Three-fluid hydrodynamics based event simulation for collisions at NICA and FAIR energies

Size: px
Start display at page:

Download "Three-fluid hydrodynamics based event simulation for collisions at NICA and FAIR energies"

Transcription

1 model Model Phy. Input output oberv. Three-fluid hydrodynamic baed event imulation for colliion at NICA and FAIR energie P. Batyuk, D. Blachke, M. Bleicher, Yu.B. Ivanov, Iu. Karpenko, S. Mert, M. Nahrgang, H. Peteren, O. Rogachevky Vekler and Baldin LHEP, Dubna, Dubna, Ruia Intitute of Theoretical Phyic, Univerity of Wroclaw, Wroclaw, Poland Bogoliubov Laboratory of Theoretical Phyic, Dubna, Dubna, Ruia National Reearch Nuclear Univerity "MEPhI", Mocow, Ruia Frankfurt Intitute for Advanced Studie (FIAS), Frankfurt am Main, Germany National Reearch Centre "Kurchatov Intitute", Mocow, Ruia Bogolyubov Intitute for Theoretical Phyic, Kiev, Ukraine INFN - Sezione di Firenze, Seto Fiorentino (Firenze), Italy Department of Phyic, Duke Univerity, Durham, North Carolina, USA SUBATECH, Univerité de Nante, France Goethe Univerität, Frankfurt am Main, Germany GSI Helmholtzzentrum für Schwerionenforchung GmbH, Darmtadt, Germany Meeting of the working group on theory of hadronic matter under extreme condition, Dubna, October 31-November 3, 2016

2 Exploring Nuclear Phae Diagram model Model Phy. Input output oberv. At which incident energy doe onet of deconfinement happen? What i the order of the deconfinement tranition at high baryon denitie? I there a critical end point in the phae diagram?

3 Hydrodynamic veru Kinetic model Model Phy. Input output oberv. Why we are not atified with kinetic or hybrid model? Only croover tranition into QGP i acceible in kinetic A Multi-Phae Tranport (AMPT) model [Lin, Ko and Pal, PRL 89, (2002)] Parton-Hadron-String Dynamic [Caing, Bratkovkaya, arxiv: (2009)] In hybrid model (Kinetic-Hydro-Kinetic), tranition into QGP i inacceible at the early (nonequilibrium) tage of the colliion 3-Fluid Hydrodynamic directly addree Equation of State (EoS)! 1t-order phae tranition into QGP i acceible through EoS Tranition into QGP i acceible alo at the early (nonequilibrium) tage of the colliion However, all thi require certain approximation

4 Aumption model Model Ditribution are eparated in momentum pace different fluid Leading particle carry baryon charge 2 baryon-rich fluid: projectile-like and target-like Phy. Input output oberv. At high incident energie (E lab > 10A GeV) Produced particle populate mid-rapidity fireball fluid Thi a minimal extenion of hydrodynamic required by heavy-ion dynamic

5 Hitory model Model Phy. Input output oberv. Kurchatov Int : 2-fluid hydro with free-treaming radiation of pion Mihutin, Rukikh, and Satarov Frankfurt Univerity : 3-fluid hydrodynamic with intant formation of fireball Brachmann, Katcher, Dumitru, Richke, Maruhn, Stöcker, Greiner, Mihutin, Satarov, et al. GSI 2003 now: 3-fluid hydrodynamic with delayed formation of fireball Ivanov, Rukikh, Toneev

6 Equation of Motion model Model Phy. Input output oberv. Produced particle populate mid-rapidity fireball fluid Target-like fluid: µ J µ t =0 µ T µν = Ftp ν + F ν Leading particle carry bar. charge Projectile-like fluid: µ J µ p =0, µ T µν p Fireball fluid: J µ f =0, µ T µν =Fpt ν + F ν t f t exchange/emiion = F ν pt + F ν f p f tp F ν Baryon-free fluid Source term Exchange The ource term i delayed due to a formation time τ f p F f ν t Total energy-momentum conervation: µ (T p µν + T µν t + T µν f ) = 0

7 Hydrodymanic denitie model Model Phy. Input output oberv. Baryon current: J µ α = n α u µ α n α = baryon denity of α-fluid u µ α = 4-velocity of α-fluid Energy-momentum tenor: T α µν = (ε α + P α )u αu µ α ν g µν P α ε α = energy denity P α = preure + Equation of tate: P = P(n, ε) Final Aim: To find a proper EoS, which reproduce all data

8 Phyical Input I model Model Phy. Input output oberv. I. Equation of State Hadronic EoS Galitky&Mihutin (1979) 1t-order tranition to QGP (2-phae EoS ) croover EoS [Khvorotukhin, Skokov, Redlich, Toneev, (2006)] P/(n 0 m N ) Phae tranition = EoS oftening T=10, 100, 200 MeV hadr. EoS 2-phae EoS croover EoS n/n 0

9 Phyical Input II and III model Model Phy. Input output oberv. II. Friction wa fitted to reproduce the baryon topping Hadronic EoS Friction in hadronic phae wa etimated by Satarov (SJNP 1990) Thi friction had to be enhanced. 2-phae EoS and croover EoS Phenomenological friction in QGP phae. Advantage of deconfinement cenario: Satarov friction in hadronic phae need no modification III. Freeze-out When ytem become dilute, hydro ha to be topped Freeze-out energy denity ε frz = 0.4 GeV/fm 3

10 Output model Model Phy. Input output oberv. Output at the freeze-out tage All fluid are frozen out in mall droplet characterized by proper volume V pr, temperature T, baryon, µ B, and trange, µ S, chemical potential collective flow velocity u µ, T, µ B and µ S are determined from baryon ρ B, trangene ρ S and energy ε denitie uing hadronic-ga EoS.

11 obervable model Model Phy. Input output oberv. directed flow = v 1 (y) = Hadron phae pace, p 0 d 3 N i d 3 p = α g i Vα pr p 0 (2π) 3 exp [ ] (p 0 µ αi )/T α ± 1 µ αi = B i µ αb + S i µ αs i the chemical potential of hadron i with baryon number B i and trangene S i, α ummation run over droplet from all (p, t and f) fluid, denote momentum in the droplet ret frame. Obervable are integral of function d 2 p T (p x /p T ) (p 0 d 3 N/d 3 p )/(d 3 N/dy) rapidity = dn/dy = d 2 p T p 0 d 3 N/d 3 p

12 model Model Phy. Input output In order to ue the a an event generator, the output hould be in term of oberved particle. Monte Carlo ampling procedure: oberv. Hadron are ampled according to their phae pace, p 0 d 3 N i d 3 p = α g i Vα pr p 0 (2π) 3 exp [(p 0 µ αi )/T α ] ± 1 denote momentum in the droplet ret frame µ αi = B i µ αb + S i µ αs i the chemical potential of hadron i with baryon number B i and trangene S i, α ummation run over droplet from all (p, t and f) fluid.

13 Sampling model Model Phy. Input output oberv. The ampling i run a a loop over all droplet: average multiplicitie of all hadron pecie are calculated according to N i,α = Vα pr n i,th (T, µ i ), together with their um N tot,α = i N i,α; total (integer) number of hadron from each droplet i ampled according to Poion with mean N tot,α. If the number i greater than zero, ort of hadron i randomly choen baed on probabilitie N i,α / N tot,α; hadron momentum p i ampled according to it phae pace, which i iotropic in momentum pace; momentum i Lorentz booted to the global frame of the colliion. Particle multiplicitie fluctuate from event to event according to the compoition of grand canonical enemble.

14 UrQMD imulation of final tate interaction model Model : Phy. Input output oberv. The Ultra-relativitic Quantum Molecular Dynamic (UrQMD) i ued to treat the interaction during the late non-equilibrium hadronic tage of heavy ion reaction, i.e. after particlization. + + Three-fluid Hydrodynamic-baed Event Simulator Extended by UrQMD final State interaction (THESEUS)

15 model Model Phy. Input output oberv. ] -2 dy) [GeV dp p N/(2 π 2 d T T pion THESEUS w/o UrQMD THESEUS m T -m [GeV] ] -2 dy) [GeV dp p N/(2 π 2 d T T kaon E lab =30 A GeV two-phae EoS m T -m [GeV] Figure: Tranvere momentum pectrum for pion (left panel) and kaon (right panel) for central Au+Au colliion (b = 2 fm) at E lab = 30 A GeV for the 2-phae EoS. and THESEUS without UrQMD how excellent agreement. UrQMD lead to a light teepening of the pion.

16 model Model Phy. Input output oberv. dn/dy pion THESEUS w/o UrQMD THESEUS y dn/dy kaon 10 two-phae EoS 5 E lab =30 A GeV y Figure: for pion (left panel) and kaon (right panel) for central Au+Au colliion (b = 2 fm) at E lab = 30 A GeV for the 2-phae EoS. and THESEUS without UrQMD how excellent agreement. UrQMD hadronic recattering meare out the double-peak tructure in the kaon rapidity pectrum.

17 Directed-Flow for emicentral Au+Au model Model Phy. Input output oberv. Figure: dv 1 /dy of proton Figure: dv 1 /dy of pion

18 for Au+Au colliion model Model Phy. Input output oberv. : Shadowing of pion by baryonic matter. S. A. Ba, et al., Phy. Lett. B 302, 381 (1993).

19 model Model Phy. Input output oberv. A new Three-fluid Hydrodynamic-baed Event Simulator Extended by UrQMD final State interaction (THESEUS) i developed + + (UrQMD) it can be ued for imulation of experimental event at NICA and FAIR it can decribe a hadron-to-quark matter tranition which proceed in the baryon topping regime THESEUS without UrQMD well reproduce reult afterburner ha little effect on the proton flow obervable afterburner reult in a qualitative change of the pion emiion pattern: from flow to antiflow

20 model Model Phy. Input output oberv. Thank for attention

21 model Model Phy. Input output oberv. ε m N n N [GeV/fm 3 ] ymbol paced 1 fm/c apart 2-phae EoS Au(4A GeV)+Au, b=2 fm Au(10A GeV)+Au, b=2 fm Pb(20A GeV)+Pb, b=2.4 fm e(t=0)-m N n B mixed phae inacceible region n B [fm -3 ] ε m N n B [GeV/fm 3 ] croover EoS Au(4A GeV)+Au, b=2 fm Au(10A GeV)+Au, b=2 fm Pb(20A GeV)+Pb, b=2.4 fm e(t=0)-m N n B W QGP =0.1 1 ymbol paced 1 fm/c apart W QGP =0.5 inacceible region n B [fm -3 ] Croover tranition by Khvorotukhin et al. i too mooth Lattice QCD predict a fat croover. Dynamical trajectorie of matter in the central box of colliding nuclei (4fm 4fm γ cm 4fm) Therefore, a true EoS i omewhere in between the Khvorotukhin et al. -croover and Khvorotukhin et al. -2-phae EoS. Onet of deconfinement happen at top-ags low-sps energie.

22 model Model Phy. Input output oberv. afterburner doe not eentially affect the

arxiv: v1 [nucl-th] 21 Nov 2017

arxiv: v1 [nucl-th] 21 Nov 2017 EPJ Web of Conferences will be set by the publisher DOI: will be set by the publisher c Owned by the authors, published by EDP Sciences, 2017 arxiv:1711.07959v1 [nucl-th] 21 Nov 2017 Three-fluid Hydrodynamics-based

More information

Quark-Gluon Plasma in Proton-Proton Scattering at the LHC?

Quark-Gluon Plasma in Proton-Proton Scattering at the LHC? Quark-Gluon Plama in Proton-Proton Scattering at the LHC? K. Werner (a), Iu. Karpenko (b), T. Pierog (c) (a) SUBATECH, Univerity of Nante INP/CNRS EMN, Nante, France (b) Bogolyubov Intitute for Theoretical

More information

Probing the QCD phase diagram with dileptons a study using coarse-grained transport dynamics

Probing the QCD phase diagram with dileptons a study using coarse-grained transport dynamics Probing the QCD phase diagram with dileptons a study using coarse-grained transport dynamics Stephan Endres, Hendrik van Hees, and Marcus Bleicher Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße

More information

Beam energy scan using a viscous hydro+cascade model

Beam energy scan using a viscous hydro+cascade model Beam energy scan using a viscous hydro+cascade model Iurii KARPENKO INFN sezione Firenze In collaboration with Marcus Bleicher, Pasi Huovinen and Hannah Petersen Iurii Karpenko (INFN) BES in a viscous

More information

arxiv: v1 [hep-ph] 11 Jun 2008

arxiv: v1 [hep-ph] 11 Jun 2008 Proc. 4th Winter Workshop on Nuclear Dynamics (008) 000 000 4th Winter Workshop on Nuclear Dynamics South Padre, Texas, USA April 1, 008 arxiv:0806.180v1 [hep-ph] 11 Jun 008 A fully integrated Boltzmann+hydrodynamics

More information

arxiv:hep-ex/ v1 4 Jun 2001

arxiv:hep-ex/ v1 4 Jun 2001 T4 Production at Intermediate Energie and Lund Area Law Haiming Hu, An Tai arxiv:hep-ex/00607v 4 Jun 00 Abtract The Lund area law wa developed into a onte Carlo program LUARLW. The important ingredient

More information

Overview* of experimental results in heavy ion collisions

Overview* of experimental results in heavy ion collisions Overview* of experimental results in heavy ion collisions Dipartimento di Fisica Sperimentale dell Universita di Torino and INFN Torino * The selection criteria of the results presented here are (to some

More information

Exploring dense matter at FAIR: The CBM Experiment

Exploring dense matter at FAIR: The CBM Experiment Exploring dense matter at FAIR: The CBM Experiment What s it all about Landmarks of the QCD phase diagram: deconfinement phase transition chiral phase transition critical point 2 Signatures of phase transition

More information

Theoretical Physics Developments for NICA

Theoretical Physics Developments for NICA Theoretical Physics Developments for NICA David.Blaschke@gmail.com University of Wroclaw, Poland & JINR Dubna & MEPhI Moscow, Russia 1. The NICA White Paper (EPJA Topical Issue appears today!) 2. Selected

More information

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution Pasi Huovinen J. W. Goethe Universität, Frankfurt Quantifying the properties of Hot QCD matter June 11, 1, Institute

More information

arxiv: v3 [nucl-th] 26 Dec 2016

arxiv: v3 [nucl-th] 26 Dec 2016 Event simulation based on three-fluid hdrodnamics for collisions at energies available at the Dubna Nuclotron-based Ion Collider Facilit and at the Facilit for Antiproton and Ion Research in Darmstadt

More information

Further development of the hydrokinetic model and description of the RHIC and LHC A+A femtoscopic data

Further development of the hydrokinetic model and description of the RHIC and LHC A+A femtoscopic data and description of the RHIC and LHC A+A femtoscopic data Iu.A. Karpenko Bogolyubov Institute for heoretical Physics, 1-b, Metrolohichna str., Kiev, 080, Ukraine E-mail: karpenko@bitp.kiev.ua Bogolyubov

More information

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC Benjamin Dönigus 03.12.2009 Seminar WS 2009/2010 Relativistische Schwerionenphysik Interface of Quark-Gluon Plasma and

More information

Kinetics of the chiral phase transition

Kinetics of the chiral phase transition Kinetics of the chiral phase transition Hendrik van Hees, Christian Wesp, Alex Meistrenko and Carsten Greiner Institut für Theoretische Physik, Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt

More information

Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach

Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach Quantifying the Properties of Hot and Dense QCD Matter, Seattle, 04.06.10 Hannah Petersen Thanks to: Jan Steinheimer,

More information

Beam energy scan using a viscous hydro+cascade model: an update

Beam energy scan using a viscous hydro+cascade model: an update Beam energy scan using a viscous hydro+cascade model: an update Iurii KARPENKO Frankfurt Institute for Advanced Studies/ Bogolyubov Institute for heoretical Physics ransport group meeting, December 17,

More information

Light flavor hadron production as a function of the chargedparticle multiplicity at the LHC

Light flavor hadron production as a function of the chargedparticle multiplicity at the LHC IL NUOVO CIMENO C (7) 7 DOI.9/ncc/i7778 Colloquia: IFAE 6 Light flavor hadron production a a function of the argedparticle multiplicity at the LHC N. Jacazio( )( ) on behalf of the ALICE Collaboration

More information

Three-fluid hydro based event simulation for NICA energy scan & New EoS with 1st order PT

Three-fluid hydro based event simulation for NICA energy scan & New EoS with 1st order PT Three-fluid hydro based event simulation for NICA energy scan & New EoS with 1st order PT David Blaschke & Niels-Uwe Bastian University of Wroclaw, Poland & JINR Dubna & MEPhI Moscow, Russia Theory of

More information

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape Outline: Non-central collision of spherical nuclei or central collision of deformed nuclei Overlapping zone is of almond shape Co ordinate space anisotropy is converted into momentum space anisotropy via

More information

Constraining the QCD equation of state in hadron colliders

Constraining the QCD equation of state in hadron colliders Constraining the QCD equation of state in hadron colliders Akihiko Monnai (KEK, Japan) with Jean-Yves Ollitrault (IPhT Saclay, France) AM and J.-Y. Ollitrault, Phys. Rev. C 96, 044902 (2017) New Frontiers

More information

Outline: Introduction and Motivation

Outline: Introduction and Motivation Heavy ion collisions at lower energies: challenges and opportunities Beam Energy Scan (BES I and II) from RHIC Lijuan Ruan (Brookhaven National Laboratory) Outline: Introduction and Motivation Results

More information

arxiv: v3 [nucl-th] 11 Jul 2014

arxiv: v3 [nucl-th] 11 Jul 2014 Evolution of transverse flow and effective temperatures in the parton phase from a multi-phase transport model Zi-Wei Lin Department of Physics, East Carolina University, C-209 Howell Science Complex,

More information

The QGP phase in relativistic heavy-ion collisions

The QGP phase in relativistic heavy-ion collisions The QGP phase in relativistic heavy-ion collisions Elena Bratkovskaya Institut für Theoretische Physik & FIAS, Uni. Frankfurt Conference on Exciting Physics Makutsi-Range Range, South Africa,, 13-20 November,

More information

Recent highlights in the light-flavour sector from ALICE

Recent highlights in the light-flavour sector from ALICE Recent highlights in the light-flavour sector from ALICE Enrico Fragiacomo INFN - Trieste MIAMI 2016 Lago Mar Resort, Fort Lauderdale, Florida 14-19 December 2016 Ultra-Relativistic Heavy-Ion collisions

More information

arxiv: v1 [nucl-ex] 10 Feb 2012

arxiv: v1 [nucl-ex] 10 Feb 2012 Cent. Eur. J. Phys. 1-5 Author version Central European Journal of Physics Highlights of the Beam Energy Scan from STAR Review Article arxiv:10.389v1 [nucl-ex] 10 Feb 01 A. Schmah for the STAR Collaboration

More information

The Quark-Gluon Plasma and the ALICE Experiment

The Quark-Gluon Plasma and the ALICE Experiment The Quark-Gluon Plasma and the ALICE Experiment David Evans The University of Birmingham IoP Nuclear Physics Conference 7 th April 2009 David Evans IoP Nuclear Physics Conference 2009 1 Outline of Talk

More information

The Quark Universe. Three Quarks 1970 Structured Vacuum. s d u ISHIP 2006, FIAS

The Quark Universe. Three Quarks 1970 Structured Vacuum. s d u ISHIP 2006, FIAS The Quark Univere ISHIP 2006, FIAS Three Quark 1970 Structured Vacuum d u J. Rafelki, Arizona The Quark Univere ISHIP2006, FIAS, page 2 Structured Charged Vacuum Introduced in Frankfurt by Walter Greiner

More information

Ruth-Moufang-Str. 1, Frankfurt am Main, Germany. Max-von-Laue-Str. 1, Frankfurt am Main, Germany and

Ruth-Moufang-Str. 1, Frankfurt am Main, Germany. Max-von-Laue-Str. 1, Frankfurt am Main, Germany and Charm quark transport in Pb+Pb reactions at s NN = 2.76 TeV from a (3+1) dimensional hybrid approach Thomas Lang 1,2, Hendrik van Hees 1,2, Jan Steinheimer 3, and Marcus Bleicher 1,2 1 Frankfurt Institute

More information

Hydrodynamical description of ultrarelativistic heavy-ion collisions

Hydrodynamical description of ultrarelativistic heavy-ion collisions Frankfurt Institute for Advanced Studies June 27, 2011 with G. Denicol, E. Molnar, P. Huovinen, D. H. Rischke 1 Fluid dynamics (Navier-Stokes equations) Conservation laws momentum conservation Thermal

More information

arxiv:hep-ph/ v2 8 Aug 2002

arxiv:hep-ph/ v2 8 Aug 2002 Ω, J/ψ and ψ ransverse Mass Spectra at RHIC K.A. Bugaev a,b, M. Gaździcki c and M.I. Gorenstein a,d a Bogolyubov Institute for heoretical Physics, Kiev, Ukraine b Gesellschaft für Schwerionenforschung

More information

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Equation of state Pasi Huovinen Uniwersytet Wroc lawski Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Dec 14, 2016, University of Science and Technology of China, Hefei, China The

More information

Hadronic equation of state and relativistic heavy-ion collisions

Hadronic equation of state and relativistic heavy-ion collisions Hadronic equation of state and relativistic heavy-ion collisions Pasi Huovinen J. W. Goethe Universität Workshop on Excited Hadronic States and the Deconfinement Transition Feb 23, 2011, Thomas Jefferson

More information

Indications for the Onset of Deconfinement in Pb+Pb collisions at the SPS

Indications for the Onset of Deconfinement in Pb+Pb collisions at the SPS Indications for the Onset of Deconfinement in Pb+Pb collisions at the SPS P.Seyboth, MPI für Physik, München for the NA49 Collaboration Introduction Search for structure in the energy dependence of Inclusive

More information

Dynamical equilibration of stronglyinteracting

Dynamical equilibration of stronglyinteracting Dynamical equilibration of stronglyinteracting infinite parton matter Vitalii Ozvenchuk, in collaboration with E.Bratkovskaya, O.Linnyk, M.Gorenstein, W.Cassing CPOD, Wuhan, China 11 November 2011 1 Motivation

More information

arxiv: v1 [nucl-th] 28 Nov 2017

arxiv: v1 [nucl-th] 28 Nov 2017 Initial state and hydrodynamic modeling of heavy-ion collisions at RHIC BES energies arxiv:1711.1544v1 [nucl-th] 28 Nov 217 Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA E-mail:

More information

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond Lawrence Berkeley National Laboratory Berkeley, US 1 Introduction: Heavy Ion Physics Today t = 5 10 17 sec T=1

More information

Hagedorn States in Relativistic Heavy Ion Collisions

Hagedorn States in Relativistic Heavy Ion Collisions Hagedorn States in Relativistic Heavy Ion Collisions Jacquelyn Noronha-Hostler Frankfurt Institute for Advanced Studies, Frankfurt am Main Excited Hadrons : February 25 th, 211 : Jefferson Lab Newport

More information

Predictions for 5.02A TeV Pb+Pb Collisions from A Multi-Phase Transport Model

Predictions for 5.02A TeV Pb+Pb Collisions from A Multi-Phase Transport Model Predictions for 5.02A TeV Pb+Pb Collisions from A Multi-Phase Transport Model Zi-Wei Lin East Carolina University, Greenville, NC Results are mainly based on G.L. Ma & ZWL, Phys Rev C 93 (2016) /arxiv:1601.08160

More information

The Study of the Critical Point of QCD using Fluctuations. Gary Westfall Terry Tarnowsky Hui Wang Michigan State University

The Study of the Critical Point of QCD using Fluctuations. Gary Westfall Terry Tarnowsky Hui Wang Michigan State University The Study of the Critical Point of QCD using Fluctuations Gary Westfall Terry Tarnowsky Hui Wang Michigan State University 1 Search for QCD Transitions If we pass through a QCD phase transition, we expect

More information

arxiv: v1 [hep-ph] 18 Feb 2016

arxiv: v1 [hep-ph] 18 Feb 2016 Nuclear Physics A Nuclear Physics A 00 (2016) 1 5 www.elsevier.com/locate/procedia arxiv:1602.05811v1 [hep-ph] 18 Feb 2016 Abstract Confronting fluctuations of conserved charges in central nuclear collisions

More information

Lattice QCD based equation of state at finite baryon density

Lattice QCD based equation of state at finite baryon density Lattice QCD based equation of state at finite baryon density Pasi Huovinen J. W. Goethe Universität & Frankfurt Institute for Advanced Studies Hydrodynamics for Strongly Coupled Fluids May 12, 214, ECT*,

More information

Introduction to Relativistic Heavy Ion Physics

Introduction to Relativistic Heavy Ion Physics 1 Introduction to Relativistic Heavy Ion Physics Lecture 3: Approaching Perfection Columbia University Reminder- From Lecture 2 2 A new state of matter (QGP?) is formed in Au+Au collisions at RHIC Densities

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanic Phyic 5 Lecture 6 Special Relativity (Chapter 7) What We Did Lat Time Defined covariant form of phyical quantitie Collectively called tenor Scalar, 4-vector, -form, rank- tenor, Found how to Lorentz

More information

EPOS 2 and LHC Results

EPOS 2 and LHC Results EPOS 2 and LHC Results Tanguy Pierog, K. Werner, Y. Karpenko Institut für Kernphysik, Karlsruhe, Germany 46th Rencontres de Moriond, QCD, La Thuile, France March the 24th 2011 T. Pierog, KIT - 1/19 Outline

More information

Thermal dileptons as fireball probes at SIS energies

Thermal dileptons as fireball probes at SIS energies Thermal dileptons as fireball probes at SIS energies Critical Point and Onset of Deconfinement 2016, Wrocław. Florian Seck TU Darmstadt in collaboration with T. Galatyuk, P. M. Hohler, R. Rapp & J. Stroth

More information

Molecular Dynamics Simulations of Nonequilibrium Effects Associated with Thermally Activated Exothermic Reactions

Molecular Dynamics Simulations of Nonequilibrium Effects Associated with Thermally Activated Exothermic Reactions Original Paper orma, 5, 9 7, Molecular Dynamic Simulation of Nonequilibrium Effect ociated with Thermally ctivated Exothermic Reaction Jerzy GORECKI and Joanna Natalia GORECK Intitute of Phyical Chemitry,

More information

Quark-Gluon Plasma in Proton-Proton Scattering at the LHC?

Quark-Gluon Plasma in Proton-Proton Scattering at the LHC? Non-Peturb QCD, IAP Paris, Klaus WERNER, Subatech, Nantes - Quark-Gluon Plasma in Proton-Proton Scattering at the LHC? Klaus Werner in collaboration with Iu. Karpenko, T. Pierog,

More information

Transport studies of heavy ion collisions and antiproton-induced reactions on nuclei at FAIR energies

Transport studies of heavy ion collisions and antiproton-induced reactions on nuclei at FAIR energies Transport studies of heavy ion collisions and antiproton-induced reactions on nuclei at FAIR energies A.B. Larionov Outline: 1) Motivation. 2) The GiBUU model: kinetic equations with relativistic mean

More information

The History and Lessons of the Hagedorn Model

The History and Lessons of the Hagedorn Model The History and Lessons of the Hagedorn Model K.A.Bugaev Bogolyubov ITP, Kiev, Ukraine in collaboration with J.B.Ellio", L.W. Phair and L.G.More"o 1 Outline: What T do we see in A+A and elementary particle

More information

Can Momentum Correlations Proof Kinetic Equilibration in. Heavy Ion Collisions at 160 AGeV?

Can Momentum Correlations Proof Kinetic Equilibration in. Heavy Ion Collisions at 160 AGeV? Can Momentum Correlations Proof Kinetic Equilibration in Heavy Ion Collisions at 160 AGeV? M. Bleicher a, M. Belkacem a, C. Ernst a, H. Weber a, L. Gerland a, C. Spieles a, S. A. Bass b, H. Stöcker a,

More information

arxiv:hep-ph/ v1 7 Jun 2006

arxiv:hep-ph/ v1 7 Jun 2006 Longitudinal fluid dynamics for ultrarelativistic heavy ion collisions L.M. Satarov a,b, A.V. Merdeev b, I.N. Mishustin a,b and H. Stöcker a arxiv:hep-ph/0606074v1 7 Jun 2006 a Frankfurt Institute for

More information

Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned:

Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned: Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned: Particle spectral shapes in thermal model ( static medium) are exponential in m T with common slope for all particles.

More information

WIMP dark matter and Baryogenesis

WIMP dark matter and Baryogenesis WIMP dark matter and Baryogenei Lorenzo Ubaldi Bethe Center for Theoretical Phyic & Phyikaliche Intitut der Univerität Bonn, Germany with N. Bernal and F Joe-Michaux JCAP 1301 (013) 034 BLV 013 -- April

More information

Off-shell dynamical approach for relativistic heavy-ion collisions

Off-shell dynamical approach for relativistic heavy-ion collisions Off-shell dynamical approach for relativistic heavy-ion collisions Elena Bratkovskaya Institut für Theoretische Physik & FIAS, Uni. Frankfurt Relaxation, Turbulence, and Non-Equilibrium Dynamics of Matter

More information

The Quark-Gluon plasma in the LHC era

The Quark-Gluon plasma in the LHC era The Quark-Gluon plasma in the LHC era Journées de prospective IN2P3-IRFU, Giens, Avril 2012 t z IPhT, Saclay 1 Quarks and gluons Strong interactions : Quantum Chromo-Dynamics Matter : quarks ; Interaction

More information

Fluid dynamics with a critical point

Fluid dynamics with a critical point Fluid dynamics with a critical point Marlene Nahrgang PhD student of Institut für Theoretische Physik, Goethe- Universität Frankfurt am Main. Scientific interests include QCD, quark-gluon plasma, and particle

More information

arxiv: v1 [nucl-th] 28 Nov 2017

arxiv: v1 [nucl-th] 28 Nov 2017 Traces of non-equilibrium dynamics in relativistic heavy-ion collisions Institute for Theoretical Physics, Goethe Universität Frankfurt am Main, Germany GSI Helmholtzzentrum für Schwerionenforschung GmbH,

More information

Space-time Evolution of A+A collision

Space-time Evolution of A+A collision Time Space-time Evolution of A+A collision Jets Fluctuations p p K K0* f g e m Hadronization (Freeze-out) + Expansion Mixed phase? QGP phase Thermalization Space (z) A Pre-equilibrium A Hadrons reflect

More information

Partonic transport simulations of jet quenching

Partonic transport simulations of jet quenching Partonic transport simulations of jet quenching Z. Xu, C. Greiner Institut für Theoretische Physik J. W. Goethe-Universität, Frankfurt Outline motivation introduction to the model simulations of Au+Au

More information

STRANGENESS AND THE DISCOVERY OF QUARK-GLUON PLASMA

STRANGENESS AND THE DISCOVERY OF QUARK-GLUON PLASMA STRANGENESS AND THE DISCOVERY OF QUARK-GLUON PLASMA Beijing, Augut, 2004 [ I] Why make the effort: Study early Univere; Probe the vacuum; Energy to matter: the (al)chemy of particle production: [ II] Meaurement:

More information

Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics

Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics Bjørn Bäuchle, Marcus Bleicher The UrQMD-Group Based on [arxiv:0810.0488 (nucl-th)] DPG Spring Meeting March

More information

Selected highlights from the STAR experiment at RHIC

Selected highlights from the STAR experiment at RHIC Selected highlights from the STAR experiment at RHIC Sonia Kabana for the STAR Collaboration Laboratoire de Physique Subatomique et des technologies associees (SUBATECH) and University of Nantes, France

More information

Selected highlights from RHIC

Selected highlights from RHIC Selected highlights from RHIC Sonia Kabana Laboratoire de Physique Subatomique et des technologies associees (SUBATECH) and University of Nantes, France QGP-France workshop Etretat, France, 9-11 September

More information

arxiv:hep-ph/ v2 5 Jan 2007

arxiv:hep-ph/ v2 5 Jan 2007 Chemical Equilibrium in Heavy Ion Collisions: Rapidity Dependence. arxiv:hep-ph/7129v2 5 Jan 27, 1. Introduction F. Becattini 1, J. Cleymans 2 1 1, Università di Firenze and INFN Sezione di Firenze Largo

More information

FLOW STUDIES IN NUCLEUS-NUCLEUS COLLISIONS AT FAIR-GSI AVAILABLE ENERGIES

FLOW STUDIES IN NUCLEUS-NUCLEUS COLLISIONS AT FAIR-GSI AVAILABLE ENERGIES (c) 2017 Rom. Rep. Phys. (for accepted papers only) FLOW STUDIES IN NUCLEUS-NUCLEUS COLLISIONS AT FAIR-GSI AVAILABLE ENERGIES O. RISTEA 1, C. RISTEA 1,2,a, A. JIPA 1, T. PETRUSE 1, T. ESANU 3, M. CALIN

More information

Current Status of QGP hydro + hadron cascade approach

Current Status of QGP hydro + hadron cascade approach Current Status of QGP hydro + hadron cascade approach Tetsufumi Hirano the Univ. of Tokyo/LBNL 6/14/2010 @ INT Introduction Outline Motivation A short history of hybrid approaches Importance of hadronic

More information

Monte Carlo Non-Linear Flow modes studies with AMPT

Monte Carlo Non-Linear Flow modes studies with AMPT Monte Carlo Non-Linear Flow modes studies with AMP Daniel Noel Supervised by: Naghmeh Mohammadi 2 July - 31 August 218 1 Introduction Heavy-ion collisions at the Large Hadron Collider (LHC) generate such

More information

Dileptons in NN and AA collisions

Dileptons in NN and AA collisions Dileptons in NN and AA collisions Hendrik van Hees Goethe-Universität Frankfurt November 28, 2011 Hendrik van Hees (GU Frankfurt) The Dilepton Probe November 28, 2011 1 / 24 Outline 1 Electromagnetic probes

More information

Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics

Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics Bjørn Bäuchle, Marcus Bleicher The UrQMD-Group Palaver November 24 th, 2008 Collaborators The UrQMD-Group Marcus

More information

arxiv: v2 [hep-ph] 2 Jul 2018

arxiv: v2 [hep-ph] 2 Jul 2018 Particle production at energies available at the CERN Large Hadron Collider within evolutionary model Yu. M. Sinyukov 1 and V. M. Shapoval 1 1 Bogolyubov Institute for Theoretical Physics, Metrolohichna

More information

Initial baryon number fluctuations and its hydrodynamic propagation on a Bjorken background

Initial baryon number fluctuations and its hydrodynamic propagation on a Bjorken background Initial baryon number fluctuations and its hydrodynamic propagation on a Bjorken background Mauricio Martinez Guerrero In collaboration with Stefan Floerchinger arxiv:1507.05569 Correlations and Fluctuations

More information

Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics

Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics HGS-HIRe Helmholtz Graduate School for Hadron and Ion Research Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics Bjørn Bäuchle, Marcus Bleicher The UrQMD-Group

More information

arxiv:hep-ph/ v3 2 Jan 2001

arxiv:hep-ph/ v3 2 Jan 2001 Thermalization temperature in Pb+Pb collisions at SpS energy from hadron yields and midrapidity p t distributions of hadrons and direct photons D. Yu. Peressounko and Yu. E. Pokrovsky Russian Research

More information

Hadron-Nucleus Interactions. Beginners FLUKA Course

Hadron-Nucleus Interactions. Beginners FLUKA Course Hadron-Nucleu Interaction Beginner FLUKA Coure The FLUKA hadronic Model Hadron-nucleu: PEANUT Elatic,exchange Phae hift data, eikonal hadron hadron P

More information

Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model

Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model Oliver Fochler Z. Xu C. Greiner Institut für Theoretische Physik Goethe Universität Frankfurt Winter Workshop

More information

Cosmology. Expanding Universe. Outline of Lecture 1. Expanding Universe Dark matter: evidence WIMPs Warm dark matter: gravitinos?

Cosmology. Expanding Universe. Outline of Lecture 1. Expanding Universe Dark matter: evidence WIMPs Warm dark matter: gravitinos? Comology V.A. Rubakov Outline of Lecture 1 Expanding Univere Dark matter: evidence WIMP Warm dark matter: gravitino? Intitute for Nuclear Reearch of the Ruian Academy of Science, Mocow Expanding Univere

More information

PoS(WPCF2011)012. New results on event-by-event fluctuations in A+A collisions at the CERN SPS. Grzegorz Stefanek for the NA49 Collaboration

PoS(WPCF2011)012. New results on event-by-event fluctuations in A+A collisions at the CERN SPS. Grzegorz Stefanek for the NA49 Collaboration New results on eventbyevent fluctuations in AA collisions at the CERN SPS for the NA9 Collaboration Jan Kochanowski University, Kielce, Poland Email: grzegorz.stefanek@pu.kielce.pl The study of central

More information

Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum in Run2

Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum in Run2 Search for quark and luino with the ATLAS detector in final tate with jet and miin tranvere momentum in Run Naoya Univerity E-mail: yuta@hepl.phy.naoya-u.ac.jp Depite the abence of experimental evidence,

More information

High-p T Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC

High-p T Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC High- Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC K. Reygers for the WA98 and the PHENIX collaboration Institut für Kernphysik der Universität Münster Wilhelm-Klemm-Str. 9, D-4849 Münster,

More information

High Energy Frontier Recent Results from the LHC: Heavy Ions I

High Energy Frontier Recent Results from the LHC: Heavy Ions I High Energy Frontier Recent Results from the LHC: Heavy Ions I Ralf Averbeck ExtreMe Matter Institute EMMI and Research Division GSI Helmholtzzentrum für Schwerionenforschung Darmstadt, Germany Winter

More information

Modeling Quark Gluon Plasma Using CHIMERA

Modeling Quark Gluon Plasma Using CHIMERA Journal of Physics: Conference Series Modeling Quark Gluon Plasma Using CHIMERA o cite this article: Betty Abelev J. Phys.: Conf. Ser. 6 View the article online for updates and enhancements. Related content

More information

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor T o T T o T F o, Q o F T m,q m T m T m T mo Aumption: 1. Homogeneou Sytem 2. Single Reaction 3. Steady State Two type of problem: 1. Given deired

More information

Hadron-string cascade versus hydrodynamics in Cu + Cu collisions at s NN = 200 GeV

Hadron-string cascade versus hydrodynamics in Cu + Cu collisions at s NN = 200 GeV Hadron-string cascade versus hydrodynamics in Cu + Cu collisions at s NN = GeV T. Hirano, 1 M. Isse, Y. Nara, 3 A. Ohnishi, and K. Yoshino 1 Department of Physics, Columbia University, New York, NY 17

More information

Bulk matter formed in Pb Pb collisions at the LHC

Bulk matter formed in Pb Pb collisions at the LHC Bulk matter formed in Pb Pb collisions at the LHC Introductory remarks is quark matter at LHC in equilibrium? Energy dependence of hadron production and the quark hadron phase boundary The fireball expands

More information

Phenomenology of Heavy-Ion Collisions

Phenomenology of Heavy-Ion Collisions Phenomenology of Heavy-Ion Collisions Hendrik van Hees Goethe University Frankfurt and FIAS October 2, 2013 Hendrik van Hees (GU Frankfurt/FIAS) HIC Phenomenology October 2, 2013 1 / 20 Outline 1 Plan

More information

Conservation Laws on the Cooper-Frye Surface and Hadronic Rescattering. Hannah Petersen May 11, 2018, ECT*, Trento, Italy

Conservation Laws on the Cooper-Frye Surface and Hadronic Rescattering. Hannah Petersen May 11, 2018, ECT*, Trento, Italy Conservation Laws on the Cooper-Frye Surface and Hadronic Rescattering Hannah Petersen May 11, 2018, ECT*, Trento, Italy Motivation and Outline Hybrid transport+hydrodynamics approaches are successfully

More information

Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN. = GeV at RHIC

Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN. = GeV at RHIC Journal of Physics: Conference Series PAPER OPEN ACCESS Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN = 39-200 GeV at RHIC To cite this article: S S Vdovkina 2017 J.

More information

Collapse of Flow: Probing the Order of the Phase Transition

Collapse of Flow: Probing the Order of the Phase Transition : Probing the Order of the Phase Transition FIAS- Frankfurt Institute for Advanced Studies, Max-von-Laue-Str. 1, 60438 Frankfurt, German, Institut für Theoretische Phsik, Johann Wolfgang Goethe - Universität,

More information

Collective flow in (anti)proton-proton collision at Tevatron and LHC

Collective flow in (anti)proton-proton collision at Tevatron and LHC Collective flow in (anti)proton-proton collision at Tevatron and LHC Tanguy Pierog, K. Werner, Y. Karpenko, S. Porteboeuf Institut für Kernphysik, Karlsruhe, Germany XLVth Rencontres de Moriond, QCD, La

More information

Direct Photon Production from Heavy Ion Collisions

Direct Photon Production from Heavy Ion Collisions Direct Photon Production from Heavy Ion Collisions Bjørn Bäuchle The UrQMD Group (http://urqmd.org) based on PRC 81 (2010) 044904 and ongoing work FIAS Frankfurt Institutt for fysikk og teknologi, Universitetet

More information

Dileptons with a coarse-grained transport approach

Dileptons with a coarse-grained transport approach Dileptons with a coarse-grained transport approach Hendrik van Hees Goethe University Frankfurt and FIAS July 19, 017 in collaboration with S. Endres, J. Weil, M. Bleicher Hendrik van Hees (GU Frankfurt/FIAS)

More information

Hybrid Model of Heavy-Ion Collisions at BES Energies with Dynamical Sources

Hybrid Model of Heavy-Ion Collisions at BES Energies with Dynamical Sources Hybrid Model of Heavy-Ion Collisions at BES Energies with Dynamical Sources Lipei Du In collaboration with Gojko Vujanovic and Ulrich Heinz Department of Physics, The Ohio State University, USA May 14,

More information

Uncertainties in the underlying e-by-e viscous fluid simulation

Uncertainties in the underlying e-by-e viscous fluid simulation Uncertainties in the underlying e-by-e viscous fluid simulation Ulrich Heinz (The Ohio State University) Jet Workfest, Wayne State University, 24-25 August 213 Supported by the U.S. Department of Energy

More information

Project NICA. at the LHEP JINR. ROGACHEVSKY Oleg for MPD collaboration. ISMD 2017 September, Tlaxcala City

Project NICA. at the LHEP JINR. ROGACHEVSKY Oleg for MPD collaboration. ISMD 2017 September, Tlaxcala City Project NICA at the LHEP JINR ROGACHEVSKY Oleg for MPD collaboration ISMD 2017 September, 11 2017 Tlaxcala City NICA complex Beams p,d(h)..197au79+ Collision energy s= 4-11 GeV/u (Au), 12-27 (p) Beam energy

More information

Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model

Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model Oliver Fochler Z. Xu C. Greiner Institut für Theoretische Physik Goethe Universität Frankfurt Strongly Interacting

More information

CHEMICAL POTENTIAL DEPENDENCE OF PARTICLE RATIOS WITHIN A UNIFIED THERMAL APPROACH

CHEMICAL POTENTIAL DEPENDENCE OF PARTICLE RATIOS WITHIN A UNIFIED THERMAL APPROACH ЖЭТФ, 216, том 149, вып. 6, стр. 1192 1197 c 216 CHEMICAL POENIAL DEPENDENCE OF PARICLE RAIOS WIHIN A UNIFIED HERMAL APPROACH I. Bashir *,H.Nanda,S.Uddin Department of Physics, Jamia Millia Islamia Central

More information

Anti-Nuclei in Relativistic Nuclear Collisions: Results and Expectations

Anti-Nuclei in Relativistic Nuclear Collisions: Results and Expectations Makutsi-Symposium, Nov. 20 Anti-Nuclei in Relativistic Nuclear Collisions: Results and Expectations Reinhard Stock, Goethe University Frankfurt Content Nuclei and Anti-Nuclei in A+A collisions - - Early

More information

J/Ψ-suppression in the hadron resonance gas

J/Ψ-suppression in the hadron resonance gas J/Ψ-suppression in the hadron resonance gas Dariusz Prorok Institute of Theoretical Physics University of Wroc law Wroc law, 17 February 2014 HECOLS workshop and XXXII Max-Born Symposium Dariusz Prorok

More information

arxiv: v1 [nucl-ex] 13 Jun 2013

arxiv: v1 [nucl-ex] 13 Jun 2013 arxiv:36.36v [nucl-ex] 3 Jun 3 Beam Energy Dependence of Higher Moments of Multiplicity Distributions in Heavy-ion Collisions at RHIC (for the SAR Collaboration) Key Laboratory of Quark and Lepton Physics

More information

Strangeness production in heavy ion collisions

Strangeness production in heavy ion collisions 1 Strangeness production in heavy ion collisions Krzysztof Redlich a a Gesellschaft für Schwerionenforschung, D-64291 Darmstadt, Germany Strangeness production in heavy ion collisions is discussed in a

More information