms of stone columns as a mitigation measure against liquefaction-induced lateral spreading Improvement mechanisms of stone columns as a mitigation measure against liquefaction-induced lateral spreading E. Tang Tonkin & Taylor Ltd, (formerly University of Auckland) R.P. Orense University of Auckland

More information

Endochronic model applied to earthfill dams with impervious core: design recommendation at seismic sites

Endochronic model applied to earthfill dams with impervious core: design recommendation at seismic sites Proceedings of the 1st IASME / WSEAS International Conference on Geology and Seismology (GES'7), Portoroz, Slovenia, May 15-17, 27 51 Endochronic model applied to earthfill dams with impervious core: design

More information

3-D Numerical simulation of shake-table tests on piles subjected to lateral spreading

3-D Numerical simulation of shake-table tests on piles subjected to lateral spreading 3-D Numerical simulation of shake-table tests on piles subjected to lateral spreading M. Cubrinovski 1, H. Sugita 2, K. Tokimatsu 3, M. Sato 4, K. Ishihara 5, Y. Tsukamoto 5, T. Kamata 5 1 Department of

More information

POST-CYCLIC RECOMPRESSION CHARACTERISTICS OF A CLAY SUBJECTED TO UNDRAINED UNI-DIRECTIONAL AND MULTI-DIRECTIONAL CYCLIC SHEARS

POST-CYCLIC RECOMPRESSION CHARACTERISTICS OF A CLAY SUBJECTED TO UNDRAINED UNI-DIRECTIONAL AND MULTI-DIRECTIONAL CYCLIC SHEARS NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July -5, 4 Anchorage, Alaska POST-CYCLIC RECOMPRESSION CHARACTERISTICS OF A CLAY SUBJECTED TO UNDRAINED

More information

Geotechnical Elements and Models in OpenSees

Geotechnical Elements and Models in OpenSees Geotechnical Elements and Models in OpenSees Pedro Arduino University of Washington, Seattle OpenSees Days 2008, OpenSees User Workshop, Monday Sept 8, 2008 Type of Geotechnical Problems that can be solved

More information

4 Undrained Cylindrical Cavity Expansion in a Cam-Clay Medium

4 Undrained Cylindrical Cavity Expansion in a Cam-Clay Medium Undrained Cylindrical Cavity Expansion in a Cam-Clay Medium 4-1 4 Undrained Cylindrical Cavity Expansion in a Cam-Clay Medium 4.1 Problem Statement The stress and pore pressure changes due to the expansion

More information

Deep Foundations 2. Load Capacity of a Single Pile

Deep Foundations 2. Load Capacity of a Single Pile Deep Foundations 2 Load Capacity of a Single Pile All calculations of pile capacity are approximate because it is almost impossible to account for the variability of soil types and the differences in the

More information

2004 OpenSees User Workshop. OpenSees. Geotechnical Capabilities and Applications. (U.C. San Diego) Roadmap

2004 OpenSees User Workshop. OpenSees. Geotechnical Capabilities and Applications. (U.C. San Diego) Roadmap P E E R 24 OpenSees User Workshop OpenSees Geotechnical Capabilities and Applications Ahmed Elgamal Jinchi Lu Zhaohui Yang Linjun Yan (U.C. San Diego) 1 Roadmap Soil materials and elements (manual and

More information

Numerical model comparison on deformation behavior of a TSF embankment subjected to earthquake loading

Numerical model comparison on deformation behavior of a TSF embankment subjected to earthquake loading Numerical model comparison on deformation behavior of a TSF embankment subjected to earthquake loading Jorge Castillo, Yong-Beom Lee Ausenco, USA Aurelian C. Trandafir Fugro GeoConsulting Inc., USA ABSTRACT

More information

Calculation types: drained, undrained and fully coupled material behavior. Dr Francesca Ceccato

Calculation types: drained, undrained and fully coupled material behavior. Dr Francesca Ceccato Calculation types: drained, undrained and fully coupled material behavior Dr Francesca Ceccato Summary Introduction Applications: Piezocone penetration (CPTU) Submerged slope Conclusions Introduction Porous

More information

Investigation of Liquefaction Behaviour for Cohesive Soils

Investigation of Liquefaction Behaviour for Cohesive Soils Proceedings of the 3 rd World Congress on Civil, Structural, and Environmental Engineering (CSEE 18) Budapest, Hungary April 8-10, 2018 Paper No. ICGRE 134 DOI: 10.11159/icgre18.134 Investigation of Liquefaction

More information

Propagation of Seismic Waves through Liquefied Soils

Propagation of Seismic Waves through Liquefied Soils Propagation of Seismic Waves through Liquefied Soils Mahdi Taiebat a,b,, Boris Jeremić b, Yannis F. Dafalias b,c, Amir M. Kaynia a, Zhao Cheng d a Norwegian Geotechnical Institute, P.O. Box 393 Ullevaal

More information

dynamics of f luids in porous media

dynamics of f luids in porous media dynamics of f luids in porous media Jacob Bear Department of Civil Engineering Technion Israel Institute of Technology, Haifa DOVER PUBLICATIONS, INC. New York Contents Preface xvii CHAPTER 1 Introduction

More information

Numerical analysis of effect of mitigation measures on seismic performance of a liquefiable tailings dam foundation

Numerical analysis of effect of mitigation measures on seismic performance of a liquefiable tailings dam foundation Numerical analysis of effect of mitigation measures on seismic performance of a liquefiable tailings dam foundation Yong-Beom Lee, Jorge Castillo Ausenco, USA Aurelian C. Trandafir Fugro GeoConsulting

More information

Civil Engineering Department College of Engineering

Civil Engineering Department College of Engineering Civil Engineering Department College of Engineering Course: Soil Mechanics (CE 359) Lecturer: Dr. Frederick Owusu-Nimo FREQUENCY CE 260 Results (2013) 30 25 23 25 26 27 21 20 18 15 14 15 Civil Geological

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 28 Module 7: Lecture -3 on Geotechnical Physical Modelling Hydraulic Gradient Similitude Method Example: Uplift behavior of pile in saturated sand profile Applications of Hydraulic Gradient Similitude

More information

Settlement and Bearing Capacity of a Strip Footing. Nonlinear Analyses

Settlement and Bearing Capacity of a Strip Footing. Nonlinear Analyses Settlement and Bearing Capacity of a Strip Footing Nonlinear Analyses Outline 1 Description 2 Nonlinear Drained Analysis 2.1 Overview 2.2 Properties 2.3 Loads 2.4 Analysis Commands 2.5 Results 3 Nonlinear

More information

Benefits of Collaboration between Centrifuge Modeling and Numerical Modeling. Xiangwu Zeng Case Western Reserve University, Cleveland, Ohio

Benefits of Collaboration between Centrifuge Modeling and Numerical Modeling. Xiangwu Zeng Case Western Reserve University, Cleveland, Ohio Benefits of Collaboration between Centrifuge Modeling and Numerical Modeling Xiangwu Zeng Case Western Reserve University, Cleveland, Ohio ABSTRACT There is little doubt that collaboration between centrifuge

More information

Modeling of Cyclic Load-Deformation Behavior of Shallow Foundations Supporting Rocking Shear Walls. Sivapalan Gajan. Advisor: Bruce Kutter

Modeling of Cyclic Load-Deformation Behavior of Shallow Foundations Supporting Rocking Shear Walls. Sivapalan Gajan. Advisor: Bruce Kutter Modeling of Cyclic Load-Deformation Behavior of Shallow Foundations Supporting Rocking Shear Walls Sivapalan Gajan Advisor: Bruce Kutter Seminar 06. 01. 2005 Overview of Presentation Background Experimental

More information

PORE WATER PRESSURE GENERATION AND DISSIPATION NEAR TO PILE AND FAR-FIELD IN LIQUEFIABLE SOILS

PORE WATER PRESSURE GENERATION AND DISSIPATION NEAR TO PILE AND FAR-FIELD IN LIQUEFIABLE SOILS Int. J. of GEOMATE, Dec., 25, Vol. 9, No. 2 (Sl. No. 8), pp. 454-459 Geotech., Const. Mat. and Env., ISSN:286-2982(P), 286-299(O), Japan PORE WATER PRESSURE GENERATION AND DISSIPATION NEAR TO PILE AND

More information

Soil Mechanics I 3 Water in Soils. 1. Capillarity, swelling 2. Seepage 3. Measurement of hydraulic conductivity 4. Effective stress in the ground

Soil Mechanics I 3 Water in Soils. 1. Capillarity, swelling 2. Seepage 3. Measurement of hydraulic conductivity 4. Effective stress in the ground Soil Mechanics I 3 Water in Soils 1. Capillarity, swelling 2. Seepage 3. Measurement of hydraulic conductivity 4. Effective stress in the ground 1 Influence of Water - Basics WATER IN SOIL - affects soil

More information

Evaluation of soil liquefaction using the CPT Part 1

Evaluation of soil liquefaction using the CPT Part 1 Evaluation of soil liquefaction using the CPT Part 1 Dr. Peter K. Robertson Webinar #7 2013 CPT Guide 5 th Edition Download FREE copy from: Robertson & Cabal (Robertson) 5 th Edition 2012 www.greggdrilling.com

More information

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4262]-113 S.E. (Mech.) (First Sem.) EXAMINATION, 2012 (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum

More information

Table of Contents. Preface... xiii

Table of Contents. Preface... xiii Preface... xiii PART I. ELEMENTS IN FLUID MECHANICS... 1 Chapter 1. Local Equations of Fluid Mechanics... 3 1.1. Forces, stress tensor, and pressure... 4 1.2. Navier Stokes equations in Cartesian coordinates...

More information

Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials

Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials 1.3 Scope of This Book 1.4 Historical Development of Geotechnical

More information

NUMERICAL MODELING OF INSTABILITIES IN SAND

NUMERICAL MODELING OF INSTABILITIES IN SAND NUMERICAL MODELING OF INSTABILITIES IN SAND KIRK ELLISON March 14, 2008 Advisor: Jose Andrade Masters Defense Outline of Presentation Randomized porosity in FEM simulations Liquefaction in FEM simulations

More information

Rate of earthquake-induced settlement of level ground H. Matsuda Department of Civil Engineering, Yamaguchi University,

Rate of earthquake-induced settlement of level ground H. Matsuda Department of Civil Engineering, Yamaguchi University, Rate of earthquake-induced settlement of level ground H. Matsuda Department of Civil Engineering, Yamaguchi University, Abstract When a clay layer is subjected to cyclic shear, the excess pore water pressure

More information

Physical modelling of consolidation behaviour of a composite foundation consisting of a cement-mixed soil column and untreated soft marine clay

Physical modelling of consolidation behaviour of a composite foundation consisting of a cement-mixed soil column and untreated soft marine clay Yin, J.-H. & Fang, Z. (). Géotechnique 5, No. 1, 3 TECHNICAL NOTE Physical modelling of consolidation behaviour of a composite foundation consisting of a cement-mixed soil column and untreated soft marine

More information

Back Analysis of the Lower San Fernando Dam Slide Using a Multi-block Model

Back Analysis of the Lower San Fernando Dam Slide Using a Multi-block Model Proceedings Geohazards Engineering Conferences International Year 2006 Back Analysis of the Lower San Fernando Dam Slide Using a Multi-block Model C. A. Stamatopoulos P. Petridis Stamatopoulos and Associates

More information

Effect of Liquefaction on Pile Shaft Friction Capacity

Effect of Liquefaction on Pile Shaft Friction Capacity Missouri University of Science and Technology Scholars' Mine International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics 21 - Fifth International Conference on

More information

CHAPTER 6: ASSESSMENT OF A COMPREHENSIVE METHOD FOR PREDICTING PERFORMANCE

CHAPTER 6: ASSESSMENT OF A COMPREHENSIVE METHOD FOR PREDICTING PERFORMANCE CHAPTER 6: ASSESSMENT OF A COMPREHENSIVE METHOD FOR PREDICTING PERFORMANCE 6.1 Overview The analytical results presented in Chapter 5 demonstrate the difficulty of predicting the performance of an improved

More information

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering) Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

More information

Determining Liquid Capacity 4 th Annual Pipeline Knowledge Retention Chris Sonneborn November 7, 2013

Determining Liquid Capacity 4 th Annual Pipeline Knowledge Retention Chris Sonneborn November 7, 2013 Determining Liquid Capacity 4 th Annual Pipeline Knowledge Retention Chris Sonneborn November 7, 2013 Outline What is important? Liquid Properties Thermal Conditions Hydraulic Gradient Flow Regime in Liquids

More information

Technical Note 16 Equivalent Static Method

Technical Note 16 Equivalent Static Method Technical Note 16 Equivalent Static Method Contents Technical Note 21 -... 1 1 Introduction... 1 2 Operational Strain in the Pipeline... 2 3 Seismicity... 2 4 Vertical Uplift... 3 5 Vertical Bearing...

More information

EARTHQUAKE-INDUCED SETTLEMENT AS A RESULT OF DENSIFICATION, MEASURED IN LABORATORY TESTS

EARTHQUAKE-INDUCED SETTLEMENT AS A RESULT OF DENSIFICATION, MEASURED IN LABORATORY TESTS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3291 EARTHQUAKE-INDUCED SETTLEMENT AS A RESULT OF DENSIFICATION, MEASURED IN LABORATORY TESTS Constantine

More information

An Endochronic-based approach for simulating pore water pressure variation during liquefaction of sand

An Endochronic-based approach for simulating pore water pressure variation during liquefaction of sand Noname manuscript No. (will be inserted by the editor) An Endochronic-based approach for simulating pore water pressure variation during liquefaction of sand Ali Pak Mohammad Ali Iranmanesh the date of

More information

The Preliminary Study of the Impact of Liquefaction on Water Pipes

The Preliminary Study of the Impact of Liquefaction on Water Pipes The Preliminary Study of the Impact of Liquefaction on Water Pipes Jerry J. Chen and Y.C. Chou Geotechnical Engineer, Dept. of Geotechnical Engineering, CECI Engineering Consultants, Inc. CONTENT 1. Introduction

More information

The Preliminary Study of the Impact of Liquefaction on Water Pipes

The Preliminary Study of the Impact of Liquefaction on Water Pipes The Preliminary Study of the Impact of Liquefaction on Water Pipes Jerry J. Chen and Y.C. Chou ABSTRACT Damages to the existing tap-water pipes have been found after earthquake. Some of these damages are

More information

*** ***! " " ) * % )!( & ' % # $. 0 1 %./ +, - 7 : %8% 9 ) 7 / ( * 7 : %8% 9 < ;14. " > /' ;-,=. / ١

*** ***!   ) * % )!( & ' % # $. 0 1 %./ +, - 7 : %8% 9 ) 7 / ( * 7 : %8% 9 < ;14.  > /' ;-,=. / ١ ١ ******!" #$ % & '!( ) % * ") +,-./ % 01. 3 ( 4 56 7/4 ) 8%9 % : 7 ;14 < 8%9 % : *7./ = ;-, >/'." Soil Permeability & Seepage ٢ Soil Permeability- Definition ٣ What is Permeability? Permeability is the

More information

EFFECTIVE STRESS ANALYSES OF TWO SITES WITH DIFFERENT EXTENT OF LIQUEFACTION DURING EAST JAPAN EARTHQUAKE

EFFECTIVE STRESS ANALYSES OF TWO SITES WITH DIFFERENT EXTENT OF LIQUEFACTION DURING EAST JAPAN EARTHQUAKE Proceedings of the International Symposium on Engineering Lessons Learned from the 211 Great East Japan Earthquake, March 1-4, 212, Tokyo, Japan EFFECTIVE STRESS ANALYSES OF TWO SITES WITH DIFFERENT EXTENT

More information

Seismic Design of a Hydraulic Fill Dam by Nonlinear Time History Method

Seismic Design of a Hydraulic Fill Dam by Nonlinear Time History Method Seismic Design of a Hydraulic Fill Dam by Nonlinear Time History Method E. Yıldız & A.F. Gürdil Temelsu International Engineering Services Inc., Ankara, Turkey SUMMARY: Time history analyses conducted

More information

Estimation of Multi-Directional Cyclic Shear-Induced Pore Water Pressure on Clays with a Wide Range of Plasticity Indices

Estimation of Multi-Directional Cyclic Shear-Induced Pore Water Pressure on Clays with a Wide Range of Plasticity Indices Proceedings of the 2 nd International Conference on Civil, Structural and Transportation Engineering (ICCSTE 16) Ottawa, Canada May 5 6, 216 Paper No. 116 Estimation of Multi-Directional Cyclic Shear-Induced

More information

5. MODELING OF NON-STRATIFIED MIXTURE FLOWS (Pseudo-homogeneous flows)

5. MODELING OF NON-STRATIFIED MIXTURE FLOWS (Pseudo-homogeneous flows) 5. MODELING OF NON-STRATIFIED MIXTURE FLOWS (Pseudo-homogeneous flows) Uniform (or almost uniform) distribution of transported solids across a pipeline cross section is characteristic of pseudo-homogeneous

More information

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses.

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.2. Some soils show a peak shear strength. Why and what type(s)

More information

Module 12:Insitu Ground Reinforcement and liquefaction of soils Lecture 38:Definition and mechanism of Liquefaction. The Lecture Contains:

Module 12:Insitu Ground Reinforcement and liquefaction of soils Lecture 38:Definition and mechanism of Liquefaction. The Lecture Contains: The Lecture Contains: Liquefication of soils file:///d /Dr.patra/ground_improvement_techniques/lecture38/38_1.htm [10/12/2011 3:53:45 PM] LIQUEFACTION OF SOILS Many failures of structures like earth structure,

More information