Large Scale Computation of Coupled. Electro-Acoustic Systems using ANSYS and CAPA

Size: px
Start display at page:

Download "Large Scale Computation of Coupled. Electro-Acoustic Systems using ANSYS and CAPA"

Transcription

1 Large Scale Computation of Coupled Electro-Acoustic Systems using ANSYS and CAPA H.Landes, M. Kaltenbacher, R. Lerch Chair of Sensor Technology, University of Erlangen-Nürnberg Summary: The numerical simulation of coupled electro-acoustic problems requires the precise and efficient computation of electric, magnetic, mechanic, and acoustic fields including their mutual couplings. To meet these requirements, the finite-element-boundary-element program CAPA has been developed by the authors during the last years. Recently we have implemented an interface between CAPA and ANSYS, which allows the pre- and postprocessing tasks to be performed within ANSYS while the numerical calculations are carried out in CAPA. Therewith, we have successfully combined the user-friendly interface of ANSYS with the dedicated computational capabilities of CAPA. Several examples demonstrate the applicability of this approach: the optimization of an electrodynamic loudspeaker, the analysis of an electromagnetic acoustic transducer (EMAT) as used in nondestructive testing, and the simulation of a controlled micromachined ultrasound array. Keywords: Finite elements, boundary elements, coupled field simulations, multiphysics, large scale computations - 1 -

2 1. Introduction From a modern point of view, the development of electro-acoustic devices asks for powerful computer-aidedengineering (CAE) tools. In recent years, numerical methods have been used extensively in the field of engineering design. So Finite-Element-Methods (FEM) and Boundary-Element-Methods (BEM) are well established in the area of mechanical and electrical engineering [1,2,3]. With these computer simulations, the costly and lengthy fabrication of a large number of prototypes, required in optimization studies by conventional experimental design, can be reduced tremendously. As a representative example of an electro-acoustic actuator consider an electrodynamic loudspeaker, as shown in Fig. 1. A cylindrical, small light voice coil is suspended freely in a strong radial magnetic field, generated by a permanent magnet. When the coil is loaded by an electric voltage signal, the interaction between the magnetic field of the permanent magnet and the current in the voice coil results in an axial Lorentz force, acting on the coil. Therewith, the whole structure, consisting of the coil, former, suspension, surround and cone diaphragm, starts to move and generates the acoustic sound. Since in the case of a electrodynamic loudspeaker the interaction with the ambient fluid must not be neglected, the electrodynamic loudspeaker represents a typical coupled magnetomechanical system immersed in an acoustic fluid. That is the reason, why for the detailed finite element modeling of these moving coil drivers the magnetic, the mechanical as well as the acoustic fields including their couplings have to be considered as one system, which cannot be separated. Due to the complexity of these multi-field problems and the fact, Fig. 1: Schematic of an electrodynamic loudspeaker that for an efficient simulation computations have to be performed in time domain by means of a transient analysis, the straight forward application of standard simulation tools has shown only limited success. 2. Theory For the computer simulation of electromagnetic actuators immersed in an acoustic fluid, such as an electrodynamic loudspeaker, the physical fields and couplings, as shown in Fig. 2 have to be modeled. Fig. 2: Considered fields and their couplings of an electrodynamic loudspeaker - 2 -

3 In the case of a coupled electrostatic-mechanical-acoustic problem, the magnetic field equation in Fig. 2 has to be replaced by the electric potential equation, which is given by The coupling between electrostatics and mechanics is now given by the electrostatic force, which may be calculated using the electrostatic force tensor T E, Herein, E x, E y, and E z denote the x-, y-, and z-components of the electric field E, respectively. Therewith, the electrostatic force is computed as with n the normal vector of the surface A. In this paper, the equations governing the electromagnetic, mechanical, and acoustic field quantities are solved using a Finite-Element-Method (FEM) by means of the simulation software CAPA [4]. The theory of the underlying equations and finite element scheme have already been reported in [5,6,10] and will not be repeated here. 3. ANSYS-CAPA Interface Due to the complexity of the considered electro-acoustic devices, tools are required, which allow for an userfriendly and effective modeling. Furthermore, since in these simulations the radiation and the propagation of an acoustic wave in a large or even unbounded fluid medium has to be considered, typically very large finite element meshes result. Since the ANSYS software offers fast and reliable meshers as well as an user-friendly interface, we have decided to meet the needs of our modeling requirements by implementing an ANSYS-CAPA interface. Therewith, all pre- and postprocessing can now be performed within ANSYS, while the simulation itself is run within CAPA. The interface itself is written in C++, therewith, is portable between different computer platforms. It has already been tested on various UNIX workstations, as well as PCs running under LINUX and WINDOWS NT. In the implementation of the interface, the user programable features of ANSYS have been used [7]. All interactions with the interface are realized through the USER01 subroutine of ANSYS and all CAPA elements are mapped onto the ANSYS elements UEC100, UEC101, and UEC102. Furthermore, since a complete coverage of the CAPA features by means of ANSYS commands could not be realized in a reasonable manner, which was true especially for the definition of a transient analysis, it was decided to extend the ANSYS command set by more appropriate commands. Therewith, the definition of a CAPA analysis is made as easy as an internal ANSYS analysis. 4. Electrodynamic loudspeaker Fig. 3: Finite element model of electrodynamic loudspeaker In case of an electrodynamic loudspeaker the voice coil and aluminum former are discretized by so-called magnetomechanical finite elements, which solve the equations governing the magnetic and mechanical field quantities and take account of the full coupling between these fields (see Fig. 2). Due to the concentration of the magnetic flux within the magnet assembly, the magnet structure and only a small ambient region have to be discretized by magnetic finite elements. Furtheron, the surround, - 3 -

4 suspension, dust cap and cone diaphragm are modeled by standard mechanical finite elements. Finally, the fluid region in front of the loudspeaker is discretized by acoustic finite and infinite elements. In order to function properly, the infinite elements have to be located in the far field of the moving coil driver. Consequently, a large number of acoustic finite elements is necessary in the modeling of electrodynamic loudspeakers. 4.1 Verification of the computer model The verification of both computer models described above has been performed by comparing simulation results with corresponding measured data. Therefore, the frequency dependency of the electrical input impedance as well as the axial pressure response of the electrodynamic loudspeaker have been calculated. For the pressure calculation and measurement, the input source is a voltage with nominal 1 W referred to 8 Ω (2.83 V r.m.s.). The microphone position is on the mid axis at a distance of 1 m from the loudspeaker. As can be seen in Fig. 4, good agreement between both simulation results and measured data was achieved. 4.2 Investigation in Design Parameters Fig. 4: Comparison of simulation and measurment As a first application of our calculation scheme in the computer-aided-design of electrodynamic loudspeakers, the elimination of response dips at intermediate frequencies was considered. Measurements as well as simulation results reveal two dips in the sound pressure response occuring at approx. 400 Hz and 900 Hz (see Fig. 4). The elimination of these dips is of great interest for loudspeaker manufacturers, since a flat axial pressure response over a wide frequency range is desired [8]. Fig. 5: Design improvements for electrodynamic loudspeaker - 4 -

5 In computer simulations two design modifications could be established, both leading to the elimination of these response dips. In Fig. 5 the comparison of the axial pressure response with original and modified designs is presented. As can be seen, increasing the loss-factor by a factor of 2.5 results in a more effective absorption and termination of the outward travelling energy and in reduced response dips. In the case of the modified surround, i.e. when a flat section is added in the surround, the change of surround mass and compliance results in a modified equivalent circuit and causes the elimination of these response dips [8]. With both modifications the deviation can be held within 1 db over a wide frequency range and, therefore, an improvement in respect to response flatness can be achieved. 5. Electromagnetic acoustic transducer Fig. 6 shows a typical setup of an electromagnetic acoustic transducer (EMAT) as used for generation and reception of plate waves in thin metallic sheets. The permanent magnet subjects the area under the coil to a static magnetic field oriented mainly perpendicular to the surface of the sheet. For efficient generation of Lamb waves the wirespacing of the coil is typically chosen to be larger than the plate-thickness. The coil, loaded with an alternating current, produces a time varying magnetic field, which in turn induces eddy currents in the material under test. The interaction of these eddy currents with the overall magnetic field of the permanent magnet and the coil results in a distribution of the magnetic volume force (Lorentz force) showing a spatial periodicity, which is equal to the double wire Fig. 6: Setup of a plate wave EMAT spacing of the meander coil. Therewith, a plate wave is generated and propagates along the sheet. Using an EMAT as a receiver for ultrasonic waves, the setup is essentially the same as for the transmitting EMAT. When the plate wave passes the region of the receiving EMAT, which is subjected to the static magnetic field of the permanent magnet, locally eddy currents are induced in the conductive metallic sheet. Therewith, the time varying magnetic field of these eddy currents induces the voltage in the meander coil. A detail of the finite element model which has been generated using ANSYS is shown in Fig. 7 whereas some aspects of the calculated magnetic field are depicted in Fig. 8. Fig. 7: 3D finite element model of an EMAT Fig. 8: Magnetic field of an EMAT - 5 -

6 The resulting Lorentz forces, which lead to the exciatation of the plate wave in the material under test, are shown in Fig. 9. This numerical simulation scheme for EMATs has already been applied in the design optimzation of electromagnetic acoustics transducers [9]. Fig. 9: Lorentz forces generated by an EMAT in metalic plate 6. Micromachined capacitive ultrasound array As an application of our numerical calculation scheme, an array consisting of 19 capacitive transducer cells, as shown in Fig. 10, was considered [11]. In Fig. 11, the finite element model of a single array is displayed. The membranes had a thickness of 1 µm and the gap between the electrodes was 500 nm. A DC voltage of 10 V was applied to the electrodes and a single period of a sine burst with frequency 5 MHz and amplitude 10 V was used for excitation. During experiments a very long ring down time of the membranes had to be noticed. Furthermore, due to the fluid-solid coupling, a strong crosstalk between the individual membranes was detected. Therefore, investigations focused on these topics have been performed. Fig. 10: Topview of a CMOS chip with 4 arrays, each containing 19 capacitive transducers Fig. 11: Finite element model of a single transducer array In order to decrease the ring down time of the membranes, our finite element model was expanded by an external controller. Due to the quadratic dependency of the electrostatic force on the deflection of the membranes, a nonlinear controller has been designed. The change of the capacitance of each transducer is computed from the mechanical displacements and used as the input of the controller. The controller algorithm then calculates the voltage for each transducer, which is a direct input value for the electric source. Using this nonlinear controller, the secondary signal in the acoustic pressure, as observed for the uncontrolled case, is no longer present for the controlled membrane array. This is shown in Fig. 12 for the case, that all membranes are driven in parallel. As a consequence a smoothing effect of the controller is also observed in the frequency spectrum (Fig. 13)

7 pressure (Pa) time (µs) Fig. 12: Pressure signal of controlled and uncontrolled array fourier amplitude frequency (MHz) Fig. 13: Frequency spectrum of controlled and uncontrolled array 7. Conclusion The application of a combination of ANSYS and CAPA to some questions in the design of electro-acoustic transducers has been reported. With the availability of the ANSYS-CAPA interface, user-friendly modeling is brought together with the dedicated computational capabilities of CAPA, and, therewith, design optimization of such transducers by numerical methods is made much more easier. 8. References [1] R. Lerch, M. Kaltenbacher, H. Landes, F. Lindinger, Computerunterstützte Entwicklung elektromechanischer Transducer, e&i ÖVE-Verbandszeitschrift, Vol.7/8, pp , 1996 [2] O.C. Zienkiewics, R.L. Taylor, The Finite Element Method, McGraw-Hill Book Company, London, 1991 [3] C.A. Brebbia, J. Dominguez, Boundary Elements-An Introductory Course, Computational Mechanics Publications, Southampton, 1992 [4] H. Landes, R. Lerch, M. Kaltenbacher, CAPA User Manual, Vol. 3.2, 1999, University of Linz, Altenberger Str. 69, A-4040 Linz [5] M. Kaltenbacher, H. Landes, R. Lerch, An Efficient Calculation Scheme for the Numerical Simulation of Coupled Magnetomechanical Systems, IEEE Trans. on Magnetics, Vol. 33, No. 2, March 1997 [6] M. Kaltenbacher, M. Rausch, H. Landes, R. Lerch, Numerical modelling of electrodynamic loudspeakers, COMPEL, Volume 18, Issue 3 (to be published) [7] Guide to ANSYS User Programmable Features, Release 5.5, ANSYS, Inc., 1998 [8] M. Colloms, High Performance Loudspeakers, John Wiley & Sons, Chichester, New York, 1997 [9] M. Kaltenbacher, R. Lerch, H. Landes, K. Ettinger, B. Tittmann, Computer Optimization of Electromagnetic Acoustic Transducers, IEEE International Ultrasonics Symposium, Japan, 5.-8.October 1998 [10] M. Kaltenbacher, H. Landes, K. Niederer, R. Lerch, 3D Simulation of Controlled Micromachined Ultrasound Transducers, IEEE International Ultrasonics Symposium, Lake Tahoe, October 1999 [11] C. Eccardt, K. Niederer. T. Scheiter, C. Hierold., Surface micromachined ultrasound transducers in CMOS technology, Proc. Ultrasonics Symposium, San Antonio, vol. 2, pp ,

Virtual Prototyping of Electrodynamic Loudspeakers by Utilizing a Finite Element Method

Virtual Prototyping of Electrodynamic Loudspeakers by Utilizing a Finite Element Method Virtual Prototyping of Electrodynamic Loudspeakers by Utilizing a Finite Element Method R. Lerch a, M. Kaltenbacher a and M. Meiler b a Univ. Erlangen-Nuremberg, Dept. of Sensor Technology, Paul-Gordan-Str.

More information

COMPARISON OF DEFECT DETECTION IN ALUMINUM AND STEEL PLATES USING AN ELECTROMAGNETIC ACOUSTIC TRANSDUCER

COMPARISON OF DEFECT DETECTION IN ALUMINUM AND STEEL PLATES USING AN ELECTROMAGNETIC ACOUSTIC TRANSDUCER The 12 th International Conference of the Slovenian Society for Non-Destructive Testing Application of Contemporary Non-Destructive Testing in Engineering September 4-6, 2013, Portorož, Slovenia COMPARISON

More information

A model for the ultrasonic field radiated by an Electro-Magnetic Acoustic Transducer in a ferromagnetic solid

A model for the ultrasonic field radiated by an Electro-Magnetic Acoustic Transducer in a ferromagnetic solid 13th International Symposium on Nondestructive Characterization of Materials (NDCM-XIII), 2-24 May 213, Le Mans, France www.ndt.net/?id=1557 More Info at Open Access Database www.ndt.net/?id=1557 A model

More information

Calculation of Sound Fields in Flowing Media Using CAPA and Diffpack

Calculation of Sound Fields in Flowing Media Using CAPA and Diffpack Calculation of Sound Fields in Flowing Media Using CAPA and Diffpack H. Landes 1, M. Kaltenbacher 2, W. Rathmann 3, F. Vogel 3 1 WisSoft, 2 Univ. Erlangen 3 inutech GmbH Outline Introduction Sound in Flowing

More information

APPLICATION OF THE FINITE ELEMENT METHOD TO MODEL THE NONLINEAR VOICE COIL MOTION PRODUCED BY A LOUDSPEAKER MAGNET ASSEMBLY.

APPLICATION OF THE FINITE ELEMENT METHOD TO MODEL THE NONLINEAR VOICE COIL MOTION PRODUCED BY A LOUDSPEAKER MAGNET ASSEMBLY. APPLICATION OF THE FINITE ELEMENT METHOD TO MODEL THE NONLINEAR VOICE COIL MOTION PRODUCED BY A LOUDSPEAKER MAGNET ASSEMBLY. Mark Dodd Celestion International & KEF Audio (UK) Ltd. 1. INTRODUCTION Moving

More information

Electromagnetic Acoustic Transducers for In and Out of plane Ultrasonic Wave Detection

Electromagnetic Acoustic Transducers for In and Out of plane Ultrasonic Wave Detection 7th World Conference on Nondestructive Testing, 5-8 Oct 8, Shanghai, China Electromagnetic Acoustic Transducers for In and Out of plane Ultrasonic Wave Detection Xiaoming JIAN, Steve DIXON, Karl QUIK Phoenix

More information

PROPERTY STUDY ON EMATS WITH VISUALIZATION OF ULTRASONIC PROPAGATION

PROPERTY STUDY ON EMATS WITH VISUALIZATION OF ULTRASONIC PROPAGATION More Info at Open Access Database www.ndt.net/?id=18576 PROPERTY STUDY ON EMATS WITH VISUALIZATION OF ULTRASONIC PROPAGATION T. Yamamoto, T. Furukawa, I. Komura Japan Power Engineering and Inspection Corporation,

More information

NUMERICAL ANALYSES OF ELECTROMAGNETIC FIELDS IN HIGH VOLTAGE BUSHING AND IN ELECTROMAGNETIC FLOW METER

NUMERICAL ANALYSES OF ELECTROMAGNETIC FIELDS IN HIGH VOLTAGE BUSHING AND IN ELECTROMAGNETIC FLOW METER Intensive Programme Renewable Energy Sources May 2011, Železná Ruda-Špičák, University of West Bohemia, Czech Republic NUMERICAL ANALYSES OF ELECTROMAGNETIC FIELDS IN HIGH VOLTAGE BUSHING AND IN ELECTROMAGNETIC

More information

The Use of Multiphysics Models in the Design and Simulation of Magnetostrictive Transducers. Dr. Julie Slaughter ETREMA Products, Inc Ames, IA

The Use of Multiphysics Models in the Design and Simulation of Magnetostrictive Transducers. Dr. Julie Slaughter ETREMA Products, Inc Ames, IA The Use of Multiphysics Models in the Design and Simulation of Magnetostrictive Transducers Dr. Julie Slaughter ETREMA Products, Inc Ames, IA 1 ETREMA Products, Inc. Designer and manufacturer of technology

More information

SIMULATION OF THE INSPECTION OF PLANAR NON MAGNETIC MATERIALS WITH ELECTRO MAGNETIC ACOUSTIC TRANSDUCERS

SIMULATION OF THE INSPECTION OF PLANAR NON MAGNETIC MATERIALS WITH ELECTRO MAGNETIC ACOUSTIC TRANSDUCERS SIMULATION OF THE INSPECTION OF PLANAR NON MAGNETIC MATERIALS WITH ELECTRO MAGNETIC ACOUSTIC TRANSDUCERS D. Prémel, C. Reboud, S. Chatillon, F. Reverdy and S. Mahaut CEA LIST, F-91191 Gif-sur-Yvette, France

More information

SIMULATION OF THE INSPECTION OF PLANAR NON MAGNETIC MATERIALS WITH ELECTRO MAGNETIC ACOUSTIC TRANSDUCERS

SIMULATION OF THE INSPECTION OF PLANAR NON MAGNETIC MATERIALS WITH ELECTRO MAGNETIC ACOUSTIC TRANSDUCERS SIMULATION OF THE INSPECTION OF PLANAR NON MAGNETIC MATERIALS WITH ELECTRO MAGNETIC ACOUSTIC TRANSDUCERS Denis Prémel, C. Reboud, S. Chatillon, F. Reverdy and S. Mahaut CEA, LIST, Laboratoire Simulation

More information

Validation of FEM simulation of EMATs for versatile EMAT configurations

Validation of FEM simulation of EMATs for versatile EMAT configurations Validation of FEM simulation of EMATs for versatile EMAT configurations Toshihiro Yamamoto 1, Ryoichi Urayama 2, Takashi Furukawa 1, Tetsuya Uchimoto 2, Ichiro Komura 1 and Toshiyuki Takagi 2 More info

More information

Contents. 0. Introduction Loudspeaker s Impedance Why is this useful? How good is it? Bibliography...

Contents. 0. Introduction Loudspeaker s Impedance Why is this useful? How good is it? Bibliography... Contents 0. Introduction... 2... 2 1. Loudspeaker s Impedance... 2 2. Why is this useful?... 10 3. How good is it?... 13 4. Bibliography... 14 0. Introduction In this article I present a way to model a

More information

Contactless Excitation of MEMS Resonant Sensors by Electromagnetic Driving

Contactless Excitation of MEMS Resonant Sensors by Electromagnetic Driving Excerpt from the Proceedings of the COMSOL Conference 2009 Milan Contactless Excitation of MEMS Resonant Sensors by Electromagnetic Driving M. Baù *, V. Ferrari, D. Marioli Department of Electronics for

More information

Piezoelectric Resonators ME 2082

Piezoelectric Resonators ME 2082 Piezoelectric Resonators ME 2082 Introduction K T : relative dielectric constant of the material ε o : relative permittivity of free space (8.854*10-12 F/m) h: distance between electrodes (m - material

More information

Dust collecting plates. Electromagnetic vibration exciter. Fig. 1. Schematic diagram of the ESP system

Dust collecting plates. Electromagnetic vibration exciter. Fig. 1. Schematic diagram of the ESP system 955. Mathematical vibration modeling for an electrostatic precipitator system Ji-Hyun Choi, Je-Hoon Kim, Byoung-Duk Lim, Jin-Ho Kim Ji-Hyun Choi 1, Je-Hoon Kim 2, Byoung-Duk Lim 3, Jin-Ho Kim 4 1, 2, 4

More information

Finite element modeling of pulsed spiral coil Electromagnetic Acoustic Transducer (EMAT) for testing of plate

Finite element modeling of pulsed spiral coil Electromagnetic Acoustic Transducer (EMAT) for testing of plate Finite element modeling of pulsed spiral coil Electromagnetic Acoustic Transducer (EMAT) for testing of plate R. Dhayalan, Anish Kumar, B. Purnachandra Rao and T. Jayakumar Ultrasonic Measurement Section

More information

Numerical Modelling and Design Optimisation of Clinical MRI Scanners

Numerical Modelling and Design Optimisation of Clinical MRI Scanners Numerical Modelling and Design Optimisation of Clinical MRI Scanners A. Krug 1, M. Rausch 1, P. Dietz 1, H. Landes 2, M. Kaltenbacher 3, W. Rathmann 4, F. Vogel 4 1 Siemens Medical Solutions, Erlangen,

More information

Static pressure and temperature coefficients of working standard microphones

Static pressure and temperature coefficients of working standard microphones Static pressure and temperature coefficients of working standard microphones Salvador BARRERA-FIGUEROA 1 ; Vicente CUTANDA-HENRÍQUEZ ; Antoni TORRAS-ROSELL 3 1,3 Danish Fundamental Metrology (DFM) A/S,

More information

Sensors & Transducers 2016 by IFSA Publishing, S. L.

Sensors & Transducers 2016 by IFSA Publishing, S. L. Sensors & Transducers, Vol. 96, Issue, January 206, pp. 52-56 Sensors & Transducers 206 by IFSA Publishing, S. L. http://www.sensorsportal.com Collapse Mode Characteristics of Parallel Plate Ultrasonic

More information

Analysis of Geometrical Aspects of a Kelvin Probe

Analysis of Geometrical Aspects of a Kelvin Probe Analysis of Geometrical Aspects of a Kelvin Probe Stefan Ciba 1, Alexander Frey 2 and Ingo Kuehne* 1 1 Heilbronn University, Institute for Fast Mechatronic Systems (ISM), Kuenzelsau, Germany 2 University

More information

Thermal Parameter Measurement AN 18

Thermal Parameter Measurement AN 18 Thermal Parameter Measurement AN 18 Application Note to the R&D SYSTEM The lumped parameters of the thermal equivalent circuit are measured by using Power Test Module (PWT) The high-speed temperature monitoring

More information

The Acoustoelastic Effect: EMAT Excitation and Reception of Lamb Waves in Pre-Stressed Metal Sheets

The Acoustoelastic Effect: EMAT Excitation and Reception of Lamb Waves in Pre-Stressed Metal Sheets Excerpt from the Proceedings of the COMSOL Conference 2009 Milan The Acoustoelastic Effect: EMAT Excitation and Reception of Lamb Waves in Pre-Stressed Metal Sheets Riccardo M.G. Ferrari* 1 1 Danieli Automation

More information

SIMULATION OF A TIME DEPENDENT 2D GENERATOR MODEL USING COMSOL MULTIPHYSICS

SIMULATION OF A TIME DEPENDENT 2D GENERATOR MODEL USING COMSOL MULTIPHYSICS SIMULATION OF A TIME DEPENDENT 2D GENERATOR MODEL USING COMSOL MULTIPHYSICS Kazi Shamsul Arefin,Pankaj Bhowmik, Mohammed Wahiduzzaman Rony and Mohammad Nurul Azam Department of Electrical & Electronic

More information

ACTIVE VIBRATION CONTROL PROTOTYPING IN ANSYS: A VERIFICATION EXPERIMENT

ACTIVE VIBRATION CONTROL PROTOTYPING IN ANSYS: A VERIFICATION EXPERIMENT ACTIVE VIBRATION CONTROL PROTOTYPING IN ANSYS: A VERIFICATION EXPERIMENT Ing. Gergely TAKÁCS, PhD.* * Institute of Automation, Measurement and Applied Informatics Faculty of Mechanical Engineering Slovak

More information

Finite Element Modeling of Ultrasonic Transducers for Polymer Characterization

Finite Element Modeling of Ultrasonic Transducers for Polymer Characterization Excerpt from the Proceedings of the COMSOL Conference 2009 Milan Finite Element Modeling of Ultrasonic Transducers for Polymer Characterization Serena De Paolis *, Francesca Lionetto and Alfonso Maffezzoli

More information

Nonlinear Force Factor Measurement of an Electrodynamic Loudspeaker

Nonlinear Force Factor Measurement of an Electrodynamic Loudspeaker Nonlinear Force Factor Measurement of an Electrodynamic Loudspeaker Antonin Novak Orkidia Audio, 64310 Ascain, France Pierrick Lotton Laurent Simon Summary An electrodynamic loudspeaker is usually characterized

More information

Nonlinear Losses in Electro-acoustical Transducers Wolfgang Klippel, Daniel Knobloch

Nonlinear Losses in Electro-acoustical Transducers Wolfgang Klippel, Daniel Knobloch The Association of Loudspeaker Manufacturers & Acoustics International (ALMA) Nonlinear Losses in Electro-acoustical Transducers Wolfgang Klippel, Daniel Knobloch Institute of Acoustics and Speech Communication

More information

Simulation of Horn Driver Response by Direct Combination of Compression Driver Frequency Response and Horn FEA

Simulation of Horn Driver Response by Direct Combination of Compression Driver Frequency Response and Horn FEA Simulation of Horn Driver Response by Direct Combination of Compression Driver Response and Horn FEA Dario Cinanni CIARE, Italy Corresponding author: CIARE S.r.l., strada Fontenuovo 306/a, 60019 Senigallia

More information

Accurate Determination of Loudspeaker Parameters using Audio Analyzer Type 2012 and Laser Velocity Transducer Type 3544

Accurate Determination of Loudspeaker Parameters using Audio Analyzer Type 2012 and Laser Velocity Transducer Type 3544 7/6-'89 Application Note Accurate Determination of Loudspeaker Parameters using Audio Analyzer Type 202 and Laser Velocity Transducer Type 3544 by Søren Jønsson, Brüel & Kjær, Denmark A method to determine

More information

Lecture 11 Acoustics of Speech & Hearing HST 714J. Lecture 11: Electro-Mechano-Acoustic Transformers

Lecture 11 Acoustics of Speech & Hearing HST 714J. Lecture 11: Electro-Mechano-Acoustic Transformers Lecture : lectro-mechano-acoustic Transformers I. Ideal Transformers & Transducers. Ideal Transformers and Transformation of variables a. One example of a two-port is an Ideal lectrical transformer, where:

More information

Investigations and Experiments of Sophisticated Magnet Systems for a first Lorentz Force Velocimeter for Electrolytes

Investigations and Experiments of Sophisticated Magnet Systems for a first Lorentz Force Velocimeter for Electrolytes Investigations and Experiments of Sophisticated Magnet Systems for a first Lorentz Force Velocimeter for Electrolytes WERNER 1, M. and HALBEDEL 1, B. 1 University of Technology Ilmenau Department of Inorganic-nonmetallic

More information

Klippel Non-Linear Test Results. LSI (Large Signal Identification) Model #: PS Introduction. Large Signal Modeling. Nonlinear Characteristics

Klippel Non-Linear Test Results. LSI (Large Signal Identification) Model #: PS Introduction. Large Signal Modeling. Nonlinear Characteristics Klippel Non-Linear Test Results LSI (Large Signal Identification) Model #: PS180-8 Introduction Large Signal Modeling At higher amplitudes, loudspeakers produce substantial distortion in the output signal,

More information

Physics 240 Fall 2003: Final Exam. Please print your name: Please list your discussion section number: Please list your discussion instructor:

Physics 240 Fall 2003: Final Exam. Please print your name: Please list your discussion section number: Please list your discussion instructor: Physics 40 Fall 003: Final Exam Please print your name: Please list your discussion section number: Please list your discussion instructor: Form #1 Instructions 1. Fill in your name above. This will be

More information

ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 52, no. 12, december

ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 52, no. 12, december ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 52, no. 12, december 2005 2185 Finite-Element Analysis of Capacitive Micromachined Ultrasonic Transducers Goksen G. Yaralioglu,

More information

Contactless Excitation of MEMS Resonant Sensors by Electromagnetic Driving

Contactless Excitation of MEMS Resonant Sensors by Electromagnetic Driving Presented at the COMSOL Conference 2009 Milan University of Brescia Department of Electronics for Automation Contactless Excitation of MEMS Resonant Sensors by Electromagnetic Driving Marco Baù, VF V.

More information

Coupled Field Analysis using the ANSYS/Multiphysics Commercial FEA Code

Coupled Field Analysis using the ANSYS/Multiphysics Commercial FEA Code Industry Sector RTD Thematic Area Date Deliverable Nr Consumer Goods Multi Physics and Analysis 11th Sept 2002 Coupled Field Analysis using the ANSYS/Multiphysics Commercial FEA Code David Ellis Idac Ltd,

More information

Industrial Heating System Creating Given Temperature Distribution

Industrial Heating System Creating Given Temperature Distribution SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 5, No. 1, May 2008, 57-66 Industrial Heating System Creating Given Temperature Distribution Ilona Iatcheva 1, Ilonka Lilianova 2, Hristophor Tahrilov 2, Rumena

More information

DEHRADUN PUBLIC SCHOOL I TERM ASSIGNMENT SUBJECT- PHYSICS (042) CLASS -XII

DEHRADUN PUBLIC SCHOOL I TERM ASSIGNMENT SUBJECT- PHYSICS (042) CLASS -XII Chapter 1(Electric charges & Fields) DEHRADUN PUBLIC SCHOOL I TERM ASSIGNMENT 2016-17 SUBJECT- PHYSICS (042) CLASS -XII 1. Why do the electric field lines never cross each other? [2014] 2. If the total

More information

Test Report. Force applied by the Transducer of the Frequencer TM, model Written by: Bruno Tardif, P.Eng. Dymedso Inc.

Test Report. Force applied by the Transducer of the Frequencer TM, model Written by: Bruno Tardif, P.Eng. Dymedso Inc. Test Report Force applied by the Transducer of the Frequencer TM, model 1001 Written by: Bruno Tardif, P.Eng. Dymedso Inc. Date: November 11 th, 2006 Abstract This experiment examined the force applied

More information

DEVELOPMENT OF A NON-CONTACTING STRESS MEASUREMENT SYSTEM DURING TENSILE TESTING USING THE ELECTROMAGNETIC ACOUSTIC TRANSDUCER FOR A LAMB WAVE

DEVELOPMENT OF A NON-CONTACTING STRESS MEASUREMENT SYSTEM DURING TENSILE TESTING USING THE ELECTROMAGNETIC ACOUSTIC TRANSDUCER FOR A LAMB WAVE DEVELOPMENT OF A NON-CONTACTING STRESS MEASUREMENT SYSTEM DURING TENSILE TESTING USING THE ELECTROMAGNETIC ACOUSTIC TRANSDUCER FOR A LAMB WAVE Riichi Murayama, Shinichi Tokunaga, Kouichi Hirata Fukuoka

More information

Output intensity measurement on a diagnostic ultrasound machine using a calibrated thermoacoustic sensor

Output intensity measurement on a diagnostic ultrasound machine using a calibrated thermoacoustic sensor Institute of Physics Publishing Journal of Physics: Conference Series 1 (2004) 140 145 doi:10.1088/1742-6596/1/1/032 Advanced Metrology for Ultrasound in Medicine Output intensity measurement on a diagnostic

More information

NDT&E Methods: UT Ultrasound Generation

NDT&E Methods: UT Ultrasound Generation CAVITY INSPECTION NDT&E Methods: UT Ultrasound Generation VJ Technologies NDT&E Methods: UT 6. NDT&E: Introduction to Methods 6.1. Ultrasonic Testing: Basics of Elasto-Dynamics 6.2. Ultrasonic Testing:

More information

Different Techniques for Calculating Apparent and Incremental Inductances using Finite Element Method

Different Techniques for Calculating Apparent and Incremental Inductances using Finite Element Method Different Techniques for Calculating Apparent and Incremental Inductances using Finite Element Method Dr. Amer Mejbel Ali Electrical Engineering Department Al-Mustansiriyah University Baghdad, Iraq amerman67@yahoo.com

More information

ADAM PIŁAT Department of Automatics, AGH University of Science and Technology Al. Mickiewicza 30, Cracow, Poland

ADAM PIŁAT Department of Automatics, AGH University of Science and Technology Al. Mickiewicza 30, Cracow, Poland Int. J. Appl. Math. Comput. Sci., 2004, Vol. 14, No. 4, 497 501 FEMLAB SOFTWARE APPLIED TO ACTIVE MAGNETIC BEARING ANALYSIS ADAM PIŁAT Department of Automatics, AGH University of Science and Technology

More information

Introduction to Acoustics Exercises

Introduction to Acoustics Exercises . 361-1-3291 Introduction to Acoustics Exercises 1 Fundamentals of acoustics 1. Show the effect of temperature on acoustic pressure. Hint: use the equation of state and the equation of state at equilibrium.

More information

NIST ELECTROSTATIC FORCE BALANCE EXPERIMENT

NIST ELECTROSTATIC FORCE BALANCE EXPERIMENT NIST ELECTROSTATIC FORCE BALANCE EXPERIMENT John A. Kramar, David B. Newell, and Jon R. Pratt National Institute of Standards and Technology, Gaithersburg, MD, USA We have designed and built a prototype

More information

Evaluation of a surface acoustic wave motor with a multi-contact-point slider

Evaluation of a surface acoustic wave motor with a multi-contact-point slider Smart Mater. Struct. 7 (1998) 305 311. Printed in the UK PII: S0964-1726(98)91230-7 Evaluation of a surface acoustic wave motor with a multi-contact-point slider Minoru Kuribayashi Kurosawa, Makoto Chiba

More information

PHENOMENA, THEORY AND APPLICATIONS OF NEAR-FIELD ACOUSTIC LEVITATION

PHENOMENA, THEORY AND APPLICATIONS OF NEAR-FIELD ACOUSTIC LEVITATION PHENOMENA, THEORY AND APPLICATIONS OF NEAR-FIELD ACOUSTIC LEVITATION PACS REFERENCE: 43.25.Uv Ueha Sadayuki Precision and Intelligence Laboratory, Tokyo Institute of Technology 4259, Nagatsuta, Midori-ku,

More information

Modelling the Electromechanical Interactions in a Null-Flux EDS Maglev System

Modelling the Electromechanical Interactions in a Null-Flux EDS Maglev System Modelling the Electromechanical Interactions in a Null-Flux EDS Maglev System Jeroen de Boeij,2, Maarten Steinbuch 2 and Hector Gutiérrez Department of Mechanical & Aerospace Engineering Florida Institute

More information

PRACTICE NO. PD-AP-1309 PREFERRED PAGE 1 OF 5 RELIABILITY PRACTICES ANALYSIS OF RADIATED EMI FROM ESD EVENTS CAUSED BY SPACE CHARGING

PRACTICE NO. PD-AP-1309 PREFERRED PAGE 1 OF 5 RELIABILITY PRACTICES ANALYSIS OF RADIATED EMI FROM ESD EVENTS CAUSED BY SPACE CHARGING PREFERRED PAGE 1 OF 5 RELIABILITY PRACTICES ANALYSIS OF RADIATED EMI FROM ESD EVENTS Practice: Modeling is utilized for the analysis of conducted and radiated electromagnetic interference (EMI) caused

More information

Development and analysis of radial force waves in electrical rotating machines

Development and analysis of radial force waves in electrical rotating machines DOI: 10.24352/UB.OVGU-2017-098 TECHNISCHE MECHANIK, 37, 2-5, (2017), 218 225 submitted: June 20, 2017 Development and analysis of radial force waves in electrical rotating machines S. Haas, K. Ellermann

More information

INTRODUCTION. Description

INTRODUCTION. Description INTRODUCTION "Acoustic metamaterial" is a label that encompasses for acoustic structures that exhibit acoustic properties not readily available in nature. These properties can be a negative mass density,

More information

COUPLED MAGNETO-MECHANICAL FINITE ELEMENT ANALYSIS OF A POWER TRANSFORMER IN SHORT CIRCUIT CONDITIONS

COUPLED MAGNETO-MECHANICAL FINITE ELEMENT ANALYSIS OF A POWER TRANSFORMER IN SHORT CIRCUIT CONDITIONS Journal of Energy VOLUME 63 2014 journal homepage: http://journalofenergy.com/ Bruno Bošnjak Siemens AG Power Transformers Nürnberg bruno.bosnjak@siemens.com Andreas Hauck SIMetris GmbH andreas.hauck@simetris.de

More information

Simulation and Experimental Characterizations of a Thin Touch Mode Capacitive Pressure Sensor

Simulation and Experimental Characterizations of a Thin Touch Mode Capacitive Pressure Sensor Simulation and Experimental Characterizations of a Thin Touch Mode Capacitive Pressure Sensor A.-M. El Guamra *1, D. Bühlmann 1, F. Moreillon 1, L. Vansteenkiste 1, P. Büchler 2, A. Stahel 3, P. Passeraub

More information

An Energy Circulation Driving Surface Acoustic Wave Motor

An Energy Circulation Driving Surface Acoustic Wave Motor An Energy Circulation Driving Surface Acoustic Wave Motor Minoru K. Kurosawa Tokyo Institute of Technology Yokohama, Japan mkur@ae.titech.ac.jp Purevdagva Nayanbuu Tokyo Institute of Technology Yokohama,

More information

Modeling of Ultrasonic Near-Filed Acoustic Levitation: Resolving Viscous and Acoustic Effects

Modeling of Ultrasonic Near-Filed Acoustic Levitation: Resolving Viscous and Acoustic Effects Modeling of Ultrasonic Near-Filed Acoustic Levitation: Resolving Viscous and Acoustic Effects I. Melikhov *1, A. Amosov 1, and S. Chivilikhin 2 1 Corning Scientific Center, Russia, 2 ITMO University, Russia

More information

Electromagnetics in COMSOL Multiphysics is extended by add-on Modules

Electromagnetics in COMSOL Multiphysics is extended by add-on Modules AC/DC Module Electromagnetics in COMSOL Multiphysics is extended by add-on Modules 1) Start Here 2) Add Modules based upon your needs 3) Additional Modules extend the physics you can address 4) Interface

More information

Overview. Sensors? Commonly Detectable Phenomenon Physical Principles How Sensors Work? Need for Sensors Choosing a Sensor Examples

Overview. Sensors? Commonly Detectable Phenomenon Physical Principles How Sensors Work? Need for Sensors Choosing a Sensor Examples Intro to Sensors Overview Sensors? Commonly Detectable Phenomenon Physical Principles How Sensors Work? Need for Sensors Choosing a Sensor Examples Sensors? American National Standards Institute A device

More information

Modelling the Electrical Parameters Of A Loudspeaker Motor System With The AC-DC Module (MEPLMSAM)

Modelling the Electrical Parameters Of A Loudspeaker Motor System With The AC-DC Module (MEPLMSAM) Modelling the Electrical Parameters Of A Loudspeaker Motor System With The AC-DC Module (MEPLMSAM) M. Cobianchi *1,Dr. M. Rousseau *1 and S. Xavier* 1 1 B&W Group Ltd, Worthing, West Sussex, England. *Corresponding

More information

Experiment and Simulation of the Eddy Current NDT on an Aluminium Plate Using a Uniform Field Probe

Experiment and Simulation of the Eddy Current NDT on an Aluminium Plate Using a Uniform Field Probe Experiment and Simulation of the Eddy Current NDT on an Aluminium Plate Using a Uniform Field Probe Luka Kufrin 1,2, A. Lopes Ribeiro 1,2, H. Geirinhas Ramos 1,2, O. Postolache 1 1 Instituto de Telecomunicações,

More information

Postprint. This is the accepted version of a paper presented at ACTUATOR 2014, Bremen, Germany, June 2014.

Postprint.   This is the accepted version of a paper presented at ACTUATOR 2014, Bremen, Germany, June 2014. http://www.diva-portal.org Postprint This is the accepted version of a paper presented at ACTUATOR 0, Bremen, Germany, 5 June 0. Citation for the original published paper: Chen, C., Bissal, A., Salinas,

More information

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT 1 A charged capacitor and an inductor are connected in series At time t = 0 the current is zero, but the capacitor is charged If T is the

More information

Magnetic and Thermal Analysis of Current Transformer in Normal and Abnormal Conditions

Magnetic and Thermal Analysis of Current Transformer in Normal and Abnormal Conditions Journal of Computer Science 4 (4): 327-332, 2008 ISSN 1549-3636 2008 Science Publications Magnetic and Thermal Analysis of Current Transformer in Normal and Abnormal Conditions 1 M.B.B. Sharifian, 1 M.

More information

Available online at ScienceDirect. Physics Procedia 70 (2015 )

Available online at  ScienceDirect. Physics Procedia 70 (2015 ) Available online at www.sciencedirect.com ScienceDirect Physics Procedia 70 (2015 ) 896 900 Application of PMN-32PT piezoelectric crystals for novel aircoupled ultrasonic transducers Rymantas Jonas Kazys

More information

Klippel Non-Linear Test Results LSI (Large Signal Identification) Driver Name: ND90-8. Introduction. Nonlinear Parameters. Large Signal Modeling

Klippel Non-Linear Test Results LSI (Large Signal Identification) Driver Name: ND90-8. Introduction. Nonlinear Parameters. Large Signal Modeling Klippel Non-Linear Test Results LSI (Large Signal Identification) Driver Name: ND90-8 Introduction Large Signal Modeling At higher amplitudes, loudspeakers produce substantial distortion in the output

More information

Impedance and Loudspeaker Parameter Measurement

Impedance and Loudspeaker Parameter Measurement ECEN 2260 Circuits/Electronics 2 Spring 2007 2-26-07 P. Mathys Impedance and Loudspeaker Parameter Measurement 1 Impedance Measurement Many elements from which electrical circuits are built are two-terminal

More information

Measurement of Nonlinear Thermal Parameters AN 19

Measurement of Nonlinear Thermal Parameters AN 19 Measurement of Nonlinear Thermal Parameters AN 9 Application Note to the KLIPPEL R&D SYSTEM Traditional modeling describes the heat flow in loudspeakers by an equivalent circuit using integrators with

More information

Coupling Physics. Tomasz Stelmach Senior Application Engineer

Coupling Physics. Tomasz Stelmach Senior Application Engineer Coupling Physics Tomasz Stelmach Senior Application Engineer Agenda Brief look @ Multiphysics solution What is new in R18 Fluent Maxwell coupling wireless power transfer Brief look @ ANSYS Multiphysics

More information

A Simple Weak-Field Coupling Benchmark Test of the Electromagnetic-Thermal-Structural Solution Capabilities of LS-DYNA Using Parallel Current Wires

A Simple Weak-Field Coupling Benchmark Test of the Electromagnetic-Thermal-Structural Solution Capabilities of LS-DYNA Using Parallel Current Wires 13 th International LS-DYNA Users Conference Session: Electromagnetic A Simple Weak-Field Coupling Benchmark Test of the Electromagnetic-Thermal-Structural Solution Capabilities of LS-DYNA Using Parallel

More information

TRANSFORMER CORE NOISE MEASUREMENT AND PREDICTION

TRANSFORMER CORE NOISE MEASUREMENT AND PREDICTION TRANSFORMER CORE NOISE MEASUREMENT AND PREDICTION R. HAETTEL *,1, A. DANERYD 1, C. PLOETNER 2 and J. ANGER 3 1 ABB Corporate Research Sweden, 2 ABB Transformers Germany, 3 ABB Transformers Sweden *Corresponding

More information

SHM with EMATs. Julio ISLA-GARCIA 1, Balint HERDOVICS 1, Frederic CEGLA 1

SHM with EMATs. Julio ISLA-GARCIA 1, Balint HERDOVICS 1, Frederic CEGLA 1 8th European Workshop On Structural Health Monitoring (EWSHM 2016), 5-8 July 2016, Spain, Bilbao www.ndt.net/app.ewshm2016 SHM with EMATs Julio ISLA-GARCIA 1, Balint HERDOVICS 1, Frederic CEGLA 1 More

More information

By-Pass. This voltage is proportional to the liquid level (threewire potentiometer circuit). The resistance reading can

By-Pass. This voltage is proportional to the liquid level (threewire potentiometer circuit). The resistance reading can " " ' " ' / The magnetic field which is in the ball or cylindrical floats actuates very small reed contacts through the wall of a guide tube and these pick up an uninterrupted measuring-circuit voltage

More information

Development of a new linear actuator for Androids

Development of a new linear actuator for Androids 8 IEEE International Conference on Robotics and Automation Pasadena, CA, USA, May 19-3, 8 Development of a new linear actuator for Androids Masayuki MISHIMA, Hiroshi ISHIGURO and Katsuhiro HIRATA, Member,

More information

Research Article Electromagnetic and Mechanical Characteristics Analysis of a Flat-Type Vertical-Gap Passive Magnetic Levitation Vibration Isolator

Research Article Electromagnetic and Mechanical Characteristics Analysis of a Flat-Type Vertical-Gap Passive Magnetic Levitation Vibration Isolator Shock and Vibration Volume 6, Article ID 577, pages http://dx.doi.org/.55/6/577 Research Article Electromagnetic and Mechanical Characteristics Analysis of a Flat-Type Vertical-Gap Passive Magnetic Levitation

More information

Today s menu. Last lecture. Measurement of volume flow rate. Measurement of volume flow rate (cont d...) Differential pressure flow meters

Today s menu. Last lecture. Measurement of volume flow rate. Measurement of volume flow rate (cont d...) Differential pressure flow meters Last lecture Analog-to-digital conversion (Ch. 1.1). Introduction to flow measurement systems (Ch. 12.1). Today s menu Measurement of volume flow rate Differential pressure flowmeters Mechanical flowmeters

More information

An ion follows a circular path in a uniform magnetic field. Which single change decreases the radius of the path?

An ion follows a circular path in a uniform magnetic field. Which single change decreases the radius of the path? T5-1 [237 marks] 1. A circuit is formed by connecting a resistor between the terminals of a battery of electromotive force (emf) 6 V. The battery has internal resistance. Which statement is correct when

More information

Application of an ultrasonic velocity profile monitor in a hydraulic laboratory

Application of an ultrasonic velocity profile monitor in a hydraulic laboratory Application of an ultrasonic velocity profile monitor in a hydraulic laboratory Abstract Helmut Knoblauch 1, Roman Klasinc 1, Thomas Geisler 1 Velocity profile measurement using the ultrasound-pulse-doppler

More information

Transmission Matrix Model of a Quarter-Wave-Tube with Gas Temperature Gradients

Transmission Matrix Model of a Quarter-Wave-Tube with Gas Temperature Gradients Transmission Matrix Model of a Quarter-Wave-Tube with Gas Temperature Gradients Carl Howard School of Mechanical Engineering, University of Adelaide, South Australia, Australia ABSTRACT A transmission

More information

Journal of System Design and Dynamics

Journal of System Design and Dynamics Zero Power Non-Contact Suspension System with Permanent Magnet Motion Feedback* Feng SUN** and Koichi OKA** ** Kochi University of Technology 185 Miyanokuchi, Tosayamada, Kami city, Kochi 782-8502, Japan

More information

Analysis and Design of Electromagnetic Pump

Analysis and Design of Electromagnetic Pump Excerpt from the Proceedings of the COMSOL Conference 2010 India Analysis and Design of Electromagnetic Pump Vikas Teotia *, Sanjay Malhotra, Kumud Singh and Umakant Mahapatra Bhabha Atomic Research Centre,

More information

Transmission Lines. Plane wave propagating in air Y unguided wave propagation. Transmission lines / waveguides Y. guided wave propagation

Transmission Lines. Plane wave propagating in air Y unguided wave propagation. Transmission lines / waveguides Y. guided wave propagation Transmission Lines Transmission lines and waveguides may be defined as devices used to guide energy from one point to another (from a source to a load). Transmission lines can consist of a set of conductors,

More information

CST EM : Examples. Chang-Kyun PARK (Ph. D. St.) Thin Films & Devices (TFD) Lab.

CST EM : Examples. Chang-Kyun PARK (Ph. D. St.)   Thin Films & Devices (TFD) Lab. CST Advanced Training 2004 @ Daedeok Convention Town (2004.03.24) CST EM : Examples TM EM Studio TM Chang-Kyun PARK (Ph. D. St.) E-mail: ckpark@ihanyang.ac.kr Thin Films & Devices (TFD) Lab. Dept. of Electrical

More information

Analysis and Experiments of the Linear Electrical Generator in Wave Energy Farm utilizing Resonance Power Buoy System

Analysis and Experiments of the Linear Electrical Generator in Wave Energy Farm utilizing Resonance Power Buoy System Journal of Magnetics 18(3), 250-254 (2013) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 http://dx.doi.org/10.4283/jmag.2013.18.3.250 Analysis and Experiments of the Linear Electrical Generator in Wave

More information

DESIGN AND FABRICATION OF THE MICRO- ACCELEROMETER USING PIEZOELECTRIC THIN FILMS

DESIGN AND FABRICATION OF THE MICRO- ACCELEROMETER USING PIEZOELECTRIC THIN FILMS DESIGN AND FABRICATION OF THE MICRO- ACCELEROMETER USING PIEZOELECTRIC THIN FILMS JYH-CHENG YU and FU-HSIN LAI Department of Mechanical Engineering National Taiwan University of Science and Technology

More information

PIEZOELECTRIC TECHNOLOGY PRIMER

PIEZOELECTRIC TECHNOLOGY PRIMER PIEZOELECTRIC TECHNOLOGY PRIMER James R. Phillips Sr. Member of Technical Staff CTS Wireless Components 4800 Alameda Blvd. N.E. Albuquerque, New Mexico 87113 Piezoelectricity The piezoelectric effect is

More information

Acoustic Backing in 3-D Integration of CMUT With Front-End Electronics

Acoustic Backing in 3-D Integration of CMUT With Front-End Electronics IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 59, no. 7, July 202 537 Acoustic Backing in 3-D Integration of CMUT ith Front-End Electronics Sigrid Berg, Student Member,

More information

MODELING AND MODIFICATION FOR DISTRIBUTION TRANSFORMER (250 KVA, 11/0.416 KV) TO REDUCE THE TOTAL LOSSES

MODELING AND MODIFICATION FOR DISTRIBUTION TRANSFORMER (250 KVA, 11/0.416 KV) TO REDUCE THE TOTAL LOSSES MODELING AND MODIFICATION FOR DISTRIBUTION TRANSFORMER (250 KVA, 11/0.416 KV) TO REDUCE THE TOTAL LOSSES Assist. Prof. Ibtisam A. Hasan Dr. Sahar R. Fafraj Eng. Azhar K. Azeez Electromechanical Eng. Dept.

More information

Transducer Design and Modeling 42 nd Annual UIA Symposium Orlando Florida Jay Sheehan JFS Engineering. 4/23/2013 JFS Engineering

Transducer Design and Modeling 42 nd Annual UIA Symposium Orlando Florida Jay Sheehan JFS Engineering. 4/23/2013 JFS Engineering 42 nd Annual UIA Symposium Orlando Florida 2013 Jay Sheehan JFS Engineering Introduction ANSYS Workbench Introduction The project format Setting up different analysis Static, Modal and Harmonic Connection

More information

Nonlinear Modeling of a Guitar Loudspeaker Cabinet

Nonlinear Modeling of a Guitar Loudspeaker Cabinet 9//008 Nonlinear Modeling of a Guitar Loudspeaker Cabinet David Yeh, Balazs Bank, and Matti Karjalainen ) CCRMA / Stanford University ) University of Verona 3) Helsinki University of Technology Dept. of

More information

Study and Characterization of the Limiting Thermal Phenomena in Low-Speed Permanent Magnet Synchronous Generators for Wind Energy

Study and Characterization of the Limiting Thermal Phenomena in Low-Speed Permanent Magnet Synchronous Generators for Wind Energy 1 Study and Characterization of the Limiting Thermal Phenomena in Low-Speed Permanent Magnet Synchronous Generators for Wind Energy Mariana Cavique, Student, DEEC/AC Energia, João F.P. Fernandes, LAETA/IDMEC,

More information

An Accurate Model for Pull-in Voltage of Circular Diaphragm Capacitive Micromachined Ultrasonic Transducers (CMUT)

An Accurate Model for Pull-in Voltage of Circular Diaphragm Capacitive Micromachined Ultrasonic Transducers (CMUT) An Accurate Model for Pull-in Voltage of Circular Diaphragm Capacitive Micromachined Ultrasonic Transducers (CMUT) Mosaddequr Rahman, Sazzadur Chowdhury Department of Electrical and Computer Engineering

More information

Ultrasonic Measurement of Minute Displacement of Object Cyclically Actuated by Acoustic Radiation Force

Ultrasonic Measurement of Minute Displacement of Object Cyclically Actuated by Acoustic Radiation Force Jpn. J. Appl. Phys. Vol. 42 (2003) pp. 4608 4612 Part 1, No. 7A, July 2003 #2003 The Japan Society of Applied Physics Ultrasonic Measurement of Minute Displacement of Object Cyclically Actuated by Acoustic

More information

DESIGN OF A HIGH-EFFICIENCY MAGNETORHEOLOGICAL VALVE

DESIGN OF A HIGH-EFFICIENCY MAGNETORHEOLOGICAL VALVE DESIGN OF A HIGH-EFFICIENCY MAGNETORHEOLOGICAL VALVE JIN-HYEONG YOO AND NORMAN M. WERELEY Alfred Gessow Rotorcraft Center, Department of Aerospace Engineering University of Maryland, College Park, Maryland

More information

Lamb Wave Behavior in Bridge Girder Geometries

Lamb Wave Behavior in Bridge Girder Geometries Lamb Wave Behavior in Bridge Girder Geometries I. J. Oppenheim a*, D. W. Greve b, N. L. Tyson a a Dept. of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 b Dept.

More information

VK2 volume flow controller Overview

VK2 volume flow controller Overview New option with sound attenuator Maintenance-free VK2 volume flow controller that operates without an auxiliary power supply, for ventilation and air conditioning systems. Adjustable on site. Outstanding

More information

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2011 C. Nguyen PROBLEM SET #7. Table 1: Gyroscope Modeling Parameters

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2011 C. Nguyen PROBLEM SET #7. Table 1: Gyroscope Modeling Parameters Issued: Wednesday, Nov. 23, 2011. PROBLEM SET #7 Due (at 7 p.m.): Thursday, Dec. 8, 2011, in the EE C245 HW box in 240 Cory. 1. Gyroscopes are inertial sensors that measure rotation rate, which is an extremely

More information

10 Measurement of Acceleration, Vibration and Shock Transducers

10 Measurement of Acceleration, Vibration and Shock Transducers Chapter 10: Acceleration, Vibration and Shock Measurement Dr. Lufti Al-Sharif (Revision 1.0, 25/5/2008) 1. Introduction This chapter examines the measurement of acceleration, vibration and shock. It starts

More information

Computation of magnetic field in an actuator

Computation of magnetic field in an actuator Computation of magnetic field in an actuator A. G. Olabi and A. Grunwald Dublin City University, School of Mechanical and Manufacturing Engineering, Glasnevin, Dublin 9, Ireland, Email: abdul.olabi@dcu.ie,

More information

Nondestructive Determination of Elastic Constants of Thin Plates Based on PVDF Focusing Ultrasound Transducers and Lamb Wave Measurements

Nondestructive Determination of Elastic Constants of Thin Plates Based on PVDF Focusing Ultrasound Transducers and Lamb Wave Measurements 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China Nondestructive Determination of Elastic Constants of Thin Plates Based on PVDF Focusing Ultrasound Transducers and Lamb

More information