SIMPLE THOUGHT EXPERIMENTS THAT FALSIFY THE EINSTEIN S WEAK EQUIVALENCE PRINCIPLE. Jaroslav Hynecek 1

Size: px
Start display at page:

Download "SIMPLE THOUGHT EXPERIMENTS THAT FALSIFY THE EINSTEIN S WEAK EQUIVALENCE PRINCIPLE. Jaroslav Hynecek 1"

Transcription

1 SIPLE THOUGHT EXPERIENTS THAT FALSIFY THE EINSTEIN S WEAK EQUIVALENCE PRINCIPLE Jarslav Hynecek 1 ABSTRACT In this article it is shwn by simple thuht experiments that the Einstein Weak Equivalence Principle, defined here as the equivalence f inertial and ravitatinal masses, is nt cmpatible with the Special Relativity Thery, the Lrentz Crdinate Transfrmatin, and the axwell Thery f Electrmanetic Field. Since the General Relativity Thery is firmly based n this principle the thuht experiments and the aruments described in this article present a sinificant prblem fr the thery and thus questin its fundamental crrectness. INTRODUCTION There are several definitins f varius equivalence principles that miht intrduce cnfusin int the discussin. It is therefre desirable t first define which equivalence principle will be discussed in this paper. In ne frm the Einstein Weak Equivalence Principle (WEP) is defined as the equivalence f ravitatinal and inertial masses that is abslute and independent f any mtin. This shuld nt be cnfused with the statement that all masses fall the same way in a ravitatinal field. If the ravitatinal mass dependence n velcity is universal, applicable t all masses, then all masses wuld fall the same way even if their inertial mass depended n velcity differently than the ravitatinal mass. The Galile free fall experiments wuld still be satisfied. Hwever, the General Relativity Thery (GRT) is based n the abslute equivalence f the inertial and ravitatinal masses, reardless f their relative mtin, s it is this equivalence that will be investiated in this paper by way f thuht experiments. In this wrk it will be als assumed that the Special Relativity Thery (SRT) and in particular the Lrentz Crdinate Transfrmatin (LCT) tether with the axwell Electrmanetic Field Thery (ET) are valid theries that clsely reflect reality. 1 jhynecek@netscape.net

2 E FIELD EXPERIENT In this sectin ET and LCT will be used and tested by way f cnductin a simple thuht experiment as fllws: tw nncnductive parallel plates chared by chare + mq and mq respectively, with chare embedded int the plate s matrix s that it cannt mve, will be placed in the labratry crdinate system. The plates will mve hrizntally with a unifrm velcity v as shwn in Fi.1. The plates will be separated by a distance d, and their mass will be nelected in this first experiment. The plates will reflect liht that will bunce between them. The impact anle α f the phtns will be such that the hrizntal drift speed f the phtns will match the hrizntal speed f the plates in rder t always keep the same amunt f phtns cnfined between the plates. +mq v h f α h f d L -mq A = L W Fi.1. ET test experimental setup: tw plates built frm an insulatin material have chare + mq and mq embedded in them, lare area A, and are psitined at a small distance d apart frm each ther. The plate s inner surfaces are reflective and certain number f n phtns is cnfined between the plates. The phtn incidence anle with the plates is such tat the phtn hrizntal drift velcity matches the plate s velcity. As is well knwn frm ET the chared plates are attracted t each ther by the electrstatic frce and since they are als mvin relative t the labratry crdinate system there is additinal frce cmpnent between the plates due t the Lrentz frce. The resultin frce actin n the plates, assumin that the peripheral field effects can be nelected, is thus described by the fllwin equatin: F q m q v ε A 1 v / c c =, (1)

3 where A is the pate s area when the plates are at rest relative t the labratry, ε is the dielectric cnstant, and c the vacuum speed f liht. In Eq.1 it was als cnsidered that the plate s lenth in the directin f mtin underes the Lrentz lenth cntractin accrdin t SRT. In rder t prevent the plates frm mvin clser t each ther and cllidin, certain number f phtns is injected between the plates under the anle α that exert the necessary cunter pressure n the plates. The resultin phtn frce is exactly equal t the plate s attractive frce t keep the system in equilibrium. The balancin phtn frce f n phtns is fund frm the frmula: p n h f F p = n = csα. () t t c In derivin this frmula it was cnsidered that durin the phtn reflectins between the plates the phtn enery and mmentum are cnserved and n mmentum is transferred frm the phtns t the plates. The time between the phtn impacts n the plates and the csine f the impact anle α are fund frm the fllwin frmulas: d t =, (3) c v cs After substitutin int Eq. the frmula fr the phtn frce n the plates becmes: n h f v F p =. (5) d c It is reasnable t assume that the plates can always be kept apart at a cnstant distance α = 1 v / c. (4) d reardless f their hrizntal mtin. If the plates were nt mvin relative t the liht surce, but the anle f incidence f phtns n the plates was chaned, the frequency f the phtns wuld have t increase accrdin t frmula f = f / csα, where f is the frequency fr the incidence anle α = 0, r the frequency f the liht surce that mves with the plates. The final frmula fr the phtn frce can thus be written as fllws: n h f Fp = 1 v / c. (6) d In rder t prevent the plates frm cllidin the E frce and the phtn frce must balance F = F. By equatin these frces it is apparent that the velcity dependent terms q p 3

4 f the resultin equatin cancel, which indicates that the balance is maintained reardless f the velcity as expected. The remainin parameters must then satisfy the fllwin: hε c A A m = n = nα, (7) q λ λ d d where f was replaced by f = c / λ. The parameter α is the famus Smmerfeld fine structure cnstant α = This is an interestin result suestin that the electrns, which chared the plates, miht be sme srt f tplical dynamic structures where the E field is balanced by the phtn inertial frce. Hwever, this is nt a tpic f this paper and will nt be discussed here any further. Since this thuht experiment yielded the expected result usin ET, LCT, and SRT, the same cnsideratins will be used next fr the case where the E field is replaced by the ravitatinal filed t test the crrectness f GRT. GRAVITATIONAL FIELD EXPERIENT In this sectin the insulatin plates in the E experiment are replaced by the massive plates that will nt be chared but will attract each ther by the ravitatinal frce. It is als imprtant t nte that there is n ravitatinal field r any static electrical r manetic field between the plates; s that the space-time between the plates is nt distrted in any way. The Earth s ravitatinal field is als nt cnsidered in these experiments. The standard SRT and LCT can thus be used here withut any prblems. The phtns will mve the same way as they wuld in any ther inkwski flat spacetime aln the straiht lines withut any bendin. The repulsive phtn frce is calculated the same way as in the previus case. The ravitatinal frce is calculated frm the fllwin frmula: where F π κ =, (8) A 1 v / c is the ravitatinal mass f the plates and κ is the ravitatinal cnstant. Equatin nw the ravitatinal frce with the phtn frce t keep the plates aain in equilibrium the fllwin result is btained: 4

5 hc A v n πκ λ d c = n A v λ d c = p, (9) where is the Planck mass. This result is very imprtant fr judin the crrectness and p crrespndence with reality f varius theries f ravity. When the standard GRT is cnsidered and linearized fr the weak fields [1] the linearizatin result resembles ET equatins: E r = 4πκρ, (10) B r = 0, (11) r r 1 B E =, c t (1) r 1 v 1 E 4πκ r B = j. c t c (13) In this apprach, where the ravitmanetic B and ravitelectric E fields were intrduced, the similar frce equatin as the Lrentz frce equatin f the E thery is als derived: v v r v r F = E + B. (14) c When these equatins are used in the abve described experiment, the ravitatinal frce equatin between the plates, Eq.8, becmes: = π κ v F, (15) A 1 v / c c and frm that the dependency f the ravitatinal mass n velcity is as fllws [] : = n p v A c λ d v c. (16) It is apparent that Eq.16 will shw the inertial mass type f dependency n velcity fr small velcities but the dependency will nt be exact and will fail fr larer velcities due t the well knwn factr f tw fiurin in the denminatr velcity bracket. This is 5

6 a prblem. Since Eq.9 was derived usin SRT thery the result shuld perfectly match Eq.16, r Eq.16 shuld perfectly match the inertial mass dependency n velcity since the plates can be chsen with arbitrarily small masses t satisfy the GRT linearizatin assumptin. The trublesme denminatr bracket is the cnsequence f the ravitelectrmanetic equivalent f the E Lrentz frce that has nt been experimentally directly bserved yet. If such a frce des nt exist, then the ravitatinal mass must depend n velcity accrdin t Eq.9. It is peculiar that GRT cannt prvide an accurate linear equatin even fr weak fields fr the ravitatinal mass dependency n velcity (Lrentz velcity factr) fr such a simple experimental arranement as is described in Fi.1. This fact prves that GRT is nt cnsistent with SRT and casts a reat suspicin n its crrectness. It seems unreasnable t derive the linearized vectr thery frm GRT r use a tensr thery t describe the ravity since the ravity has nly ne type f the ravitatinal chare and nly ne type f the attractive frce between masses. Sme authrs [3] suest that the factr f tw, which causes the prblem in Eq.16, is the carryver frm the fact that the classic ravitn is a spin tw particle. It is therefre reasnable t expect a vectr thery fr the E fields, since there are bth attractive and repulsive frces, with the phtn havin the spin equal t 1. Hwever, fr the ravity a simple scalar thery shuld suffice with the ravitn havin the spin equal t zer. As a cnsequence f the scalar thery f ravity the Lrentz factr bracket in the denminatr f Eq.16 wuld be equal t unity. In such a thery, r in a thery withut the ravitmanetic effect, the ravitatinal mass and the inertial mass must have the fllwin dependencies n velcity: c = 1 v /, (17) i( v) =, (18) 1 v / c where is the rest mass, in rder nt t cntradict SRT. This seems mre reasnable than the dependency described by Eq.16. Of curse in such a scalar thery f ravity the phtns d nt have any ravitatinal mass, nly the inertial mass, which aain cntradicts ne f the key assumptins f GRT and directly challenes all the theries and muntains f publicatins cnstantly bein written abut Black Hles. 6

7 Perhaps in the future an experiment can be devised that can determine the ravitatinal mass dependence n velcity with certainty and finally put t rest the questinable crrectness f GRT. One pssibility f a testin setup arranement is shwn belw in Fi.: Trsin balance enclsure Trsin balance pivt pint L F tr1 tr R Flywheel crss sectin Fi.. Gravitatinal mass dependence n velcity measurement setup (tp view): tw flywheels with masses and radius R are pwered by mtrs tr1 and tr. trs are munted hrizntally n a vibratin insulated table in prximity t an enclsed trsin balance. trs, which can be interal with the flywheels such as in as turbines, can be independently turned n and ff as well as their RP adjusted. L is adjusted fr the ptimum sensitivity and is apprximately equal t L = R /. Tw mtrs that have massive flywheels with radius R and mass attached t them are psitined with their turnin axels in a hrizntal directin n a vibratin islated table in a labratry. Tw test masses are suspended vertically in a trsin balance arranement in a shieldin enclsure in such a way that the masses are in an ptimum distance L frm the centers f the flywheels. The trsin balance arranement is in equilibrium when bth mtrs are turned ff. After ne mtr r the ther mtr are turned n, the deflectin f the balance is read ut dependin n the RP f the mtrs. The expected frce F ruhly estimated as fllws: actin n the trsin balance fr the ptimum distance can be 7

8 ω κ F = ±. (19) 3 3 c The sin depends f the thery. It is interestin t nte that this result des nt depend n the radius f the flywheel, just n the RP. This may be helpful in the cnstructin f the test set up and in develpin the measurement technique. Fr masses 100k and the anular velcity f 100,000 RP the frce will be: 1 F = femt N. This value is indeed very small, but perhaps sme mtr RP mdulatin technique and the trsin balance resnance tunin can be emplyed t imprve the sensitivity. CONCLUSIONS In this article it was shwn, usin simple thuht experiments that the ravitatinal mass must depend n velcity differently than the inertial mass. This falsifies the Einstein s WEP. Furthermre it was shwn that the abslute equivalence f the inertial and ravitatinal masses, as is pstulated in GRT, is nt cmpatible with SRT and ET theries. There have been already several similar prfs published previusly [4], but these prfs are mre cmplicated with additinal tacit assumptins that usually fail t cnvince skeptics stubbrnly adherin t the prevailin dma. Hpefully, the apprach selected in this article is simple enuh and sufficiently clear with minimum hidden assumptins that this prblem is nw avided. An experimental verificatin f the ravitatinal mass dependency n velcity has als been prpsed and the expected manitudes f frces that need t be detected estimated. REFERENCES 1..L. Ruier, A. Tartalia, Gravitmanetic effects, published in: arxiv:rqc/ v, 3 Jul 00.. J. Hynecek, Remarks n the Equivalence f Inertial and Gravitatinal asses and n the Accuracy f Einstein s Thery f Gravity, Physics Essays, v 18, N., Jun 005, p B.ashhn, Gravitelectrmanetism: A Brief Review, published in: arxiv:r-qc/ v, 17 Apr

. (7.1.1) This centripetal acceleration is provided by centripetal force. It is directed towards the center of the circle and has a magnitude

. (7.1.1) This centripetal acceleration is provided by centripetal force. It is directed towards the center of the circle and has a magnitude Lecture #7-1 Dynamics f Rtatin, Trque, Static Equilirium We have already studied kinematics f rtatinal mtin We discussed unifrm as well as nnunifrm rtatin Hwever, when we mved n dynamics f rtatin, the

More information

Relativistic Pendulum and the Weak Equivalence Principle

Relativistic Pendulum and the Weak Equivalence Principle Relativistic Pendulum and the Weak Equivalence Principle Jarslav Hynecek * Isete, Inc. ABSTRACT This paper derives equatins fr the relativistic prper perid f scillatins f a pendulum driven by the electrical

More information

PHYS 314 HOMEWORK #3

PHYS 314 HOMEWORK #3 PHYS 34 HOMEWORK #3 Due : 8 Feb. 07. A unifrm chain f mass M, lenth L and density λ (measured in k/m) hans s that its bttm link is just tuchin a scale. The chain is drpped frm rest nt the scale. What des

More information

Interference is when two (or more) sets of waves meet and combine to produce a new pattern.

Interference is when two (or more) sets of waves meet and combine to produce a new pattern. Interference Interference is when tw (r mre) sets f waves meet and cmbine t prduce a new pattern. This pattern can vary depending n the riginal wave directin, wavelength, amplitude, etc. The tw mst extreme

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Tw Dimensins; Vectrs Vectrs and Scalars Additin f Vectrs Graphical Methds (One and Tw- Dimensin) Multiplicatin f a Vectr b a Scalar Subtractin f Vectrs Graphical Methds Adding Vectrs

More information

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Flipping Physics Lecture Ntes: Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System A Hrizntal Mass-Spring System is where a mass is attached t a spring, riented hrizntally, and then placed

More information

Fall 2013 Physics 172 Recitation 3 Momentum and Springs

Fall 2013 Physics 172 Recitation 3 Momentum and Springs Fall 03 Physics 7 Recitatin 3 Mmentum and Springs Purpse: The purpse f this recitatin is t give yu experience wrking with mmentum and the mmentum update frmula. Readings: Chapter.3-.5 Learning Objectives:.3.

More information

AP Physics Kinematic Wrap Up

AP Physics Kinematic Wrap Up AP Physics Kinematic Wrap Up S what d yu need t knw abut this mtin in tw-dimensin stuff t get a gd scre n the ld AP Physics Test? First ff, here are the equatins that yu ll have t wrk with: v v at x x

More information

Figure 1a. A planar mechanism.

Figure 1a. A planar mechanism. ME 5 - Machine Design I Fall Semester 0 Name f Student Lab Sectin Number EXAM. OPEN BOOK AND CLOSED NOTES. Mnday, September rd, 0 Write n ne side nly f the paper prvided fr yur slutins. Where necessary,

More information

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Flipping Physics Lecture Ntes: Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System A Hrizntal Mass-Spring System is where a mass is attached t a spring, riented hrizntally, and then placed

More information

205MPa and a modulus of elasticity E 207 GPa. The critical load 75kN. Gravity is vertically downward and the weight of link 3 is W3

205MPa and a modulus of elasticity E 207 GPa. The critical load 75kN. Gravity is vertically downward and the weight of link 3 is W3 ME 5 - Machine Design I Fall Semester 06 Name f Student: Lab Sectin Number: Final Exam. Open bk clsed ntes. Friday, December 6th, 06 ur name lab sectin number must be included in the spaces prvided at

More information

Equilibrium of Stress

Equilibrium of Stress Equilibrium f Stress Cnsider tw perpendicular planes passing thrugh a pint p. The stress cmpnents acting n these planes are as shwn in ig. 3.4.1a. These stresses are usuall shwn tgether acting n a small

More information

Chapter 5: Force and Motion I-a

Chapter 5: Force and Motion I-a Chapter 5: rce and Mtin I-a rce is the interactin between bjects is a vectr causes acceleratin Net frce: vectr sum f all the frces n an bject. v v N v v v v v ttal net = i = + + 3 + 4 i= Envirnment respnse

More information

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations STAPLE Physics 201 Name Final Exam May 14, 2013 This is a clsed bk examinatin but during the exam yu may refer t a 5 x7 nte card with wrds f wisdm yu have written n it. There is extra scratch paper available.

More information

Surface and Contact Stress

Surface and Contact Stress Surface and Cntact Stress The cncept f the frce is fundamental t mechanics and many imprtant prblems can be cast in terms f frces nly, fr example the prblems cnsidered in Chapter. Hwever, mre sphisticated

More information

Kinematic transformation of mechanical behavior Neville Hogan

Kinematic transformation of mechanical behavior Neville Hogan inematic transfrmatin f mechanical behavir Neville Hgan Generalized crdinates are fundamental If we assume that a linkage may accurately be described as a cllectin f linked rigid bdies, their generalized

More information

Multiple choice questions (1) 1 Tesla = (c) NA -1 (d) NA -1 m -2

Multiple choice questions (1) 1 Tesla = (c) NA -1 (d) NA -1 m -2 Multiple chice questins (1) 1 Tesla = (a) N Am -1 (b) NA -1 m -1 NA -1 (d) NA -1 m - () Tw parallel straiht wires carryin currents in ppsite directin (a)repel each ther (b) attract each ther N effect prduce

More information

Dispersion Ref Feynman Vol-I, Ch-31

Dispersion Ref Feynman Vol-I, Ch-31 Dispersin Ref Feynman Vl-I, Ch-31 n () = 1 + q N q /m 2 2 2 0 i ( b/m) We have learned that the index f refractin is nt just a simple number, but a quantity that varies with the frequency f the light.

More information

Lecture 5: Equilibrium and Oscillations

Lecture 5: Equilibrium and Oscillations Lecture 5: Equilibrium and Oscillatins Energy and Mtin Last time, we fund that fr a system with energy cnserved, v = ± E U m ( ) ( ) One result we see immediately is that there is n slutin fr velcity if

More information

Chapter 2 GAUSS LAW Recommended Problems:

Chapter 2 GAUSS LAW Recommended Problems: Chapter GAUSS LAW Recmmended Prblems: 1,4,5,6,7,9,11,13,15,18,19,1,7,9,31,35,37,39,41,43,45,47,49,51,55,57,61,6,69. LCTRIC FLUX lectric flux is a measure f the number f electric filed lines penetrating

More information

CHAPTER 8b Static Equilibrium Units

CHAPTER 8b Static Equilibrium Units CHAPTER 8b Static Equilibrium Units The Cnditins fr Equilibrium Slving Statics Prblems Stability and Balance Elasticity; Stress and Strain The Cnditins fr Equilibrium An bject with frces acting n it, but

More information

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b . REVIEW OF SOME BASIC ALGEBRA MODULE () Slving Equatins Yu shuld be able t slve fr x: a + b = c a d + e x + c and get x = e(ba +) b(c a) d(ba +) c Cmmn mistakes and strategies:. a b + c a b + a c, but

More information

Yeu-Sheng Paul Shiue, Ph.D 薛宇盛 Professor and Chair Mechanical Engineering Department Christian Brothers University 650 East Parkway South Memphis, TN

Yeu-Sheng Paul Shiue, Ph.D 薛宇盛 Professor and Chair Mechanical Engineering Department Christian Brothers University 650 East Parkway South Memphis, TN Yeu-Sheng Paul Shiue, Ph.D 薛宇盛 Prfessr and Chair Mechanical Engineering Department Christian Brthers University 650 East Parkway Suth Memphis, TN 38104 Office: (901) 321-3424 Rm: N-110 Fax : (901) 321-3402

More information

Honors Physics Final Review Summary

Honors Physics Final Review Summary Hnrs Physics Final Review Summary Wrk Dne By A Cnstant Frce: Wrk describes a frce s tendency t change the speed f an bject. Wrk is dne nly when an bject mves in respnse t a frce, and a cmpnent f the frce

More information

Physics 212. Lecture 12. Today's Concept: Magnetic Force on moving charges. Physics 212 Lecture 12, Slide 1

Physics 212. Lecture 12. Today's Concept: Magnetic Force on moving charges. Physics 212 Lecture 12, Slide 1 Physics 1 Lecture 1 Tday's Cncept: Magnetic Frce n mving charges F qv Physics 1 Lecture 1, Slide 1 Music Wh is the Artist? A) The Meters ) The Neville rthers C) Trmbne Shrty D) Michael Franti E) Radiatrs

More information

Solution to HW14 Fall-2002

Solution to HW14 Fall-2002 Slutin t HW14 Fall-2002 CJ5 10.CQ.003. REASONING AND SOLUTION Figures 10.11 and 10.14 shw the velcity and the acceleratin, respectively, the shadw a ball that underges unirm circular mtin. The shadw underges

More information

ENGI 4430 Parametric Vector Functions Page 2-01

ENGI 4430 Parametric Vector Functions Page 2-01 ENGI 4430 Parametric Vectr Functins Page -01. Parametric Vectr Functins (cntinued) Any nn-zer vectr r can be decmpsed int its magnitude r and its directin: r rrˆ, where r r 0 Tangent Vectr: dx dy dz dr

More information

Module M3: Relative Motion

Module M3: Relative Motion Mdule M3: Relative Mtin Prerequisite: Mdule C1 Tpics: Nninertial, classical frames f reference Inertial, relativistic frames f reference References: Fwles and Cassiday Analytical Mechanics 7th ed (Thmsn/Brks/Cle

More information

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007 CS 477/677 Analysis f Algrithms Fall 2007 Dr. Gerge Bebis Curse Prject Due Date: 11/29/2007 Part1: Cmparisn f Srting Algrithms (70% f the prject grade) The bjective f the first part f the assignment is

More information

making triangle (ie same reference angle) ). This is a standard form that will allow us all to have the X= y=

making triangle (ie same reference angle) ). This is a standard form that will allow us all to have the X= y= Intrductin t Vectrs I 21 Intrductin t Vectrs I 22 I. Determine the hrizntal and vertical cmpnents f the resultant vectr by cunting n the grid. X= y= J. Draw a mangle with hrizntal and vertical cmpnents

More information

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 1 /Solution. Solution

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 1 /Solution. Solution 39th Internatinal Physics Olympiad - Hani - Vietnam - 8 Theretical Prblem N. /Slutin Slutin. The structure f the mrtar.. Calculating the distance TG The vlume f water in the bucket is V = = 3 3 3 cm m.

More information

PHYS 219 Spring semester Lecture 02: Coulomb s Law how point charges interact. Ron Reifenberger Birck Nanotechnology Center Purdue University

PHYS 219 Spring semester Lecture 02: Coulomb s Law how point charges interact. Ron Reifenberger Birck Nanotechnology Center Purdue University PHYS 19 Spring semester 016 Lecture 0: Culmb s Law hw pint charges interact Rn Reifenberger Birck Nantechnlg Center Purdue Universit Lecture 0 1 Earl Develpments in Electrstatics Tw f the ur rces in Nature:

More information

Rigid Body Dynamics (continued)

Rigid Body Dynamics (continued) Last time: Rigid dy Dynamics (cntinued) Discussin f pint mass, rigid bdy as useful abstractins f reality Many-particle apprach t rigid bdy mdeling: Newtn s Secnd Law, Euler s Law Cntinuus bdy apprach t

More information

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic.

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic. Tpic : AC Fundamentals, Sinusidal Wavefrm, and Phasrs Sectins 5. t 5., 6. and 6. f the textbk (Rbbins-Miller) cver the materials required fr this tpic.. Wavefrms in electrical systems are current r vltage

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS 16. REASONING AND SOLUTION A trapeze artist, starting rm rest, swings dwnward n the bar, lets g at the bttm the swing, and alls reely t the net. An assistant,

More information

Preparation work for A2 Mathematics [2017]

Preparation work for A2 Mathematics [2017] Preparatin wrk fr A2 Mathematics [2017] The wrk studied in Y12 after the return frm study leave is frm the Cre 3 mdule f the A2 Mathematics curse. This wrk will nly be reviewed during Year 13, it will

More information

Lyapunov Stability Stability of Equilibrium Points

Lyapunov Stability Stability of Equilibrium Points Lyapunv Stability Stability f Equilibrium Pints 1. Stability f Equilibrium Pints - Definitins In this sectin we cnsider n-th rder nnlinear time varying cntinuus time (C) systems f the frm x = f ( t, x),

More information

Einstein's special relativity the essentials

Einstein's special relativity the essentials VCE Physics Unit 3: Detailed study Einstein's special relativity the essentials Key knwledge and skills (frm Study Design) describe the predictin frm Maxwell equatins that the speed f light depends nly

More information

CHAPTER 6 -- ENERGY. Approach #2: Using the component of mg along the line of d:

CHAPTER 6 -- ENERGY. Approach #2: Using the component of mg along the line of d: Slutins--Ch. 6 (Energy) CHAPTER 6 -- ENERGY 6.) The f.b.d. shwn t the right has been prvided t identify all the frces acting n the bdy as it mves up the incline. a.) T determine the wrk dne by gravity

More information

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax .7.4: Direct frequency dmain circuit analysis Revisin: August 9, 00 5 E Main Suite D Pullman, WA 9963 (509) 334 6306 ice and Fax Overview n chapter.7., we determined the steadystate respnse f electrical

More information

Chapter 9 Vector Differential Calculus, Grad, Div, Curl

Chapter 9 Vector Differential Calculus, Grad, Div, Curl Chapter 9 Vectr Differential Calculus, Grad, Div, Curl 9.1 Vectrs in 2-Space and 3-Space 9.2 Inner Prduct (Dt Prduct) 9.3 Vectr Prduct (Crss Prduct, Outer Prduct) 9.4 Vectr and Scalar Functins and Fields

More information

Module 4: General Formulation of Electric Circuit Theory

Module 4: General Formulation of Electric Circuit Theory Mdule 4: General Frmulatin f Electric Circuit Thery 4. General Frmulatin f Electric Circuit Thery All electrmagnetic phenmena are described at a fundamental level by Maxwell's equatins and the assciated

More information

THE FLUXOID QUANTUM AND ELECTROGRAVITATIONAL DYNAMICS. Chapter 8. This work extends chapter 6 titled, "Field Mass Generation and Control", while

THE FLUXOID QUANTUM AND ELECTROGRAVITATIONAL DYNAMICS. Chapter 8. This work extends chapter 6 titled, Field Mass Generation and Control, while 133 THE FLUXOID QUANTUM AND ELECTROGRAVITATIONAL DYNAMICS Chapter 8 This wrk extends chapter 6 titled, "Field Mass Generatin and Cntrl", while als develping a new cnceptual apprach t mass-field vehicle

More information

Chapter 9: Quantization of Light

Chapter 9: Quantization of Light Chapter 9: Quantizatin Light 9.1 Planck s Quantum Thery 9.1.1 Distinguish between Planck s quantum thery and classical thery energy The undatin the Planck s quantum thery is a thery black bdy radiatin.

More information

Physics 321 Solutions for Final Exam

Physics 321 Solutions for Final Exam Page f 8 Physics 3 Slutins fr inal Exa ) A sall blb f clay with ass is drpped fr a height h abve a thin rd f length L and ass M which can pivt frictinlessly abut its center. The initial situatin is shwn

More information

ENGINEERING COUNCIL CERTIFICATE LEVEL THERMODYNAMIC, FLUID AND PROCESS ENGINEERING C106 TUTORIAL 5 THE VISCOUS NATURE OF FLUIDS

ENGINEERING COUNCIL CERTIFICATE LEVEL THERMODYNAMIC, FLUID AND PROCESS ENGINEERING C106 TUTORIAL 5 THE VISCOUS NATURE OF FLUIDS ENGINEERING COUNCIL CERTIFICATE LEVEL THERMODYNAMIC, FLUID AND PROCESS ENGINEERING C106 TUTORIAL 5 THE VISCOUS NATURE OF FLUIDS On cmpletin f this tutrial yu shuld be able t d the fllwing. Define viscsity

More information

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1 Phys101 Final Cde: 1 Term: 1 Wednesday, May 1, 014 Page: 1 Q1. A car accelerates at.0 m/s alng a straight rad. It passes tw marks that are 0 m apart at times t = 4.0 s and t = 5.0 s. Find the car s velcity

More information

FIELD QUALITY IN ACCELERATOR MAGNETS

FIELD QUALITY IN ACCELERATOR MAGNETS FIELD QUALITY IN ACCELERATOR MAGNETS S. Russenschuck CERN, 1211 Geneva 23, Switzerland Abstract The field quality in the supercnducting magnets is expressed in terms f the cefficients f the Furier series

More information

, which yields. where z1. and z2

, which yields. where z1. and z2 The Gaussian r Nrmal PDF, Page 1 The Gaussian r Nrmal Prbability Density Functin Authr: Jhn M Cimbala, Penn State University Latest revisin: 11 September 13 The Gaussian r Nrmal Prbability Density Functin

More information

Course Stabilty of Structures

Course Stabilty of Structures Curse Stabilty f Structures Lecture ntes 2015.03.06 abut 3D beams, sme preliminaries (1:st rder thery) Trsin, 1:st rder thery 3D beams 2:nd rder thery Trsinal buckling Cupled buckling mdes, eamples Numerical

More information

Physics 2010 Motion with Constant Acceleration Experiment 1

Physics 2010 Motion with Constant Acceleration Experiment 1 . Physics 00 Mtin with Cnstant Acceleratin Experiment In this lab, we will study the mtin f a glider as it accelerates dwnhill n a tilted air track. The glider is supprted ver the air track by a cushin

More information

(1.1) V which contains charges. If a charge density ρ, is defined as the limit of the ratio of the charge contained. 0, and if a force density f

(1.1) V which contains charges. If a charge density ρ, is defined as the limit of the ratio of the charge contained. 0, and if a force density f 1.0 Review f Electrmagnetic Field Thery Selected aspects f electrmagnetic thery are reviewed in this sectin, with emphasis n cncepts which are useful in understanding magnet design. Detailed, rigrus treatments

More information

37 Maxwell s Equations

37 Maxwell s Equations 37 Maxwell s quatins In this chapter, the plan is t summarize much f what we knw abut electricity and magnetism in a manner similar t the way in which James Clerk Maxwell summarized what was knwn abut

More information

Thermodynamics Partial Outline of Topics

Thermodynamics Partial Outline of Topics Thermdynamics Partial Outline f Tpics I. The secnd law f thermdynamics addresses the issue f spntaneity and invlves a functin called entrpy (S): If a prcess is spntaneus, then Suniverse > 0 (2 nd Law!)

More information

SPH3U1 Lesson 06 Kinematics

SPH3U1 Lesson 06 Kinematics PROJECTILE MOTION LEARNING GOALS Students will: Describe the mtin f an bject thrwn at arbitrary angles thrugh the air. Describe the hrizntal and vertical mtins f a prjectile. Slve prjectile mtin prblems.

More information

The special theory of relativity

The special theory of relativity The special thery f relatiity The preliminaries f special thery f relatiity The Galilean thery f relatiity states that it is impssible t find the abslute reference system with mechanical eperiments. In

More information

PROJECTILES. Launched at an Angle

PROJECTILES. Launched at an Angle PROJECTILES Launched at an Anle PROJECTILE MOTION AT AN ANGLE An bject launched int space withut mtie pwer f its wn is called a prjectile. If we nelect air resistance, the nly frce actin n a prjectile

More information

Information for Physics 1201 Midterm I Wednesday, February 20

Information for Physics 1201 Midterm I Wednesday, February 20 My lecture slides are psted at http://www.physics.hi-state.edu/~humanic/ Infrmatin fr Physics 1201 Midterm I Wednesday, February 20 1) Frmat: 10 multiple chice questins (each wrth 5 pints) and tw shw-wrk

More information

February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA

February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA Mental Experiment regarding 1D randm walk Cnsider a cntainer f gas in thermal

More information

Electric Current and Resistance

Electric Current and Resistance Electric Current and Resistance Electric Current Electric current is the rate f flw f charge thrugh sme regin f space The SI unit f current is the ampere (A) 1 A = 1 C / s The symbl fr electric current

More information

Phys102 Second Major-102 Zero Version Coordinator: Al-Shukri Thursday, May 05, 2011 Page: 1

Phys102 Second Major-102 Zero Version Coordinator: Al-Shukri Thursday, May 05, 2011 Page: 1 Crdinatr: Al-Shukri Thursday, May 05, 2011 Page: 1 1. Particles A and B are electrically neutral and are separated by 5.0 μm. If 5.0 x 10 6 electrns are transferred frm particle A t particle B, the magnitude

More information

and the Doppler frequency rate f R , can be related to the coefficients of this polynomial. The relationships are:

and the Doppler frequency rate f R , can be related to the coefficients of this polynomial. The relationships are: Algrithm fr Estimating R and R - (David Sandwell, SIO, August 4, 2006) Azimith cmpressin invlves the alignment f successive eches t be fcused n a pint target Let s be the slw time alng the satellite track

More information

A Few Basic Facts About Isothermal Mass Transfer in a Binary Mixture

A Few Basic Facts About Isothermal Mass Transfer in a Binary Mixture Few asic Facts but Isthermal Mass Transfer in a inary Miture David Keffer Department f Chemical Engineering University f Tennessee first begun: pril 22, 2004 last updated: January 13, 2006 dkeffer@utk.edu

More information

Lecture 7: Damped and Driven Oscillations

Lecture 7: Damped and Driven Oscillations Lecture 7: Damped and Driven Oscillatins Last time, we fund fr underdamped scillatrs: βt x t = e A1 + A csω1t + i A1 A sinω1t A 1 and A are cmplex numbers, but ur answer must be real Implies that A 1 and

More information

MUMBAI / AKOLA / DELHI / KOLKATA / LUCKNOW / NASHIK / GOA / BOKARO / PUNE / NAGPUR IIT JEE: 2020 OLYMPIAD TEST DATE: 17/08/18 PHYSICS SOLUTION ...

MUMBAI / AKOLA / DELHI / KOLKATA / LUCKNOW / NASHIK / GOA / BOKARO / PUNE / NAGPUR IIT JEE: 2020 OLYMPIAD TEST DATE: 17/08/18 PHYSICS SOLUTION ... MUMBAI / AKOLA / DELHI / KOLKATA / LUCKNOW / NASHIK / GOA / BOKARO / PUNE / NAGPUR IIT JEE: OLYMPIAD TEST DATE: 7/8/8 PHYSICS SOLUTION. (C) Averae acceleratin, vf vi tan tan a t. (B) ds Resistance kv Eqatins

More information

Corrections for the textbook answers: Sec 6.1 #8h)covert angle to a positive by adding period #9b) # rad/sec

Corrections for the textbook answers: Sec 6.1 #8h)covert angle to a positive by adding period #9b) # rad/sec U n i t 6 AdvF Date: Name: Trignmetric Functins Unit 6 Tentative TEST date Big idea/learning Gals In this unit yu will study trignmetric functins frm grade, hwever everything will be dne in radian measure.

More information

ELECTRON CYCLOTRON HEATING OF AN ANISOTROPIC PLASMA. December 4, PLP No. 322

ELECTRON CYCLOTRON HEATING OF AN ANISOTROPIC PLASMA. December 4, PLP No. 322 ELECTRON CYCLOTRON HEATING OF AN ANISOTROPIC PLASMA by J. C. SPROTT December 4, 1969 PLP N. 3 These PLP Reprts are infrmal and preliminary and as such may cntain errrs nt yet eliminated. They are fr private

More information

Preparation work for A2 Mathematics [2018]

Preparation work for A2 Mathematics [2018] Preparatin wrk fr A Mathematics [018] The wrk studied in Y1 will frm the fundatins n which will build upn in Year 13. It will nly be reviewed during Year 13, it will nt be retaught. This is t allw time

More information

Chapter 6. Dielectrics and Capacitance

Chapter 6. Dielectrics and Capacitance Chapter 6. Dielectrics and Capacitance Hayt; //009; 6- Dielectrics are insulating materials with n free charges. All charges are bund at mlecules by Culmb frce. An applied electric field displaces charges

More information

Work, Energy, and Power

Work, Energy, and Power rk, Energy, and Pwer Physics 1 There are many different TYPES f Energy. Energy is expressed in JOULES (J 419J 4.19 1 calrie Energy can be expressed mre specifically by using the term ORK( rk The Scalar

More information

LEARNING : At the end of the lesson, students should be able to: OUTCOMES a) state trigonometric ratios of sin,cos, tan, cosec, sec and cot

LEARNING : At the end of the lesson, students should be able to: OUTCOMES a) state trigonometric ratios of sin,cos, tan, cosec, sec and cot Mathematics DM 05 Tpic : Trignmetric Functins LECTURE OF 5 TOPIC :.0 TRIGONOMETRIC FUNCTIONS SUBTOPIC :. Trignmetric Ratis and Identities LEARNING : At the end f the lessn, students shuld be able t: OUTCOMES

More information

Trigonometric Ratios Unit 5 Tentative TEST date

Trigonometric Ratios Unit 5 Tentative TEST date 1 U n i t 5 11U Date: Name: Trignmetric Ratis Unit 5 Tentative TEST date Big idea/learning Gals In this unit yu will extend yur knwledge f SOH CAH TOA t wrk with btuse and reflex angles. This extensin

More information

Determination of Static Orientation Using IMU Data Revision 1

Determination of Static Orientation Using IMU Data Revision 1 Determinatin f Static Orientatin Usin IMU Data Revisin 1 Determinatin f Static Orientatin frm IMU Accelermeter and Manetmeter Data Intrductin An imprtant applicatin f inertial data is the rientatin determinatin

More information

Chapter 32. Maxwell s Equations and Electromagnetic Waves

Chapter 32. Maxwell s Equations and Electromagnetic Waves Chapter 32 Maxwell s Equatins and Electrmagnetic Waves Maxwell s Equatins and EM Waves Maxwell s Displacement Current Maxwell s Equatins The EM Wave Equatin Electrmagnetic Radiatin MFMcGraw-PHY 2426 Chap32-Maxwell's

More information

Physics 141H Homework Set #4 Solutions

Physics 141H Homework Set #4 Solutions Phsics 4H Hmewrk Set #4 Slutins Chapter 4: Multiple-chice: 4) The maimum net frce will result when the tw frces are in the same directin. If s, the net frce will hae manitude F + F. The minimum net frce

More information

A - LEVEL MATHEMATICS 2018/2019

A - LEVEL MATHEMATICS 2018/2019 A - LEVEL MATHEMATICS 2018/2019 STRUCTURE OF THE COURSE Yur maths A-Level Maths curse cvers Pure Mathematics, Mechanics and Statistics. Yu will be eamined at the end f the tw-year curse. The assessment

More information

General Chemistry II, Unit I: Study Guide (part I)

General Chemistry II, Unit I: Study Guide (part I) 1 General Chemistry II, Unit I: Study Guide (part I) CDS Chapter 14: Physical Prperties f Gases Observatin 1: Pressure- Vlume Measurements n Gases The spring f air is measured as pressure, defined as the

More information

L a) Calculate the maximum allowable midspan deflection (w o ) critical under which the beam will slide off its support.

L a) Calculate the maximum allowable midspan deflection (w o ) critical under which the beam will slide off its support. ecture 6 Mderately arge Deflectin Thery f Beams Prblem 6-1: Part A: The department f Highways and Public Wrks f the state f Califrnia is in the prcess f imprving the design f bridge verpasses t meet earthquake

More information

11. DUAL NATURE OF RADIATION AND MATTER

11. DUAL NATURE OF RADIATION AND MATTER 11. DUAL NATURE OF RADIATION AND MATTER Very shrt answer and shrt answer questins 1. Define wrk functin f a metal? The minimum energy required fr an electrn t escape frm the metal surface is called the

More information

Schedule. Time Varying electromagnetic fields (1 Week) 6.1 Overview 6.2 Faraday s law (6.2.1 only) 6.3 Maxwell s equations

Schedule. Time Varying electromagnetic fields (1 Week) 6.1 Overview 6.2 Faraday s law (6.2.1 only) 6.3 Maxwell s equations chedule Time Varying electrmagnetic fields (1 Week) 6.1 Overview 6.2 Faraday s law (6.2.1 nly) 6.3 Maxwell s equatins Wave quatin (3 Week) 6.5 Time-Harmnic fields 7.1 Overview 7.2 Plane Waves in Lssless

More information

14. Which shows the direction of the centripetal force acting on a mass spun in a vertical circle?

14. Which shows the direction of the centripetal force acting on a mass spun in a vertical circle? Physics 0 Public Exam Questins Unit 1: Circular Mtin NAME: August 009---------------------------------------------------------------------------------------------------------------------- 1. Which describes

More information

14. Which shows the direction of the centripetal force acting on a mass spun in a vertical circle?

14. Which shows the direction of the centripetal force acting on a mass spun in a vertical circle? Physics 3204 Public Exam Questins Unit 1: Circular Mtin NAME: August 2009---------------------------------------------------------------------------------------------------------------------- 12. Which

More information

Thermodynamics and Equilibrium

Thermodynamics and Equilibrium Thermdynamics and Equilibrium Thermdynamics Thermdynamics is the study f the relatinship between heat and ther frms f energy in a chemical r physical prcess. We intrduced the thermdynamic prperty f enthalpy,

More information

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell 6.5 Natural Cnvectin in Enclsures Enclsures are finite spaces bunded by walls and filled with fluid. Natural cnvectin in enclsures, als knwn as internal cnvectin, takes place in rms and buildings, furnaces,

More information

Example 1. A robot has a mass of 60 kg. How much does that robot weigh sitting on the earth at sea level? Given: m. Find: Relationships: W

Example 1. A robot has a mass of 60 kg. How much does that robot weigh sitting on the earth at sea level? Given: m. Find: Relationships: W Eample 1 rbt has a mass f 60 kg. Hw much des that rbt weigh sitting n the earth at sea level? Given: m Rbt = 60 kg ind: Rbt Relatinships: Slutin: Rbt =589 N = mg, g = 9.81 m/s Rbt = mrbt g = 60 9. 81 =

More information

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) >

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) > Btstrap Methd > # Purpse: understand hw btstrap methd wrks > bs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(bs) > mean(bs) [1] 21.64625 > # estimate f lambda > lambda = 1/mean(bs);

More information

We can see from the graph above that the intersection is, i.e., [ ).

We can see from the graph above that the intersection is, i.e., [ ). MTH 111 Cllege Algebra Lecture Ntes July 2, 2014 Functin Arithmetic: With nt t much difficulty, we ntice that inputs f functins are numbers, and utputs f functins are numbers. S whatever we can d with

More information

UNIT 1 COPLANAR AND NON-COPLANAR FORCES

UNIT 1 COPLANAR AND NON-COPLANAR FORCES UNIT 1 COPLANA AND NON-COPLANA FOCES Cplanar and Nn-Cplanar Frces Structure 1.1 Intrductin Objectives 1. System f Frces 1.3 Cplanar Frce 1.3.1 Law f Parallelgram f Frces 1.3. Law f Plygn f Frces 1.3.3

More information

1 Course Notes in Introductory Physics Jeffrey Seguritan

1 Course Notes in Introductory Physics Jeffrey Seguritan Intrductin & Kinematics I Intrductin Quickie Cncepts Units SI is standard system f units used t measure physical quantities. Base units that we use: meter (m) is standard unit f length kilgram (kg) is

More information

( ) + θ θ. ω rotation rate. θ g geographic latitude - - θ geocentric latitude - - Reference Earth Model - WGS84 (Copyright 2002, David T.

( ) + θ θ. ω rotation rate. θ g geographic latitude - - θ geocentric latitude - - Reference Earth Model - WGS84 (Copyright 2002, David T. 1 Reference Earth Mdel - WGS84 (Cpyright, David T. Sandwell) ω spherid c θ θ g a parameter descriptin frmula value/unit GM e (WGS84) 3.9864418 x 1 14 m 3 s M e mass f earth - 5.98 x 1 4 kg G gravitatinal

More information

Sodium D-line doublet. Lectures 5-6: Magnetic dipole moments. Orbital magnetic dipole moments. Orbital magnetic dipole moments

Sodium D-line doublet. Lectures 5-6: Magnetic dipole moments. Orbital magnetic dipole moments. Orbital magnetic dipole moments Lectures 5-6: Magnetic diple mments Sdium D-line dublet Orbital diple mments. Orbital precessin. Grtrian diagram fr dublet states f neutral sdium shwing permitted transitins, including Na D-line transitin

More information

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018 Michael Faraday lived in the Lndn area frm 1791 t 1867. He was 29 years ld when Hand Oersted, in 1820, accidentally discvered that electric current creates magnetic field. Thrugh empirical bservatin and

More information

Chapter VII Electrodynamics

Chapter VII Electrodynamics Chapter VII Electrdynamics Recmmended prblems: 7.1, 7., 7.4, 7.5, 7.7, 7.8, 7.10, 7.11, 7.1, 7.13, 7.15, 7.17, 7.18, 7.0, 7.1, 7., 7.5, 7.6, 7.7, 7.9, 7.31, 7.38, 7.40, 7.45, 7.50.. Ohm s Law T make a

More information

Kinetics of Particles. Chapter 3

Kinetics of Particles. Chapter 3 Kinetics f Particles Chapter 3 1 Kinetics f Particles It is the study f the relatins existing between the frces acting n bdy, the mass f the bdy, and the mtin f the bdy. It is the study f the relatin between

More information

Determining the Accuracy of Modal Parameter Estimation Methods

Determining the Accuracy of Modal Parameter Estimation Methods Determining the Accuracy f Mdal Parameter Estimatin Methds by Michael Lee Ph.D., P.E. & Mar Richardsn Ph.D. Structural Measurement Systems Milpitas, CA Abstract The mst cmmn type f mdal testing system

More information

Synchronous Motor V-Curves

Synchronous Motor V-Curves Synchrnus Mtr V-Curves 1 Synchrnus Mtr V-Curves Intrductin Synchrnus mtrs are used in applicatins such as textile mills where cnstant speed peratin is critical. Mst small synchrnus mtrs cntain squirrel

More information

Cambridge Assessment International Education Cambridge Ordinary Level. Published

Cambridge Assessment International Education Cambridge Ordinary Level. Published Cambridge Assessment Internatinal Educatin Cambridge Ordinary Level ADDITIONAL MATHEMATICS 4037/1 Paper 1 Octber/Nvember 017 MARK SCHEME Maximum Mark: 80 Published This mark scheme is published as an aid

More information

BASD HIGH SCHOOL FORMAL LAB REPORT

BASD HIGH SCHOOL FORMAL LAB REPORT BASD HIGH SCHOOL FORMAL LAB REPORT *WARNING: After an explanatin f what t include in each sectin, there is an example f hw the sectin might lk using a sample experiment Keep in mind, the sample lab used

More information

o o IMPORTANT REMINDERS Reports will be graded largely on their ability to clearly communicate results and important conclusions.

o o IMPORTANT REMINDERS Reports will be graded largely on their ability to clearly communicate results and important conclusions. BASD High Schl Frmal Lab Reprt GENERAL INFORMATION 12 pt Times New Rman fnt Duble-spaced, if required by yur teacher 1 inch margins n all sides (tp, bttm, left, and right) Always write in third persn (avid

More information