Spin Glass Approach to Restricted Isometry Constant

Size: px
Start display at page:

Download "Spin Glass Approach to Restricted Isometry Constant"

Transcription

1 Spin Glass Approach to Restricted Isometry Constant Ayaka Sakata 1,Yoshiyuki Kabashima 2 1 Institute of Statistical Mathematics 2 Tokyo Institute of Technology 1/29

2 Outline Background: Compressed sensing Problem setup: Restricted isometry constant (RIC) Spin glass approach Replica symmetric analysis Improvement by replica symmetry breaking Summary 2/29

3 Compressed sensing Reconstruct original signal X from its undersampled measurement Y. N M Y = M A X N Undersampled measurement Original signal 3/29

4 Compressed sensing Reconstruct original signal X from its undersampled measurement Y. N zero component M Y = M A X N Undersampled measurement Original signal Reconstruction is possible when X is sufficiently sparse. 4/29

5 Practical relevance The problem is related to various technologies of modern signal processing Many application domains Refraction seismic survey (mine examination) Tomography(X-ray CT,MRI) Single pixel camera Noise removal of image Data streaming computing Group testing etc. 5/29

6 Simulation of tomography LT:Original(Logan-Shepp Phantom) #512x512 RT:Sampling 512 points of 2D FT from 22 directions. LB:Recovery of pseudo-inverse (standard approach) RB:Recovery utilizing the sparseness of spatial variations. Original is perfectly recovered. Perfect recovery is realized by only 2% samples of what Nyquist-Shannon s theory requires. Breaking of the conventional limit! EJ Candes J Romberg and T. Tao, IEEE Trans. IT Vol. 52, (2006) 6/29

7 Two major reconstruction methods l 0 reconstruction xˆ = argmin x,subject toy X 0 = Ax l 1 reconstruction ˆx = argmin X x 1,subject toy = Ax Sufficient conditions for the reconstruction are given by Restricted Isometriy Constant (RIC). 7/29

8 Restricted Isometry Constant (RIC) Definition (Candès and Tao (2006)). Let A be a column-wisely normalized M N matrix. Let x R N be an arbitrary S-sparse vector, whose number of non-zero components is smaller than S. Then, if there exists such a constant d S = max{d S min, d S max } that satisfies (1 δ S min ) x F 2 Ax F 2 (1+ δ S max ) x F 2, A is said to satisfy the S-restricted isometry property (RIP) with the restricted isometry constant (RIC) d S. M µ=1 2 A µi = 1 for i Intuitively, d s quantifies how A deviates from orthogonal transforms in terms of Frobenius (L 2 ) norm for S-sparse vectors. 8/29

9 Sufficient conditions for l 0, l 1 reconstruction 1. l 0 reconstruction gives the unique S-sparse solution when d 2S < l 1 reconstruction gives the same unique S-sparse solution as l 0 reconstruction when d 2S < 2 1/2 1. [Candes and Tao, IEEE Trans. Inform. Theory (2005)] 3. (Improvement of 2.) l 1 reconstruction gives the same unique S-sparse solution as l 0 reconstruction when min max (4 2 3) δ2s + δ2s < 4( 2 1). [Foucart and Lai, Appl. Comput. Harmon. Anal. (2009)] 9/29

10 Computational difficulty RIC plays a key role in theoretical analysis and performance guarantee of compressed sensing. On top of this, it is purely of great interest as a fundamental problem of linear algebra. Unfortunately, there are no known large (systematic) matrices with bounded RICs (and computing RICs is strongly NP-hard),.! Wikipedia" On the other hand, many random matrices have been shown to remain bounded. Therefore, much effort has been paid for improving the bounds. " Our study is along this line. 10/29

11 Why computationally difficult? Suppose a situation where non-zero components are fixed. N = 5, V={1,2,3,4,5}, S = 2, T = {2,4} A a 1 a 2 a 3 a 4 a = A T a 2 a 4 X T X λ T 2 2 T 2 min ( ATAT ) xt ATxT λmax( ATAT ) x F F T F The change of norm can be easily characterized by eigenvalues of sub-matrix A T. 11/29

12 Why computationally difficult? l In evaluation of RIC, the inequalities must hold for all possible combinations of the positions of non-zeros. δ l This causes a combinatorial difficulty, yielding an exact expression of RIC as S = max{1 min T: T = S, T V λ min ( A T T A T ), max T: T = S, T V λ max ( A T T A T ) 1}. All possible column choices => Combinatorial difficulty Structures of the problem and the difficulty are analogous to those of spin glass problems. 12/29

13 Analogy to spin glasses The choice of T are represented by binary vector {c i } {0, 1} N. N = 5, S = 2, T = {2,4} c = {0, 1, 0, 1, 0} A a 1 a 2 a a 4 a 5 a 2 a 4 a 2 a 4 T and max T can be regarded as `energy functions of c given A. 0 diag( c) = T λ ( A T A ) λ T ( A A T ) min A T 13/29

14 Analogy to spin glasses δ S = max{ 1 c: min N ci i= 1 = S λ min ( c A), c: max N ci i= 1 = S λ max ( c A) 1} RIC is given by minimum and maximum energy of c. l Energy of 0-1 spin c Λ + (c A) = λ min (c, A) Λ (c A) = λ max (c, A) l Canonical distribution of c N P(c A;µ) exp( µnλ sgn(µ) (c A) )δ c i S l Quenched randomness ( ) = 2π M 1 P A ( ) MN /2 exp M 2 µ,i 2 A µi i=1 14/29

15 Free entropy (free energy) φ µ A Spin glass approach N ( )δ c i S i=1 ( ) = 1 N log exp µnλ sgn(µ)(c A) { } N c 0,1 Z ( µ A) : Partition function Typical properties can be assessed by the replica method. φ ( µ ) = φ ( µ A) A = lim n 0 n log Z n ( µ A) A Energy (min/max eigenvalues) ( ) = φ ( µ ) λ µ µ Entropy (# of T producing λ) ω ( µ ) = φ ( µ ) µ φ ( µ ) µ 15/29

16 ω + Possible minimum and maximum eigenvalues ( λ ) min ω ( λ ) max 0 Possible minimum eigenvalue λ min λ min 0 Possible maximum eigenvalue λ max λ max δ S min = max{1 λ, λ max 1} 16/29

17 φ( µ ) + Replica symmetric analysis α = log 2 2 αµ q { α + χ + µ (1 q) } { α + χ + µ (1 q) } Dz log 1+ e K ( qˆ qˆ y + Dy exp 1 0 2Qˆ α = M / N (compression rate) ρ = S / N (fraction of non-zero components) q, χ, Qˆ, qˆ 1, qˆ, K} { 0 + Qˆ 2 α + log( α + χ) 2 qˆ 1 χ qˆ q Kρ 2 µ 2 are determined by saddle point equations. qˆ 0 z) 2 17/29

18 α = 0.5,ρ = 0.1 ω + Replica symmetric entropy α = M N,ρ = S N ( λ ) min ω ( λ max ) MP MP λ min δ S λ min min = max{1 λ, λ max 1} λ max λ max 18/29

19 Replica symmetric RIC d S at α = 0.5 α = M N,ρ = S N Comparison with prior works Bah-Tanner (2010) d S Our result Lower bound (Dossal et al, 2010) ρ /α 19/29

20 l 0, l 1 reconstruction limit α = M N,ρ = S N l 0 limit ρ /α l 1 limit α Dashed lines are Bah Tanner (2010) 20/29

21 Improvement by RSB l The RS RIC estimate is lower than any existing upper bounds, being consistent with a known lower bound. l On the other hand, there are non-negligible deviations from the experimental data. l In fact, detailed analysis shows that the replica symmetry is broken for the left and right edges of the entropy curves. l However, physical interpretation of RSB indicates that the RS estimates still serve as upper bounds of RIC, and the bounds are improved as the higher RSBs are taken into account. 21/29

22 Replica symmetric entropy (again) α = 0.5,ρ = 0.1 ω + α = M N,ρ = S N ( λ ) min ω ( λ max ) MP MP λ min δ S λ min min = max{1 λ, λ max 1} λ max λ max 22/29

23 Physical interpretation of RSB State space { energy :λ entrropy : s Single dominant cluster RS µ d µ c RS, 1RSB degenerated 1RSB µ Complexity = entropy of pure states ( ) = 1 N Σ λ,s Total entropy log (#pure states specified by ( λ,s ) ) Non-negativity constraint: Must be non-negative. ω ( λ) = 1 N ( ( ) ) ( ( ))! max log ds exp N s + Σ λ,s s { s + Σ( λ,s) } Cf) Montanari and Ricci-Tersenghi (2003), Krzakala et al (2007), 23/29

24 Physical interpretation of RSB State space { energy :λ entrropy : s Single dominant cluster RS µ d µ c RS, 1RSB degenerated 1RSB µ RS evaluation: the complexity constraint is ignored. ω RS ( λ) = max s { s + Σ( λ,s) } 1RSB evaluation: the complexity constraint is taken into account. ω 1RSB ( λ) = max{ s + Σ( λ,s) Σ( λ,s) 0} The non-negativity constraint of the 1RSB evaluation means s ω RS ( λ) ω ( λ). 1RSB 24/29

25 State space Single dominant cluster Physical interpretation of RSB µ d k { energy :λ entrropy : s krsb krsb, (k+1)1rsb (k+1)rsb degenerated If necessary, a similar argument may be applied for the dominant cluster of 1RSB, which yields ω RS µ c k ( λ) ω ( λ) ω ( λ). 1RSB 2RSB µ Applying the similar argument repeatedly concludes ω RS ( λ) ω ( λ) ω ( λ). 1RSB 2RSB 25/29

26 ω RS Monotonic improvement by RSB The series of inequalities ( λ) ω ( λ) ω ( λ). 1RSB 2RSB indicates that bounds are monotonically improved by incorporating the higher RSB. ω + ( λ min ) ω ( λ max ) λ min 0 0 λmax higher RSB!! higher RSB 26/29

27 1RSB results l The estimates are actually improved by the 1RSB solution! l Two scenarios for the RSB transition l λ min : Random first order transition (RFOT) l λ max : de Almeida-Thouless instability (full RSB) α = 0.5,ρ = 0.1 tightened tightened 27/29

28 Summary Evaluation of the restricted isometry constant (RIC) can be formulated as a spin glass problem. We provided a replica based-framework for accurate evaluation of RICs. Replica evaluation provides the current best accuracy. Although the RS solution is not thermodynamically stable, the physical interpretation of RSB implies that the RS estimates still have the meaning of upper-bounds. The bounds are monotonically improved by taking the higher RSB into account. Future work Application to other matrix ensembles Mathematical justification 28/29

29 Thank you for your attention. Acknowledgments RIKEN special postdoctoral researcher (SPDR) fellowship, KAKENHI No (AS) KAKENHI No (YK) 29/29

Constructing Explicit RIP Matrices and the Square-Root Bottleneck

Constructing Explicit RIP Matrices and the Square-Root Bottleneck Constructing Explicit RIP Matrices and the Square-Root Bottleneck Ryan Cinoman July 18, 2018 Ryan Cinoman Constructing Explicit RIP Matrices July 18, 2018 1 / 36 Outline 1 Introduction 2 Restricted Isometry

More information

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit New Coherence and RIP Analysis for Wea 1 Orthogonal Matching Pursuit Mingrui Yang, Member, IEEE, and Fran de Hoog arxiv:1405.3354v1 [cs.it] 14 May 2014 Abstract In this paper we define a new coherence

More information

of Orthogonal Matching Pursuit

of Orthogonal Matching Pursuit A Sharp Restricted Isometry Constant Bound of Orthogonal Matching Pursuit Qun Mo arxiv:50.0708v [cs.it] 8 Jan 205 Abstract We shall show that if the restricted isometry constant (RIC) δ s+ (A) of the measurement

More information

Compressed sensing. Or: the equation Ax = b, revisited. Terence Tao. Mahler Lecture Series. University of California, Los Angeles

Compressed sensing. Or: the equation Ax = b, revisited. Terence Tao. Mahler Lecture Series. University of California, Los Angeles Or: the equation Ax = b, revisited University of California, Los Angeles Mahler Lecture Series Acquiring signals Many types of real-world signals (e.g. sound, images, video) can be viewed as an n-dimensional

More information

CoSaMP: Greedy Signal Recovery and Uniform Uncertainty Principles

CoSaMP: Greedy Signal Recovery and Uniform Uncertainty Principles CoSaMP: Greedy Signal Recovery and Uniform Uncertainty Principles SIAM Student Research Conference Deanna Needell Joint work with Roman Vershynin and Joel Tropp UC Davis, May 2008 CoSaMP: Greedy Signal

More information

Estimating Unknown Sparsity in Compressed Sensing

Estimating Unknown Sparsity in Compressed Sensing Estimating Unknown Sparsity in Compressed Sensing Miles Lopes UC Berkeley Department of Statistics CSGF Program Review July 16, 2014 early version published at ICML 2013 Miles Lopes ( UC Berkeley ) estimating

More information

Sample Complexity of Bayesian Optimal Dictionary Learning

Sample Complexity of Bayesian Optimal Dictionary Learning Sample Complexity of Bayesian Optimal Dictionary Learning Ayaka Sakata and Yoshiyuki Kabashima Dep. of Computational Intelligence & Systems Science Tokyo Institute of Technology Yokohama 6-85, Japan Email:

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Instructor: Moritz Hardt Email: hardt+ee227c@berkeley.edu Graduate Instructor: Max Simchowitz Email: msimchow+ee227c@berkeley.edu

More information

Noisy Signal Recovery via Iterative Reweighted L1-Minimization

Noisy Signal Recovery via Iterative Reweighted L1-Minimization Noisy Signal Recovery via Iterative Reweighted L1-Minimization Deanna Needell UC Davis / Stanford University Asilomar SSC, November 2009 Problem Background Setup 1 Suppose x is an unknown signal in R d.

More information

Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing

Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas M.Vidyasagar@utdallas.edu www.utdallas.edu/ m.vidyasagar

More information

A Survey of Compressive Sensing and Applications

A Survey of Compressive Sensing and Applications A Survey of Compressive Sensing and Applications Justin Romberg Georgia Tech, School of ECE ENS Winter School January 10, 2012 Lyon, France Signal processing trends DSP: sample first, ask questions later

More information

Stochastic geometry and random matrix theory in CS

Stochastic geometry and random matrix theory in CS Stochastic geometry and random matrix theory in CS IPAM: numerical methods for continuous optimization University of Edinburgh Joint with Bah, Blanchard, Cartis, and Donoho Encoder Decoder pair - Encoder/Decoder

More information

Compressive Sensing and Beyond

Compressive Sensing and Beyond Compressive Sensing and Beyond Sohail Bahmani Gerorgia Tech. Signal Processing Compressed Sensing Signal Models Classics: bandlimited The Sampling Theorem Any signal with bandwidth B can be recovered

More information

Approximate Message Passing Algorithm for Complex Separable Compressed Imaging

Approximate Message Passing Algorithm for Complex Separable Compressed Imaging Approximate Message Passing Algorithm for Complex Separle Compressed Imaging Akira Hirayashi, Jumpei Sugimoto, and Kazushi Mimura College of Information Science and Engineering, Ritsumeikan University,

More information

On convergence of Approximate Message Passing

On convergence of Approximate Message Passing On convergence of Approximate Message Passing Francesco Caltagirone (1), Florent Krzakala (2) and Lenka Zdeborova (1) (1) Institut de Physique Théorique, CEA Saclay (2) LPS, Ecole Normale Supérieure, Paris

More information

Introduction How it works Theory behind Compressed Sensing. Compressed Sensing. Huichao Xue. CS3750 Fall 2011

Introduction How it works Theory behind Compressed Sensing. Compressed Sensing. Huichao Xue. CS3750 Fall 2011 Compressed Sensing Huichao Xue CS3750 Fall 2011 Table of Contents Introduction From News Reports Abstract Definition How it works A review of L 1 norm The Algorithm Backgrounds for underdetermined linear

More information

Greedy Signal Recovery and Uniform Uncertainty Principles

Greedy Signal Recovery and Uniform Uncertainty Principles Greedy Signal Recovery and Uniform Uncertainty Principles SPIE - IE 2008 Deanna Needell Joint work with Roman Vershynin UC Davis, January 2008 Greedy Signal Recovery and Uniform Uncertainty Principles

More information

AN INTRODUCTION TO COMPRESSIVE SENSING

AN INTRODUCTION TO COMPRESSIVE SENSING AN INTRODUCTION TO COMPRESSIVE SENSING Rodrigo B. Platte School of Mathematical and Statistical Sciences APM/EEE598 Reverse Engineering of Complex Dynamical Networks OUTLINE 1 INTRODUCTION 2 INCOHERENCE

More information

Compressibility of Infinite Sequences and its Interplay with Compressed Sensing Recovery

Compressibility of Infinite Sequences and its Interplay with Compressed Sensing Recovery Compressibility of Infinite Sequences and its Interplay with Compressed Sensing Recovery Jorge F. Silva and Eduardo Pavez Department of Electrical Engineering Information and Decision Systems Group Universidad

More information

The Sparsest Solution of Underdetermined Linear System by l q minimization for 0 < q 1

The Sparsest Solution of Underdetermined Linear System by l q minimization for 0 < q 1 The Sparsest Solution of Underdetermined Linear System by l q minimization for 0 < q 1 Simon Foucart Department of Mathematics Vanderbilt University Nashville, TN 3784. Ming-Jun Lai Department of Mathematics,

More information

New Applications of Sparse Methods in Physics. Ra Inta, Centre for Gravitational Physics, The Australian National University

New Applications of Sparse Methods in Physics. Ra Inta, Centre for Gravitational Physics, The Australian National University New Applications of Sparse Methods in Physics Ra Inta, Centre for Gravitational Physics, The Australian National University 2 Sparse methods A vector is S-sparse if it has at most S non-zero coefficients.

More information

Exact Low-rank Matrix Recovery via Nonconvex M p -Minimization

Exact Low-rank Matrix Recovery via Nonconvex M p -Minimization Exact Low-rank Matrix Recovery via Nonconvex M p -Minimization Lingchen Kong and Naihua Xiu Department of Applied Mathematics, Beijing Jiaotong University, Beijing, 100044, People s Republic of China E-mail:

More information

Generalized Orthogonal Matching Pursuit- A Review and Some

Generalized Orthogonal Matching Pursuit- A Review and Some Generalized Orthogonal Matching Pursuit- A Review and Some New Results Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur, INDIA Table of Contents

More information

Stability and robustness of l 1 -minimizations with Weibull matrices and redundant dictionaries

Stability and robustness of l 1 -minimizations with Weibull matrices and redundant dictionaries Stability and robustness of l 1 -minimizations with Weibull matrices and redundant dictionaries Simon Foucart, Drexel University Abstract We investigate the recovery of almost s-sparse vectors x C N from

More information

Random projections. 1 Introduction. 2 Dimensionality reduction. Lecture notes 5 February 29, 2016

Random projections. 1 Introduction. 2 Dimensionality reduction. Lecture notes 5 February 29, 2016 Lecture notes 5 February 9, 016 1 Introduction Random projections Random projections are a useful tool in the analysis and processing of high-dimensional data. We will analyze two applications that use

More information

Limitations in Approximating RIP

Limitations in Approximating RIP Alok Puranik Mentor: Adrian Vladu Fifth Annual PRIMES Conference, 2015 Outline 1 Background The Problem Motivation Construction Certification 2 Planted model Planting eigenvalues Analysis Distinguishing

More information

Exponential decay of reconstruction error from binary measurements of sparse signals

Exponential decay of reconstruction error from binary measurements of sparse signals Exponential decay of reconstruction error from binary measurements of sparse signals Deanna Needell Joint work with R. Baraniuk, S. Foucart, Y. Plan, and M. Wootters Outline Introduction Mathematical Formulation

More information

Compressed Sensing and Robust Recovery of Low Rank Matrices

Compressed Sensing and Robust Recovery of Low Rank Matrices Compressed Sensing and Robust Recovery of Low Rank Matrices M. Fazel, E. Candès, B. Recht, P. Parrilo Electrical Engineering, University of Washington Applied and Computational Mathematics Dept., Caltech

More information

Rui ZHANG Song LI. Department of Mathematics, Zhejiang University, Hangzhou , P. R. China

Rui ZHANG Song LI. Department of Mathematics, Zhejiang University, Hangzhou , P. R. China Acta Mathematica Sinica, English Series May, 015, Vol. 31, No. 5, pp. 755 766 Published online: April 15, 015 DOI: 10.1007/s10114-015-434-4 Http://www.ActaMath.com Acta Mathematica Sinica, English Series

More information

Multipath Matching Pursuit

Multipath Matching Pursuit Multipath Matching Pursuit Submitted to IEEE trans. on Information theory Authors: S. Kwon, J. Wang, and B. Shim Presenter: Hwanchol Jang Multipath is investigated rather than a single path for a greedy

More information

An iterative hard thresholding estimator for low rank matrix recovery

An iterative hard thresholding estimator for low rank matrix recovery An iterative hard thresholding estimator for low rank matrix recovery Alexandra Carpentier - based on a joint work with Arlene K.Y. Kim Statistical Laboratory, Department of Pure Mathematics and Mathematical

More information

A new method on deterministic construction of the measurement matrix in compressed sensing

A new method on deterministic construction of the measurement matrix in compressed sensing A new method on deterministic construction of the measurement matrix in compressed sensing Qun Mo 1 arxiv:1503.01250v1 [cs.it] 4 Mar 2015 Abstract Construction on the measurement matrix A is a central

More information

Super-resolution via Convex Programming

Super-resolution via Convex Programming Super-resolution via Convex Programming Carlos Fernandez-Granda (Joint work with Emmanuel Candès) Structure and Randomness in System Identication and Learning, IPAM 1/17/2013 1/17/2013 1 / 44 Index 1 Motivation

More information

Strengthened Sobolev inequalities for a random subspace of functions

Strengthened Sobolev inequalities for a random subspace of functions Strengthened Sobolev inequalities for a random subspace of functions Rachel Ward University of Texas at Austin April 2013 2 Discrete Sobolev inequalities Proposition (Sobolev inequality for discrete images)

More information

List of Errata for the Book A Mathematical Introduction to Compressive Sensing

List of Errata for the Book A Mathematical Introduction to Compressive Sensing List of Errata for the Book A Mathematical Introduction to Compressive Sensing Simon Foucart and Holger Rauhut This list was last updated on September 22, 2018. If you see further errors, please send us

More information

CS 229r: Algorithms for Big Data Fall Lecture 19 Nov 5

CS 229r: Algorithms for Big Data Fall Lecture 19 Nov 5 CS 229r: Algorithms for Big Data Fall 215 Prof. Jelani Nelson Lecture 19 Nov 5 Scribe: Abdul Wasay 1 Overview In the last lecture, we started discussing the problem of compressed sensing where we are given

More information

COMPRESSED SENSING IN PYTHON

COMPRESSED SENSING IN PYTHON COMPRESSED SENSING IN PYTHON Sercan Yıldız syildiz@samsi.info February 27, 2017 OUTLINE A BRIEF INTRODUCTION TO COMPRESSED SENSING A BRIEF INTRODUCTION TO CVXOPT EXAMPLES A Brief Introduction to Compressed

More information

GREEDY SIGNAL RECOVERY REVIEW

GREEDY SIGNAL RECOVERY REVIEW GREEDY SIGNAL RECOVERY REVIEW DEANNA NEEDELL, JOEL A. TROPP, ROMAN VERSHYNIN Abstract. The two major approaches to sparse recovery are L 1-minimization and greedy methods. Recently, Needell and Vershynin

More information

Stability and Robustness of Weak Orthogonal Matching Pursuits

Stability and Robustness of Weak Orthogonal Matching Pursuits Stability and Robustness of Weak Orthogonal Matching Pursuits Simon Foucart, Drexel University Abstract A recent result establishing, under restricted isometry conditions, the success of sparse recovery

More information

Sensing systems limited by constraints: physical size, time, cost, energy

Sensing systems limited by constraints: physical size, time, cost, energy Rebecca Willett Sensing systems limited by constraints: physical size, time, cost, energy Reduce the number of measurements needed for reconstruction Higher accuracy data subject to constraints Original

More information

Lecture 22: More On Compressed Sensing

Lecture 22: More On Compressed Sensing Lecture 22: More On Compressed Sensing Scribed by Eric Lee, Chengrun Yang, and Sebastian Ament Nov. 2, 207 Recap and Introduction Basis pursuit was the method of recovering the sparsest solution to an

More information

Optimization-based sparse recovery: Compressed sensing vs. super-resolution

Optimization-based sparse recovery: Compressed sensing vs. super-resolution Optimization-based sparse recovery: Compressed sensing vs. super-resolution Carlos Fernandez-Granda, Google Computational Photography and Intelligent Cameras, IPAM 2/5/2014 This work was supported by a

More information

Lecture 3. Random Fourier measurements

Lecture 3. Random Fourier measurements Lecture 3. Random Fourier measurements 1 Sampling from Fourier matrices 2 Law of Large Numbers and its operator-valued versions 3 Frames. Rudelson s Selection Theorem Sampling from Fourier matrices Our

More information

Methods for sparse analysis of high-dimensional data, II

Methods for sparse analysis of high-dimensional data, II Methods for sparse analysis of high-dimensional data, II Rachel Ward May 23, 2011 High dimensional data with low-dimensional structure 300 by 300 pixel images = 90, 000 dimensions 2 / 47 High dimensional

More information

Compressed Sensing and Sparse Recovery

Compressed Sensing and Sparse Recovery ELE 538B: Sparsity, Structure and Inference Compressed Sensing and Sparse Recovery Yuxin Chen Princeton University, Spring 217 Outline Restricted isometry property (RIP) A RIPless theory Compressed sensing

More information

Recovering overcomplete sparse representations from structured sensing

Recovering overcomplete sparse representations from structured sensing Recovering overcomplete sparse representations from structured sensing Deanna Needell Claremont McKenna College Feb. 2015 Support: Alfred P. Sloan Foundation and NSF CAREER #1348721. Joint work with Felix

More information

The Pros and Cons of Compressive Sensing

The Pros and Cons of Compressive Sensing The Pros and Cons of Compressive Sensing Mark A. Davenport Stanford University Department of Statistics Compressive Sensing Replace samples with general linear measurements measurements sampled signal

More information

Pre-weighted Matching Pursuit Algorithms for Sparse Recovery

Pre-weighted Matching Pursuit Algorithms for Sparse Recovery Journal of Information & Computational Science 11:9 (214) 2933 2939 June 1, 214 Available at http://www.joics.com Pre-weighted Matching Pursuit Algorithms for Sparse Recovery Jingfei He, Guiling Sun, Jie

More information

Signal Recovery from Permuted Observations

Signal Recovery from Permuted Observations EE381V Course Project Signal Recovery from Permuted Observations 1 Problem Shanshan Wu (sw33323) May 8th, 2015 We start with the following problem: let s R n be an unknown n-dimensional real-valued signal,

More information

Information, Physics, and Computation

Information, Physics, and Computation Information, Physics, and Computation Marc Mezard Laboratoire de Physique Thdorique et Moales Statistiques, CNRS, and Universit y Paris Sud Andrea Montanari Department of Electrical Engineering and Department

More information

Recent Developments in Compressed Sensing

Recent Developments in Compressed Sensing Recent Developments in Compressed Sensing M. Vidyasagar Distinguished Professor, IIT Hyderabad m.vidyasagar@iith.ac.in, www.iith.ac.in/ m vidyasagar/ ISL Seminar, Stanford University, 19 April 2018 Outline

More information

The Pros and Cons of Compressive Sensing

The Pros and Cons of Compressive Sensing The Pros and Cons of Compressive Sensing Mark A. Davenport Stanford University Department of Statistics Compressive Sensing Replace samples with general linear measurements measurements sampled signal

More information

MAT 585: Johnson-Lindenstrauss, Group testing, and Compressed Sensing

MAT 585: Johnson-Lindenstrauss, Group testing, and Compressed Sensing MAT 585: Johnson-Lindenstrauss, Group testing, and Compressed Sensing Afonso S. Bandeira April 9, 2015 1 The Johnson-Lindenstrauss Lemma Suppose one has n points, X = {x 1,..., x n }, in R d with d very

More information

Compressed Sensing: Lecture I. Ronald DeVore

Compressed Sensing: Lecture I. Ronald DeVore Compressed Sensing: Lecture I Ronald DeVore Motivation Compressed Sensing is a new paradigm for signal/image/function acquisition Motivation Compressed Sensing is a new paradigm for signal/image/function

More information

Optimisation Combinatoire et Convexe.

Optimisation Combinatoire et Convexe. Optimisation Combinatoire et Convexe. Low complexity models, l 1 penalties. A. d Aspremont. M1 ENS. 1/36 Today Sparsity, low complexity models. l 1 -recovery results: three approaches. Extensions: matrix

More information

Lecture Notes 9: Constrained Optimization

Lecture Notes 9: Constrained Optimization Optimization-based data analysis Fall 017 Lecture Notes 9: Constrained Optimization 1 Compressed sensing 1.1 Underdetermined linear inverse problems Linear inverse problems model measurements of the form

More information

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis Lecture 3: Sparse signal recovery: A RIPless analysis of l 1 minimization Yuejie Chi The Ohio State University Page 1 Outline

More information

Approximate Message Passing Algorithms

Approximate Message Passing Algorithms November 4, 2017 Outline AMP (Donoho et al., 2009, 2010a) Motivations Derivations from a message-passing perspective Limitations Extensions Generalized Approximate Message Passing (GAMP) (Rangan, 2011)

More information

Model-Based Compressive Sensing for Signal Ensembles. Marco F. Duarte Volkan Cevher Richard G. Baraniuk

Model-Based Compressive Sensing for Signal Ensembles. Marco F. Duarte Volkan Cevher Richard G. Baraniuk Model-Based Compressive Sensing for Signal Ensembles Marco F. Duarte Volkan Cevher Richard G. Baraniuk Concise Signal Structure Sparse signal: only K out of N coordinates nonzero model: union of K-dimensional

More information

Inverse problems and sparse models (6/6) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France.

Inverse problems and sparse models (6/6) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France. Inverse problems and sparse models (6/6) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France remi.gribonval@inria.fr Overview of the course Introduction sparsity & data compression inverse problems

More information

Two Results on the Schatten p-quasi-norm Minimization for Low-Rank Matrix Recovery

Two Results on the Schatten p-quasi-norm Minimization for Low-Rank Matrix Recovery Two Results on the Schatten p-quasi-norm Minimization for Low-Rank Matrix Recovery Ming-Jun Lai, Song Li, Louis Y. Liu and Huimin Wang August 14, 2012 Abstract We shall provide a sufficient condition to

More information

RSP-Based Analysis for Sparsest and Least l 1 -Norm Solutions to Underdetermined Linear Systems

RSP-Based Analysis for Sparsest and Least l 1 -Norm Solutions to Underdetermined Linear Systems 1 RSP-Based Analysis for Sparsest and Least l 1 -Norm Solutions to Underdetermined Linear Systems Yun-Bin Zhao IEEE member Abstract Recently, the worse-case analysis, probabilistic analysis and empirical

More information

On the l 1 -Norm Invariant Convex k-sparse Decomposition of Signals

On the l 1 -Norm Invariant Convex k-sparse Decomposition of Signals On the l 1 -Norm Invariant Convex -Sparse Decomposition of Signals arxiv:1305.6021v2 [cs.it] 11 Nov 2013 Guangwu Xu and Zhiqiang Xu Abstract Inspired by an interesting idea of Cai and Zhang, we formulate

More information

Tractable Upper Bounds on the Restricted Isometry Constant

Tractable Upper Bounds on the Restricted Isometry Constant Tractable Upper Bounds on the Restricted Isometry Constant Alex d Aspremont, Francis Bach, Laurent El Ghaoui Princeton University, École Normale Supérieure, U.C. Berkeley. Support from NSF, DHS and Google.

More information

Primal Dual Pursuit A Homotopy based Algorithm for the Dantzig Selector

Primal Dual Pursuit A Homotopy based Algorithm for the Dantzig Selector Primal Dual Pursuit A Homotopy based Algorithm for the Dantzig Selector Muhammad Salman Asif Thesis Committee: Justin Romberg (Advisor), James McClellan, Russell Mersereau School of Electrical and Computer

More information

Performance Analysis for Sparse Support Recovery

Performance Analysis for Sparse Support Recovery Performance Analysis for Sparse Support Recovery Gongguo Tang and Arye Nehorai ESE, Washington University April 21st 2009 Gongguo Tang and Arye Nehorai (Institute) Performance Analysis for Sparse Support

More information

Z Algorithmic Superpower Randomization October 15th, Lecture 12

Z Algorithmic Superpower Randomization October 15th, Lecture 12 15.859-Z Algorithmic Superpower Randomization October 15th, 014 Lecture 1 Lecturer: Bernhard Haeupler Scribe: Goran Žužić Today s lecture is about finding sparse solutions to linear systems. The problem

More information

Multiplicative and Additive Perturbation Effects on the Recovery of Sparse Signals on the Sphere using Compressed Sensing

Multiplicative and Additive Perturbation Effects on the Recovery of Sparse Signals on the Sphere using Compressed Sensing Multiplicative and Additive Perturbation Effects on the Recovery of Sparse Signals on the Sphere using Compressed Sensing ibeltal F. Alem, Daniel H. Chae, and Rodney A. Kennedy The Australian National

More information

Signal Recovery From Incomplete and Inaccurate Measurements via Regularized Orthogonal Matching Pursuit

Signal Recovery From Incomplete and Inaccurate Measurements via Regularized Orthogonal Matching Pursuit Signal Recovery From Incomplete and Inaccurate Measurements via Regularized Orthogonal Matching Pursuit Deanna Needell and Roman Vershynin Abstract We demonstrate a simple greedy algorithm that can reliably

More information

Reconstruction from Anisotropic Random Measurements

Reconstruction from Anisotropic Random Measurements Reconstruction from Anisotropic Random Measurements Mark Rudelson and Shuheng Zhou The University of Michigan, Ann Arbor Coding, Complexity, and Sparsity Workshop, 013 Ann Arbor, Michigan August 7, 013

More information

Propagating beliefs in spin glass models. Abstract

Propagating beliefs in spin glass models. Abstract Propagating beliefs in spin glass models Yoshiyuki Kabashima arxiv:cond-mat/0211500v1 [cond-mat.dis-nn] 22 Nov 2002 Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology,

More information

Lecture: Introduction to Compressed Sensing Sparse Recovery Guarantees

Lecture: Introduction to Compressed Sensing Sparse Recovery Guarantees Lecture: Introduction to Compressed Sensing Sparse Recovery Guarantees http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html Acknowledgement: this slides is based on Prof. Emmanuel Candes and Prof. Wotao Yin

More information

The Random Matching Problem

The Random Matching Problem The Random Matching Problem Enrico Maria Malatesta Universitá di Milano October 21st, 2016 Enrico Maria Malatesta (UniMi) The Random Matching Problem October 21st, 2016 1 / 15 Outline 1 Disordered Systems

More information

A Tutorial on Compressive Sensing. Simon Foucart Drexel University / University of Georgia

A Tutorial on Compressive Sensing. Simon Foucart Drexel University / University of Georgia A Tutorial on Compressive Sensing Simon Foucart Drexel University / University of Georgia CIMPA13 New Trends in Applied Harmonic Analysis Mar del Plata, Argentina, 5-16 August 2013 This minicourse acts

More information

THE PHYSICS OF COUNTING AND SAMPLING ON RANDOM INSTANCES. Lenka Zdeborová

THE PHYSICS OF COUNTING AND SAMPLING ON RANDOM INSTANCES. Lenka Zdeborová THE PHYSICS OF COUNTING AND SAMPLING ON RANDOM INSTANCES Lenka Zdeborová (CEA Saclay and CNRS, France) MAIN CONTRIBUTORS TO THE PHYSICS UNDERSTANDING OF RANDOM INSTANCES Braunstein, Franz, Kabashima, Kirkpatrick,

More information

The Analysis Cosparse Model for Signals and Images

The Analysis Cosparse Model for Signals and Images The Analysis Cosparse Model for Signals and Images Raja Giryes Computer Science Department, Technion. The research leading to these results has received funding from the European Research Council under

More information

Combining geometry and combinatorics

Combining geometry and combinatorics Combining geometry and combinatorics A unified approach to sparse signal recovery Anna C. Gilbert University of Michigan joint work with R. Berinde (MIT), P. Indyk (MIT), H. Karloff (AT&T), M. Strauss

More information

Compressive Sensing with Random Matrices

Compressive Sensing with Random Matrices Compressive Sensing with Random Matrices Lucas Connell University of Georgia 9 November 017 Lucas Connell (University of Georgia) Compressive Sensing with Random Matrices 9 November 017 1 / 18 Overview

More information

COMPRESSED SENSING: HOW SHARP IS THE RIP?

COMPRESSED SENSING: HOW SHARP IS THE RIP? COMPRESSED SENSING: HOW SHARP IS THE RIP? JEFFREY D. BLANCHARD, CORALIA CARTIS, AND JARED TANNER Abstract. Consider a measurement matrix A of size n N, with n < N, y a signal in R N, and b = Ay the observed

More information

Rank Determination for Low-Rank Data Completion

Rank Determination for Low-Rank Data Completion Journal of Machine Learning Research 18 017) 1-9 Submitted 7/17; Revised 8/17; Published 9/17 Rank Determination for Low-Rank Data Completion Morteza Ashraphijuo Columbia University New York, NY 1007,

More information

Fast Hard Thresholding with Nesterov s Gradient Method

Fast Hard Thresholding with Nesterov s Gradient Method Fast Hard Thresholding with Nesterov s Gradient Method Volkan Cevher Idiap Research Institute Ecole Polytechnique Federale de ausanne volkan.cevher@epfl.ch Sina Jafarpour Department of Computer Science

More information

Lecture 13 October 6, Covering Numbers and Maurey s Empirical Method

Lecture 13 October 6, Covering Numbers and Maurey s Empirical Method CS 395T: Sublinear Algorithms Fall 2016 Prof. Eric Price Lecture 13 October 6, 2016 Scribe: Kiyeon Jeon and Loc Hoang 1 Overview In the last lecture we covered the lower bound for p th moment (p > 2) and

More information

T sg. α c (0)= T=1/β. α c (T ) α=p/n

T sg. α c (0)= T=1/β. α c (T ) α=p/n Taejon, Korea, vol. 2 of 2, pp. 779{784, Nov. 2. Capacity Analysis of Bidirectional Associative Memory Toshiyuki Tanaka y, Shinsuke Kakiya y, and Yoshiyuki Kabashima z ygraduate School of Engineering,

More information

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis Lecture 7: Matrix completion Yuejie Chi The Ohio State University Page 1 Reference Guaranteed Minimum-Rank Solutions of Linear

More information

Compressive Sensing (CS)

Compressive Sensing (CS) Compressive Sensing (CS) Luminita Vese & Ming Yan lvese@math.ucla.edu yanm@math.ucla.edu Department of Mathematics University of California, Los Angeles The UCLA Advanced Neuroimaging Summer Program (2014)

More information

Does Compressed Sensing have applications in Robust Statistics?

Does Compressed Sensing have applications in Robust Statistics? Does Compressed Sensing have applications in Robust Statistics? Salvador Flores December 1, 2014 Abstract The connections between robust linear regression and sparse reconstruction are brought to light.

More information

Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information

Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information 1 Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information Emmanuel Candès, California Institute of Technology International Conference on Computational Harmonic

More information

Minimizing the Difference of L 1 and L 2 Norms with Applications

Minimizing the Difference of L 1 and L 2 Norms with Applications 1/36 Minimizing the Difference of L 1 and L 2 Norms with Department of Mathematical Sciences University of Texas Dallas May 31, 2017 Partially supported by NSF DMS 1522786 2/36 Outline 1 A nonconvex approach:

More information

LIMITATION OF LEARNING RANKINGS FROM PARTIAL INFORMATION. By Srikanth Jagabathula Devavrat Shah

LIMITATION OF LEARNING RANKINGS FROM PARTIAL INFORMATION. By Srikanth Jagabathula Devavrat Shah 00 AIM Workshop on Ranking LIMITATION OF LEARNING RANKINGS FROM PARTIAL INFORMATION By Srikanth Jagabathula Devavrat Shah Interest is in recovering distribution over the space of permutations over n elements

More information

The uniform uncertainty principle and compressed sensing Harmonic analysis and related topics, Seville December 5, 2008

The uniform uncertainty principle and compressed sensing Harmonic analysis and related topics, Seville December 5, 2008 The uniform uncertainty principle and compressed sensing Harmonic analysis and related topics, Seville December 5, 2008 Emmanuel Candés (Caltech), Terence Tao (UCLA) 1 Uncertainty principles A basic principle

More information

Group testing example

Group testing example Group testing example Consider a vector x R n with a single nonzero in an unknown location. How can we determine the location and magnitude of the nonzero through inner produces with vectors a i R n for

More information

Methods for sparse analysis of high-dimensional data, II

Methods for sparse analysis of high-dimensional data, II Methods for sparse analysis of high-dimensional data, II Rachel Ward May 26, 2011 High dimensional data with low-dimensional structure 300 by 300 pixel images = 90, 000 dimensions 2 / 55 High dimensional

More information

Thresholds for the Recovery of Sparse Solutions via L1 Minimization

Thresholds for the Recovery of Sparse Solutions via L1 Minimization Thresholds for the Recovery of Sparse Solutions via L Minimization David L. Donoho Department of Statistics Stanford University 39 Serra Mall, Sequoia Hall Stanford, CA 9435-465 Email: donoho@stanford.edu

More information

Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization

Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization Forty-Fifth Annual Allerton Conference Allerton House, UIUC, Illinois, USA September 26-28, 27 WeA3.2 Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization Benjamin

More information

Sparse Recovery from Inaccurate Saturated Measurements

Sparse Recovery from Inaccurate Saturated Measurements Sparse Recovery from Inaccurate Saturated Measurements Simon Foucart and Jiangyuan Li Texas A&M University Abstract This article studies a variation of the standard compressive sensing problem, in which

More information

Sparsest Solutions of Underdetermined Linear Systems via l q -minimization for 0 < q 1

Sparsest Solutions of Underdetermined Linear Systems via l q -minimization for 0 < q 1 Sparsest Solutions of Underdetermined Linear Systems via l q -minimization for 0 < q 1 Simon Foucart Department of Mathematics Vanderbilt University Nashville, TN 3740 Ming-Jun Lai Department of Mathematics

More information

Compressed Sensing - Near Optimal Recovery of Signals from Highly Incomplete Measurements

Compressed Sensing - Near Optimal Recovery of Signals from Highly Incomplete Measurements Compressed Sensing - Near Optimal Recovery of Signals from Highly Incomplete Measurements Wolfgang Dahmen Institut für Geometrie und Praktische Mathematik RWTH Aachen and IMI, University of Columbia, SC

More information

A New Estimate of Restricted Isometry Constants for Sparse Solutions

A New Estimate of Restricted Isometry Constants for Sparse Solutions A New Estimate of Restricted Isometry Constants for Sparse Solutions Ming-Jun Lai and Louis Y. Liu January 12, 211 Abstract We show that as long as the restricted isometry constant δ 2k < 1/2, there exist

More information

Subspace Pursuit for Compressive Sensing: Closing the Gap Between Performance and Complexity

Subspace Pursuit for Compressive Sensing: Closing the Gap Between Performance and Complexity Subspace Pursuit for Compressive Sensing: Closing the Gap Between Performance and Complexity Wei Dai and Olgica Milenkovic Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

More information

Data representation and approximation

Data representation and approximation Representation and approximation of data February 3, 2015 Outline 1 Outline 1 Approximation The interpretation of polynomials as functions, rather than abstract algebraic objects, forces us to reinterpret

More information