The 1905 Einstein equation in a general mathematical analysis model of Quasars

Size: px
Start display at page:

Download "The 1905 Einstein equation in a general mathematical analysis model of Quasars"

Transcription

1 DePaul University From the SelectedWorks of Byron E. Bell Spring May 3, 2010 The 1905 Einstein equation in a general mathematical analysis model of Quasars Byron E. Bell Available at:

2 Byron E. Bell DePaul University and Columbia College (CC) Chicago The 1905 Einstein equation in a general mathematical analysis model of Quasars bbell16@depaul.edu, bbell@colum.edu Abstract The 1905 wave equation of Albert Einstein is a model that can be used in many areas, such as physics, applied mathematics, statistics, quantum chaos and financial mathematics, etc. I will give a proof from the equation of A. Einstein s paper Zur Elektrodynamik bewegter Körper it will be done by removing the variable time (t) and the constant (c) the speed of light from the above equation and look at the factors that affect the model in a real analysis framework. Testing the model with SDSS-DR5 Quasar Catalog (Schneider +, 2007). Keywords: direction cosine, apparent magnitudes of optical light; ultraviolet (m u ), green (m g ), red (m r ), more red (m i ), and even more red (m z ), redshift (z), Regression equation. Introduction The work of Albert Einstein from the 1905 on the Maxwell-Hertz equations can be used in at least two dependent variables redshift (z) and Right Ascension (R.A.), coefficient of the variables m ugriz of the five independent variables cosine directions ( T ugriz ). Using the facts from Einstein 1905 the paper Zur Elektrodynamik bewegter Körper and the section Theorie der Dopper's Prinzip und Aberration. Taking the original equations from the above work will show a strong relationship between the independent variables of direction cosine of the T u,t g, T r, T i, T z and the dependent variables z and R.A.. A proof will be given of the equations without the variable time (t) and the constant (c) the speed of light. And data will show a high correlation between the independent variable(s) and the dependent variable(s) of the model(s). And there is also a strong relationship between the apparent magnitudes of optical light; ultraviolet (m u ), green (m g ), red (m r ), more red (m i ), and even more red (m z ). The software packetage that was used in this study is SPSS 11.5, with the data of SDSS-DR5 Quasar Catalog (Schneider +, 2007).

3 Proposition A proof from the equation of Albert Einstein s paper Zur Elektrodynamik bewegter Körper will be done by removing the variable time (t) and the constant c the speed of light from the equation below on the left hand side (LHS) to become what is on the right hand side (RHS): =f(t u,t g, T r, T i, T z )=t ) = f(t u,t g, T r, T i, T z ) Where the apparent magnitudes of optical light, m ugriz : [ultraviolet (u), green (g), red (r), more red (i), even more red (z)], ugriz of quasars then T u, T g, T r, T i, T z is direction cosine of the apparent magnitudes (m ugriz ). Proof: Given =f (T u,t g, T r, T i, T z ): =f(t u,t g, T r, T i, T z ) =t ) (1) Then set (RHS) of (1) the variable t to zero (t =0) and then the equation becomes the following: = ) (2) Then set (LHS) of (2) to zero then it becomes the following: 0= ) (3) Then multiply both sides of (3) by c and the above equation becomes following f(t u,t g, T r, T i, T z ) = (4) Then finally equation (4) becomes equation (5) =f(t u,t g, T r, T i, T z ) = (5) QED

4 Analysis of Redshift (z) In understanding the relationship between redshift (z) and apparent magnitudes (m ugriz ) in the work of (Schneider +, 2007) is a must to examine when studying Quasars. The using of linear regression and the study of black holes by (Ferrarese, Merritt 2000) is a groundbreaking work in astrostatistics and astro-physics. The linear regression of redshift (z) and cosine directions ( T ugriz ) as input variables is used in this current work. Regression Variables Entered/Removed b,c Model Variables Entered Variables Method 1 T u,t g, T z Enter a. Tolerance= Limits reached. b. Dependent Variables: z c. Linear Regression through the Origin Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate a. For regression through the origin (the no-intercept model), R Square measures the proportion of the variability in the dependent variable about the origin explained by regression. This CANNOT be compared R Square for models which include an intercept. b. Predictors: T u,t g, T z Model 1 Regression Residual Total ANOVA c,d Sum of Squares df Mean Square F Sig a b a. Predictors: T u,t g, T z b.this total sum of squares is not correct for the constant because the constant is zero for regression through the origin. c. Dependent Variable: z d. Linear Regression through the Origin - 3 -

5 Coefficients a, b Model t Sig. 1 T u T g T z a. Dependent Variable: z b. Linear Regression through the Origin In the Model Summary Table is R=.930, R-Square=.864, Adjusted R Square =.864 The equation of Coefficients Table is =f(t u,t g, T z ) = + (s u ) (s g ) (s z ) Hypothesis F-test H 0: ρ=0 H 1 :ρ 0 F= , Sig. of T z, T u, T g = Alpha >Sig. Reject H 0 Alpha < Sig. Accept H 0.05> Reject H 0 The decision is to reject H 0 at the Alpha=.05 level. Therefore it is a statistically significant relationship between the dependent variable redshift (z) and the independent variables of the cosine directions (T u,t g, T z )

6 Analysis of Right Ascension (R.A.) Right Ascension (R.A.) is the longitude of an object in space and the relationship to cosine directions is very important in understanding Quasars in apparent magnitudes terms. The above model used multiple linear regression also called ordinary leastsquares (OLS) of z on T z, T u,t g. Then in this statistical analysis, ordinary least-squares (OLS) of R.A. also as above the cosine directions (T z, T u,t g ) are good predictors of the Right Ascension (R.A.). Method of using this process and more is in (Isobe, Feigelson, Akritas, Babu 1990) and (Feigelson, Babu 1992). Regression Variables Entered/Removed b,c Model Variables Entered Variables Method 2 T u, T g, T z Enter a. Tolerance= Limits reached. b. Dependent Variables: R.A. c. Linear Regression through the Origin Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate a. For regression through the origin (the no-intercept model), R Square measures the proportion of the variability in the dependent variable about the origin explained by regression. This CANNOT be compared R Square for models which include an intercept. b. Predictors: T u, T g, T z Model 2 Regression Residual Total ANOVA c,d Sum of Squares df Mean Square F Sig. 2.38E a 4.46E E a. Predictors: T u, T g, T z b.this total sum of squares is not correct for the constant because the constant is zero for regression through the origin. c. Dependent Variable: R.A. d. Linear Regression through the Origin - 5 -

7 Coefficients a, b Model t Sig. 2 T u T g T z a. Dependent Variable: R.A. b. Linear Regression through the Origin In the Model Summary Table is.040 R=.918, R-Square=.842, Adjusted R Square =.842 The equation of Coefficients Table is =f(t u,t g, T z ) = + (s u ) (s g ) (s z ) Hypothesis F-test H 0: ρ=0 H 1 :ρ 0 F= , Sig. of T z, T u, T g = Alpha >Sig. Reject H 0 Alpha < Sig. Accept H 0.05> Reject H 0 The decision is to reject H 0 at the Alpha=.05 level. Therefore it is a statistically significant relationship between the dependent variable Right Ascension (R.A.). and the independent variables of the cosine directions (T u,t g, T z )

8 Analysis of Even more red light (m z ) The work of (Bell 2008) the author studied variability of errors in apparent magnitudes of the SDSS data set in a Autoregressive Conditional Heteroskedasticity (ARCH) method from econometrics. Regression Variables Entered/Removed b,c Model Variables Entered Variables Method 3 T u, T g, T i Enter a. Tolerance= Limits reached. b. Dependent Variables: m z c. Linear Regression through the Origin Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate a. For regression through the origin (the no-intercept model), R Square measures the proportion of the variability in the dependent variable about the origin explained by regression. This CANNOT be compared R Square for models which include an intercept. b. Predictors: T u, T g, T i Model 3 Regression Residual Total ANOVA c,d Sum of Squares df Mean Square F Sig E+07 a b a. Predictors: T u, T g, T i b.this total sum of squares is not correct for the constant because the constant is zero for regression through the origin. c. Dependent Variable: m z d. Linear Regression through the Origin - 7 -

9 Coefficients a, b Model t Sig. 3 T u T g T i a. Dependent Variables: m z b. Linear Regression through the Origin In the Model Summary Table is R=.999, R-Square=.998, Adjusted R Square =.998 The equation of Coefficients Table is m z = m u T u + m g T g + m i T i (s u ) (s g ) (s i ) Hypothesis F-test H 0: ρ=0 H 1 :ρ 0 F=1.6E+07, Sig. of T u, T g, T i = Alpha >Sig. Reject H 0 Alpha < Sig. Accept H 0.05> Reject H 0 The decision is to reject H 0 at the Alpha=.05 level. Therefore it is a statistically significant relationship between the dependent variable Even more red light (m z ) and the independent variables of the cosine directions (T u, T g, T i )

10 Summary There is a statistically significant relationship between the dependent variables of Redshift (z), Right Ascension (R.A.) and Even more red light (m z ) from the independent variables of direction cosine (T ugriz ). More studies are needed in this area of astrostatistics like bayesian statistics. References Bell, B. 2008, From Asteroids to Cosmology. International Symposium. Einstein, A. 1905, Annalen der Physik. 17:891. Feigelson, E., Babu, J ApJ. 397, 55. Ferrarese, L., Merritt, D. 2000, arxiv: astro-ph/ v1. Isobe, T., Feigelson, E., Akritas, M., Babu, J. 1990, ApJ. 364, 104. Schneider, D , A J 134,

Cosine directions using Rao-Blackwell Theorem and Hausdorff metric in Quasars. Byron E. Bell DePaul University Chicago, IL

Cosine directions using Rao-Blackwell Theorem and Hausdorff metric in Quasars. Byron E. Bell DePaul University Chicago, IL Cosine directions using Rao-Blackwell Theorem and Hausdorff metric in Quasars Byron E. Bell DePaul University Chicago, IL bbell2851@gmail.com Abstracts This analysis will determine the equations of the

More information

Regression ( Kemampuan Individu, Lingkungan kerja dan Motivasi)

Regression ( Kemampuan Individu, Lingkungan kerja dan Motivasi) Regression (, Lingkungan kerja dan ) Descriptive Statistics Mean Std. Deviation N 3.87.333 32 3.47.672 32 3.78.585 32 s Pearson Sig. (-tailed) N Kemampuan Lingkungan Individu Kerja.000.432.49.432.000.3.49.3.000..000.000.000..000.000.000.

More information

Area1 Scaled Score (NAPLEX) .535 ** **.000 N. Sig. (2-tailed)

Area1 Scaled Score (NAPLEX) .535 ** **.000 N. Sig. (2-tailed) Institutional Assessment Report Texas Southern University College of Pharmacy and Health Sciences "An Analysis of 2013 NAPLEX, P4-Comp. Exams and P3 courses The following analysis illustrates relationships

More information

Multiple Regression. More Hypothesis Testing. More Hypothesis Testing The big question: What we really want to know: What we actually know: We know:

Multiple Regression. More Hypothesis Testing. More Hypothesis Testing The big question: What we really want to know: What we actually know: We know: Multiple Regression Ψ320 Ainsworth More Hypothesis Testing What we really want to know: Is the relationship in the population we have selected between X & Y strong enough that we can use the relationship

More information

The inductive effect in nitridosilicates and oxysilicates and its effects on 5d energy levels of Ce 3+

The inductive effect in nitridosilicates and oxysilicates and its effects on 5d energy levels of Ce 3+ The inductive effect in nitridosilicates and oxysilicates and its effects on 5d energy levels of Ce 3+ Yuwei Kong, Zhen Song, Shuxin Wang, Zhiguo Xia and Quanlin Liu* The Beijing Municipal Key Laboratory

More information

Treatment and analysis of data Applied statistics Lecture 5: More on Maximum Likelihood

Treatment and analysis of data Applied statistics Lecture 5: More on Maximum Likelihood Treatment and analysis of data Applied statistics Lecture 5: More on Maximum Likelihood Topics covered: The multivariate Gaussian Ordinary Least Squares (OLS) Generalized Least Squares (GLS) Linear and

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression 1 Correlation indicates the magnitude and direction of the linear relationship between two variables. Linear Regression: variable Y (criterion) is predicted by variable X (predictor)

More information

Multiple OLS Regression

Multiple OLS Regression Multiple OLS Regression Ronet Bachman, Ph.D. Presented by Justice Research and Statistics Association 12/8/2016 Justice Research and Statistics Association 720 7 th Street, NW, Third Floor Washington,

More information

Regression: Main Ideas Setting: Quantitative outcome with a quantitative explanatory variable. Example, cont.

Regression: Main Ideas Setting: Quantitative outcome with a quantitative explanatory variable. Example, cont. TCELL 9/4/205 36-309/749 Experimental Design for Behavioral and Social Sciences Simple Regression Example Male black wheatear birds carry stones to the nest as a form of sexual display. Soler et al. wanted

More information

SPSS Output. ANOVA a b Residual Coefficients a Standardized Coefficients

SPSS Output. ANOVA a b Residual Coefficients a Standardized Coefficients SPSS Output Homework 1-1e ANOVA a Sum of Squares df Mean Square F Sig. 1 Regression 351.056 1 351.056 11.295.002 b Residual 932.412 30 31.080 Total 1283.469 31 a. Dependent Variable: Sexual Harassment

More information

A discussion on multiple regression models

A discussion on multiple regression models A discussion on multiple regression models In our previous discussion of simple linear regression, we focused on a model in which one independent or explanatory variable X was used to predict the value

More information

36-309/749 Experimental Design for Behavioral and Social Sciences. Sep. 22, 2015 Lecture 4: Linear Regression

36-309/749 Experimental Design for Behavioral and Social Sciences. Sep. 22, 2015 Lecture 4: Linear Regression 36-309/749 Experimental Design for Behavioral and Social Sciences Sep. 22, 2015 Lecture 4: Linear Regression TCELL Simple Regression Example Male black wheatear birds carry stones to the nest as a form

More information

The integrating factor method (Sect. 1.1)

The integrating factor method (Sect. 1.1) The integrating factor method (Sect. 1.1) Overview of differential equations. Linear Ordinary Differential Equations. The integrating factor method. Constant coefficients. The Initial Value Problem. Overview

More information

Regression. Notes. Page 1. Output Created Comments 25-JAN :29:55

Regression. Notes. Page 1. Output Created Comments 25-JAN :29:55 REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS CI(95) BCOV R ANOVA /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT favorability /METHOD=ENTER Zcontemp ZAnxious6 zallcontact. Regression Notes Output

More information

Item-Total Statistics. Corrected Item- Cronbach's Item Deleted. Total

Item-Total Statistics. Corrected Item- Cronbach's Item Deleted. Total 45 Lampiran 3 : Uji Validitas dan Reliabilitas Reliability Case Processing Summary N % Valid 75 00.0 Cases Excluded a 0.0 Total 75 00.0 a. Listwise deletion based on all variables in the procedure. Reliability

More information

Reliability of inference (1 of 2 lectures)

Reliability of inference (1 of 2 lectures) Reliability of inference (1 of 2 lectures) Ragnar Nymoen University of Oslo 5 March 2013 1 / 19 This lecture (#13 and 14): I The optimality of the OLS estimators and tests depend on the assumptions of

More information

Multiple linear regression S6

Multiple linear regression S6 Basic medical statistics for clinical and experimental research Multiple linear regression S6 Katarzyna Jóźwiak k.jozwiak@nki.nl November 15, 2017 1/42 Introduction Two main motivations for doing multiple

More information

MANOVA is an extension of the univariate ANOVA as it involves more than one Dependent Variable (DV). The following are assumptions for using MANOVA:

MANOVA is an extension of the univariate ANOVA as it involves more than one Dependent Variable (DV). The following are assumptions for using MANOVA: MULTIVARIATE ANALYSIS OF VARIANCE MANOVA is an extension of the univariate ANOVA as it involves more than one Dependent Variable (DV). The following are assumptions for using MANOVA: 1. Cell sizes : o

More information

Inference for Regression Inference about the Regression Model and Using the Regression Line, with Details. Section 10.1, 2, 3

Inference for Regression Inference about the Regression Model and Using the Regression Line, with Details. Section 10.1, 2, 3 Inference for Regression Inference about the Regression Model and Using the Regression Line, with Details Section 10.1, 2, 3 Basic components of regression setup Target of inference: linear dependency

More information

Inferences for Regression

Inferences for Regression Inferences for Regression An Example: Body Fat and Waist Size Looking at the relationship between % body fat and waist size (in inches). Here is a scatterplot of our data set: Remembering Regression In

More information

Ordinary Least Squares Regression Explained: Vartanian

Ordinary Least Squares Regression Explained: Vartanian Ordinary Least Squares Regression Eplained: Vartanian When to Use Ordinary Least Squares Regression Analysis A. Variable types. When you have an interval/ratio scale dependent variable.. When your independent

More information

Linear regression issues in astronomy. G. Jogesh Babu Center for Astrostatistics

Linear regression issues in astronomy. G. Jogesh Babu Center for Astrostatistics Linear regression issues in astronomy G. Jogesh Babu Center for Astrostatistics Structural regression Seeking the intrinsic relationship between two properties OLS(X Y) (inverse regr) Four symmetrical

More information

Advanced Quantitative Data Analysis

Advanced Quantitative Data Analysis Chapter 24 Advanced Quantitative Data Analysis Daniel Muijs Doing Regression Analysis in SPSS When we want to do regression analysis in SPSS, we have to go through the following steps: 1 As usual, we choose

More information

ECON 497 Midterm Spring

ECON 497 Midterm Spring ECON 497 Midterm Spring 2009 1 ECON 497: Economic Research and Forecasting Name: Spring 2009 Bellas Midterm You have three hours and twenty minutes to complete this exam. Answer all questions and explain

More information

Special Relativity Refutation through the Relativistic Doppler Effect Formula

Special Relativity Refutation through the Relativistic Doppler Effect Formula Special Relativity Refutation through the Relativistic Doppler Effect Formula Radwan M. Kassir Jan. 205 radwan.elkassir@dargroup.com Abstract The relativistic Doppler shift formula is shown to be based

More information

*************NO YOGA!!!!!!!************************************.

*************NO YOGA!!!!!!!************************************. *************NO YOGA!!!!!!!************************************. temporary. select if human gt 1 and Q_TotalDuration gt 239 and subjectnum ne 672 and subj ectnum ne 115 and subjectnum ne 104 and subjectnum

More information

Difference in two or more average scores in different groups

Difference in two or more average scores in different groups ANOVAs Analysis of Variance (ANOVA) Difference in two or more average scores in different groups Each participant tested once Same outcome tested in each group Simplest is one-way ANOVA (one variable as

More information

Econometrics. 4) Statistical inference

Econometrics. 4) Statistical inference 30C00200 Econometrics 4) Statistical inference Timo Kuosmanen Professor, Ph.D. http://nomepre.net/index.php/timokuosmanen Today s topics Confidence intervals of parameter estimates Student s t-distribution

More information

" M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2

 M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2 Notation and Equations for Final Exam Symbol Definition X The variable we measure in a scientific study n The size of the sample N The size of the population M The mean of the sample µ The mean of the

More information

MATH 644: Regression Analysis Methods

MATH 644: Regression Analysis Methods MATH 644: Regression Analysis Methods FINAL EXAM Fall, 2012 INSTRUCTIONS TO STUDENTS: 1. This test contains SIX questions. It comprises ELEVEN printed pages. 2. Answer ALL questions for a total of 100

More information

LECTURE 11. Introduction to Econometrics. Autocorrelation

LECTURE 11. Introduction to Econometrics. Autocorrelation LECTURE 11 Introduction to Econometrics Autocorrelation November 29, 2016 1 / 24 ON PREVIOUS LECTURES We discussed the specification of a regression equation Specification consists of choosing: 1. correct

More information

Chapte The McGraw-Hill Companies, Inc. All rights reserved.

Chapte The McGraw-Hill Companies, Inc. All rights reserved. 12er12 Chapte Bivariate i Regression (Part 1) Bivariate Regression Visual Displays Begin the analysis of bivariate data (i.e., two variables) with a scatter plot. A scatter plot - displays each observed

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

: The model hypothesizes a relationship between the variables. The simplest probabilistic model: or.

: The model hypothesizes a relationship between the variables. The simplest probabilistic model: or. Chapter Simple Linear Regression : comparing means across groups : presenting relationships among numeric variables. Probabilistic Model : The model hypothesizes an relationship between the variables.

More information

DEMAND ESTIMATION (PART III)

DEMAND ESTIMATION (PART III) BEC 30325: MANAGERIAL ECONOMICS Session 04 DEMAND ESTIMATION (PART III) Dr. Sumudu Perera Session Outline 2 Multiple Regression Model Test the Goodness of Fit Coefficient of Determination F Statistic t

More information

ECON 4230 Intermediate Econometric Theory Exam

ECON 4230 Intermediate Econometric Theory Exam ECON 4230 Intermediate Econometric Theory Exam Multiple Choice (20 pts). Circle the best answer. 1. The Classical assumption of mean zero errors is satisfied if the regression model a) is linear in the

More information

1 Correlation and Inference from Regression

1 Correlation and Inference from Regression 1 Correlation and Inference from Regression Reading: Kennedy (1998) A Guide to Econometrics, Chapters 4 and 6 Maddala, G.S. (1992) Introduction to Econometrics p. 170-177 Moore and McCabe, chapter 12 is

More information

Multivariate Correlational Analysis: An Introduction

Multivariate Correlational Analysis: An Introduction Assignment. Multivariate Correlational Analysis: An Introduction Mertler & Vanetta, Chapter 7 Kachigan, Chapter 4, pps 180-193 Terms you should know. Multiple Regression Linear Equations Least Squares

More information

Topic 1. Definitions

Topic 1. Definitions S Topic. Definitions. Scalar A scalar is a number. 2. Vector A vector is a column of numbers. 3. Linear combination A scalar times a vector plus a scalar times a vector, plus a scalar times a vector...

More information

ECONOMETRIC ANALYSIS OF THE COMPANY ON STOCK EXCHANGE

ECONOMETRIC ANALYSIS OF THE COMPANY ON STOCK EXCHANGE ECONOMETRIC ANALYSIS OF THE COMPANY ON STOCK EXCHANGE Macovei Anamaria Geanina Ştefan cel Mare of University Suceava,Faculty of Economics and Public Administration street Universității, no. 3, city Suceava,

More information

2 Regression Analysis

2 Regression Analysis FORK 1002 Preparatory Course in Statistics: 2 Regression Analysis Genaro Sucarrat (BI) http://www.sucarrat.net/ Contents: 1 Bivariate Correlation Analysis 2 Simple Regression 3 Estimation and Fit 4 T -Test:

More information

SPSS LAB FILE 1

SPSS LAB FILE  1 SPSS LAB FILE www.mcdtu.wordpress.com 1 www.mcdtu.wordpress.com 2 www.mcdtu.wordpress.com 3 OBJECTIVE 1: Transporation of Data Set to SPSS Editor INPUTS: Files: group1.xlsx, group1.txt PROCEDURE FOLLOWED:

More information

Review of Multiple Regression

Review of Multiple Regression Ronald H. Heck 1 Let s begin with a little review of multiple regression this week. Linear models [e.g., correlation, t-tests, analysis of variance (ANOVA), multiple regression, path analysis, multivariate

More information

Chapter 9 - Correlation and Regression

Chapter 9 - Correlation and Regression Chapter 9 - Correlation and Regression 9. Scatter diagram of percentage of LBW infants (Y) and high-risk fertility rate (X ) in Vermont Health Planning Districts. 9.3 Correlation between percentage of

More information

Correlation and simple linear regression S5

Correlation and simple linear regression S5 Basic medical statistics for clinical and eperimental research Correlation and simple linear regression S5 Katarzyna Jóźwiak k.jozwiak@nki.nl November 15, 2017 1/41 Introduction Eample: Brain size and

More information

ESP 178 Applied Research Methods. 2/23: Quantitative Analysis

ESP 178 Applied Research Methods. 2/23: Quantitative Analysis ESP 178 Applied Research Methods 2/23: Quantitative Analysis Data Preparation Data coding create codebook that defines each variable, its response scale, how it was coded Data entry for mail surveys and

More information

x3,..., Multiple Regression β q α, β 1, β 2, β 3,..., β q in the model can all be estimated by least square estimators

x3,..., Multiple Regression β q α, β 1, β 2, β 3,..., β q in the model can all be estimated by least square estimators Multiple Regression Relating a response (dependent, input) y to a set of explanatory (independent, output, predictor) variables x, x 2, x 3,, x q. A technique for modeling the relationship between variables.

More information

Doppler shift and aberration for spherical electromagnetic waves

Doppler shift and aberration for spherical electromagnetic waves Doppler shift and aberration for spherical electromagnetic waves Teimuraz Bregadze tebr50@yahoo.com Spherical wave vs. plane wave approximation to the nature of the electromagnetic waves in regard to the

More information

Comparing Nested Models

Comparing Nested Models Comparing Nested Models ST 370 Two regression models are called nested if one contains all the predictors of the other, and some additional predictors. For example, the first-order model in two independent

More information

FinQuiz Notes

FinQuiz Notes Reading 9 A time series is any series of data that varies over time e.g. the quarterly sales for a company during the past five years or daily returns of a security. When assumptions of the regression

More information

One-Way ANOVA. Some examples of when ANOVA would be appropriate include:

One-Way ANOVA. Some examples of when ANOVA would be appropriate include: One-Way ANOVA 1. Purpose Analysis of variance (ANOVA) is used when one wishes to determine whether two or more groups (e.g., classes A, B, and C) differ on some outcome of interest (e.g., an achievement

More information

Recall that a measure of fit is the sum of squared residuals: where. The F-test statistic may be written as:

Recall that a measure of fit is the sum of squared residuals: where. The F-test statistic may be written as: 1 Joint hypotheses The null and alternative hypotheses can usually be interpreted as a restricted model ( ) and an model ( ). In our example: Note that if the model fits significantly better than the restricted

More information

Review of the General Linear Model

Review of the General Linear Model Review of the General Linear Model EPSY 905: Multivariate Analysis Online Lecture #2 Learning Objectives Types of distributions: Ø Conditional distributions The General Linear Model Ø Regression Ø Analysis

More information

Simple Linear Regression: One Quantitative IV

Simple Linear Regression: One Quantitative IV Simple Linear Regression: One Quantitative IV Linear regression is frequently used to explain variation observed in a dependent variable (DV) with theoretically linked independent variables (IV). For example,

More information

Binary Logistic Regression

Binary Logistic Regression The coefficients of the multiple regression model are estimated using sample data with k independent variables Estimated (or predicted) value of Y Estimated intercept Estimated slope coefficients Ŷ = b

More information

Correlations. Notes. Output Created Comments 04-OCT :34:52

Correlations. Notes. Output Created Comments 04-OCT :34:52 Correlations Output Created Comments Input Missing Value Handling Syntax Resources Notes Data Active Dataset Filter Weight Split File N of Rows in Working Data File Definition of Missing Cases Used Processor

More information

(ii) Scan your answer sheets INTO ONE FILE only, and submit it in the drop-box.

(ii) Scan your answer sheets INTO ONE FILE only, and submit it in the drop-box. FINAL EXAM ** Two different ways to submit your answer sheet (i) Use MS-Word and place it in a drop-box. (ii) Scan your answer sheets INTO ONE FILE only, and submit it in the drop-box. Deadline: December

More information

EDF 7405 Advanced Quantitative Methods in Educational Research. Data are available on IQ of the child and seven potential predictors.

EDF 7405 Advanced Quantitative Methods in Educational Research. Data are available on IQ of the child and seven potential predictors. EDF 7405 Advanced Quantitative Methods in Educational Research Data are available on IQ of the child and seven potential predictors. Four are medical variables available at the birth of the child: Birthweight

More information

F9 F10: Autocorrelation

F9 F10: Autocorrelation F9 F10: Autocorrelation Feng Li Department of Statistics, Stockholm University Introduction In the classic regression model we assume cov(u i, u j x i, x k ) = E(u i, u j ) = 0 What if we break the assumption?

More information

ST430 Exam 2 Solutions

ST430 Exam 2 Solutions ST430 Exam 2 Solutions Date: November 9, 2015 Name: Guideline: You may use one-page (front and back of a standard A4 paper) of notes. No laptop or textbook are permitted but you may use a calculator. Giving

More information

Multiple Regression. Peerapat Wongchaiwat, Ph.D.

Multiple Regression. Peerapat Wongchaiwat, Ph.D. Peerapat Wongchaiwat, Ph.D. wongchaiwat@hotmail.com The Multiple Regression Model Examine the linear relationship between 1 dependent (Y) & 2 or more independent variables (X i ) Multiple Regression Model

More information

REVIEW 8/2/2017 陈芳华东师大英语系

REVIEW 8/2/2017 陈芳华东师大英语系 REVIEW Hypothesis testing starts with a null hypothesis and a null distribution. We compare what we have to the null distribution, if the result is too extreme to belong to the null distribution (p

More information

Correlation. A statistics method to measure the relationship between two variables. Three characteristics

Correlation. A statistics method to measure the relationship between two variables. Three characteristics Correlation Correlation A statistics method to measure the relationship between two variables Three characteristics Direction of the relationship Form of the relationship Strength/Consistency Direction

More information

Lecture 5: Unit Roots, Cointegration and Error Correction Models The Spurious Regression Problem

Lecture 5: Unit Roots, Cointegration and Error Correction Models The Spurious Regression Problem Lecture 5: Unit Roots, Cointegration and Error Correction Models The Spurious Regression Problem Prof. Massimo Guidolin 20192 Financial Econometrics Winter/Spring 2018 Overview Defining cointegration Vector

More information

Reading Assignment. Serial Correlation and Heteroskedasticity. Chapters 12 and 11. Kennedy: Chapter 8. AREC-ECON 535 Lec F1 1

Reading Assignment. Serial Correlation and Heteroskedasticity. Chapters 12 and 11. Kennedy: Chapter 8. AREC-ECON 535 Lec F1 1 Reading Assignment Serial Correlation and Heteroskedasticity Chapters 1 and 11. Kennedy: Chapter 8. AREC-ECON 535 Lec F1 1 Serial Correlation or Autocorrelation y t = β 0 + β 1 x 1t + β x t +... + β k

More information

Multicollinearity Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised January 13, 2015

Multicollinearity Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised January 13, 2015 Multicollinearity Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised January 13, 2015 Stata Example (See appendices for full example).. use http://www.nd.edu/~rwilliam/stats2/statafiles/multicoll.dta,

More information

9. Linear Regression and Correlation

9. Linear Regression and Correlation 9. Linear Regression and Correlation Data: y a quantitative response variable x a quantitative explanatory variable (Chap. 8: Recall that both variables were categorical) For example, y = annual income,

More information

Correlation Analysis

Correlation Analysis Simple Regression Correlation Analysis Correlation analysis is used to measure strength of the association (linear relationship) between two variables Correlation is only concerned with strength of the

More information

SIMPLE REGRESSION ANALYSIS. Business Statistics

SIMPLE REGRESSION ANALYSIS. Business Statistics SIMPLE REGRESSION ANALYSIS Business Statistics CONTENTS Ordinary least squares (recap for some) Statistical formulation of the regression model Assessing the regression model Testing the regression coefficients

More information

4/22/2010. Test 3 Review ANOVA

4/22/2010. Test 3 Review ANOVA Test 3 Review ANOVA 1 School recruiter wants to examine if there are difference between students at different class ranks in their reported intensity of school spirit. What is the factor? How many levels

More information

Non-independence due to Time Correlation (Chapter 14)

Non-independence due to Time Correlation (Chapter 14) Non-independence due to Time Correlation (Chapter 14) When we model the mean structure with ordinary least squares, the mean structure explains the general trends in the data with respect to our dependent

More information

Simple Linear Regression: One Qualitative IV

Simple Linear Regression: One Qualitative IV Simple Linear Regression: One Qualitative IV 1. Purpose As noted before regression is used both to explain and predict variation in DVs, and adding to the equation categorical variables extends regression

More information

LINEAR REGRESSION ANALYSIS. MODULE XVI Lecture Exercises

LINEAR REGRESSION ANALYSIS. MODULE XVI Lecture Exercises LINEAR REGRESSION ANALYSIS MODULE XVI Lecture - 44 Exercises Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Exercise 1 The following data has been obtained on

More information

Multivariate Time Series

Multivariate Time Series Multivariate Time Series Fall 2008 Environmental Econometrics (GR03) TSII Fall 2008 1 / 16 More on AR(1) In AR(1) model (Y t = µ + ρy t 1 + u t ) with ρ = 1, the series is said to have a unit root or a

More information

Business Statistics. Lecture 10: Correlation and Linear Regression

Business Statistics. Lecture 10: Correlation and Linear Regression Business Statistics Lecture 10: Correlation and Linear Regression Scatterplot A scatterplot shows the relationship between two quantitative variables measured on the same individuals. It displays the Form

More information

Chapter 12 - Part I: Correlation Analysis

Chapter 12 - Part I: Correlation Analysis ST coursework due Friday, April - Chapter - Part I: Correlation Analysis Textbook Assignment Page - # Page - #, Page - # Lab Assignment # (available on ST webpage) GOALS When you have completed this lecture,

More information

05 Regression with time lags: Autoregressive Distributed Lag Models. Andrius Buteikis,

05 Regression with time lags: Autoregressive Distributed Lag Models. Andrius Buteikis, 05 Regression with time lags: Autoregressive Distributed Lag Models Andrius Buteikis, andrius.buteikis@mif.vu.lt http://web.vu.lt/mif/a.buteikis/ Introduction The goal of a researcher working with time

More information

EDF 7405 Advanced Quantitative Methods in Educational Research MULTR.SAS

EDF 7405 Advanced Quantitative Methods in Educational Research MULTR.SAS EDF 7405 Advanced Quantitative Methods in Educational Research MULTR.SAS The data used in this example describe teacher and student behavior in 8 classrooms. The variables are: Y percentage of interventions

More information

Inference with Heteroskedasticity

Inference with Heteroskedasticity Inference with Heteroskedasticity Note on required packages: The following code requires the packages sandwich and lmtest to estimate regression error variance that may change with the explanatory variables.

More information

Derivation of the Lorentz transformation from a minimal set of assumptions

Derivation of the Lorentz transformation from a minimal set of assumptions Derivation of the Lorentz transformation from a minimal set of assumptions Edited by S.LeBohec June 28 th 2014 1 Introduction Originally, the Lorentz transformation was derived from the following assumptions

More information

Lecture 18: Simple Linear Regression

Lecture 18: Simple Linear Regression Lecture 18: Simple Linear Regression BIOS 553 Department of Biostatistics University of Michigan Fall 2004 The Correlation Coefficient: r The correlation coefficient (r) is a number that measures the strength

More information

STA 101 Final Review

STA 101 Final Review STA 101 Final Review Statistics 101 Thomas Leininger June 24, 2013 Announcements All work (besides projects) should be returned to you and should be entered on Sakai. Office Hour: 2 3pm today (Old Chem

More information

Spatial inference. Spatial inference. Accounting for spatial correlation. Multivariate normal distributions

Spatial inference. Spatial inference. Accounting for spatial correlation. Multivariate normal distributions Spatial inference I will start with a simple model, using species diversity data Strong spatial dependence, Î = 0.79 what is the mean diversity? How precise is our estimate? Sampling discussion: The 64

More information

Ch 3: Multiple Linear Regression

Ch 3: Multiple Linear Regression Ch 3: Multiple Linear Regression 1. Multiple Linear Regression Model Multiple regression model has more than one regressor. For example, we have one response variable and two regressor variables: 1. delivery

More information

General Linear Model (Chapter 4)

General Linear Model (Chapter 4) General Linear Model (Chapter 4) Outcome variable is considered continuous Simple linear regression Scatterplots OLS is BLUE under basic assumptions MSE estimates residual variance testing regression coefficients

More information

Measurement Error and Linear Regression of Astronomical Data. Brandon Kelly Penn State Summer School in Astrostatistics, June 2007

Measurement Error and Linear Regression of Astronomical Data. Brandon Kelly Penn State Summer School in Astrostatistics, June 2007 Measurement Error and Linear Regression of Astronomical Data Brandon Kelly Penn State Summer School in Astrostatistics, June 2007 Classical Regression Model Collect n data points, denote i th pair as (η

More information

Parametric Test. Multiple Linear Regression Spatial Application I: State Homicide Rates Equations taken from Zar, 1984.

Parametric Test. Multiple Linear Regression Spatial Application I: State Homicide Rates Equations taken from Zar, 1984. Multiple Linear Regression Spatial Application I: State Homicide Rates Equations taken from Zar, 984. y ˆ = a + b x + b 2 x 2K + b n x n where n is the number of variables Example: In an earlier bivariate

More information

VARIANCE ANALYSIS OF WOOL WOVEN FABRICS TENSILE STRENGTH USING ANCOVA MODEL

VARIANCE ANALYSIS OF WOOL WOVEN FABRICS TENSILE STRENGTH USING ANCOVA MODEL ANNALS OF THE UNIVERSITY OF ORADEA FASCICLE OF TEXTILES, LEATHERWORK VARIANCE ANALYSIS OF WOOL WOVEN FABRICS TENSILE STRENGTH USING ANCOVA MODEL VÎLCU Adrian 1, HRISTIAN Liliana 2, BORDEIANU Demetra Lăcrămioara

More information

Ref.: Spring SOS3003 Applied data analysis for social science Lecture note

Ref.:   Spring SOS3003 Applied data analysis for social science Lecture note SOS3003 Applied data analysis for social science Lecture note 05-2010 Erling Berge Department of sociology and political science NTNU Spring 2010 Erling Berge 2010 1 Literature Regression criticism I Hamilton

More information

STAT 3900/4950 MIDTERM TWO Name: Spring, 2015 (print: first last ) Covered topics: Two-way ANOVA, ANCOVA, SLR, MLR and correlation analysis

STAT 3900/4950 MIDTERM TWO Name: Spring, 2015 (print: first last ) Covered topics: Two-way ANOVA, ANCOVA, SLR, MLR and correlation analysis STAT 3900/4950 MIDTERM TWO Name: Spring, 205 (print: first last ) Covered topics: Two-way ANOVA, ANCOVA, SLR, MLR and correlation analysis Instructions: You may use your books, notes, and SPSS/SAS. NO

More information

Prepared by: Prof. Dr Bahaman Abu Samah Department of Professional Development and Continuing Education Faculty of Educational Studies Universiti

Prepared by: Prof. Dr Bahaman Abu Samah Department of Professional Development and Continuing Education Faculty of Educational Studies Universiti Prepared by: Prof. Dr Bahaman Abu Samah Department of Professional Development and Continuing Education Faculty of Educational Studies Universiti Putra Malaysia Serdang Use in experiment, quasi-experiment

More information

Univariate analysis. Simple and Multiple Regression. Univariate analysis. Simple Regression How best to summarise the data?

Univariate analysis. Simple and Multiple Regression. Univariate analysis. Simple Regression How best to summarise the data? Univariate analysis Example - linear regression equation: y = ax + c Least squares criteria ( yobs ycalc ) = yobs ( ax + c) = minimum Simple and + = xa xc xy xa + nc = y Solve for a and c Univariate analysis

More information

Lecture 2. The Simple Linear Regression Model: Matrix Approach

Lecture 2. The Simple Linear Regression Model: Matrix Approach Lecture 2 The Simple Linear Regression Model: Matrix Approach Matrix algebra Matrix representation of simple linear regression model 1 Vectors and Matrices Where it is necessary to consider a distribution

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY & Contents PREFACE xiii 1 1.1. 1.2. Difference Equations First-Order Difference Equations 1 /?th-order Difference

More information

A Re-Introduction to General Linear Models (GLM)

A Re-Introduction to General Linear Models (GLM) A Re-Introduction to General Linear Models (GLM) Today s Class: You do know the GLM Estimation (where the numbers in the output come from): From least squares to restricted maximum likelihood (REML) Reviewing

More information

Proof and Disproof of Yang Mills Theory and the Mass Gap With Reference to Heisenberg and Schrodinger.pdf

Proof and Disproof of Yang Mills Theory and the Mass Gap With Reference to Heisenberg and Schrodinger.pdf From the SelectedWorks of James T Struck Spring May 23, 2018 Proof and Disproof of Yang Mills Theory and the Mass Gap With Reference to Heisenberg and Schrodinger.pdf James T Struck Available at: https://works.bepress.com/james_struck/75/

More information

Linear Regression with one Regressor

Linear Regression with one Regressor 1 Linear Regression with one Regressor Covering Chapters 4.1 and 4.2. We ve seen the California test score data before. Now we will try to estimate the marginal effect of STR on SCORE. To motivate these

More information

LI EAR REGRESSIO A D CORRELATIO

LI EAR REGRESSIO A D CORRELATIO CHAPTER 6 LI EAR REGRESSIO A D CORRELATIO Page Contents 6.1 Introduction 10 6. Curve Fitting 10 6.3 Fitting a Simple Linear Regression Line 103 6.4 Linear Correlation Analysis 107 6.5 Spearman s Rank Correlation

More information

Least Squares Estimation-Finite-Sample Properties

Least Squares Estimation-Finite-Sample Properties Least Squares Estimation-Finite-Sample Properties Ping Yu School of Economics and Finance The University of Hong Kong Ping Yu (HKU) Finite-Sample 1 / 29 Terminology and Assumptions 1 Terminology and Assumptions

More information

Figure 1: The fitted line using the shipment route-number of ampules data. STAT5044: Regression and ANOVA The Solution of Homework #2 Inyoung Kim

Figure 1: The fitted line using the shipment route-number of ampules data. STAT5044: Regression and ANOVA The Solution of Homework #2 Inyoung Kim 0.0 1.0 1.5 2.0 2.5 3.0 8 10 12 14 16 18 20 22 y x Figure 1: The fitted line using the shipment route-number of ampules data STAT5044: Regression and ANOVA The Solution of Homework #2 Inyoung Kim Problem#

More information