arxiv: v1 [math.ho] 27 May 2017

Size: px
Start display at page:

Download "arxiv: v1 [math.ho] 27 May 2017"

Transcription

1 arxiv: v1 [math.ho] 7 May 017 The foci and rotation angle of an ellipse, E 0, as a function of the coefficients of an equation of E 0 Alan Horwitz 5/7/17 Abstract First, we give a formula for the foci of an ellipse, E 0, as a function of the coefficients of an equation of E 0(see Theorem. To prove Theorem, we use two interesting formulas proven in [1] and in [3]. Our second result(see Theorem 3, is a more precise formula for the rotation angle, θ, of E 0, as a function of the coefficients of an equation of E 0. 1 Introduction The purpose of this note is two fold. First, we give a formula for the foci of an ellipse, E 0, as a function of the coefficients of an equation of E 0 (see Theorem ; To prove Theorem, we use two interesting formulas proven in [1] and in [3]. The main result in [1] expresses the foci of an ellipse, E 0, as a function of the coefficients of an equation of E 0, but also requires knowing the length of the major axis of E 0 ; We expand on that formula a little and give the proof here(see Theorem 1. A formula in [3] yields the length of the major axis of E 0 as a function of the coefficients(see Lemma 1. Theorem 1 and Lemma 1 then yield Theorem. There are various ways to define the rotation angle, θ, of a non circular ellipse, E 0 ; elow we define θ to be the counterclockwise angle of rotation to the major axis of E 0 from the line thru the center of E 0 and parallel to the x axis, with 0 θ < π; No matter how one defines θ, it is always true that cot(θ = A C ; ut what about a formula for θ itself? Our second result(see Theorem 3, is a more precise formula for the rotation angle, θ, of E 0, as a function of the coefficients of an equation of E 0. The latter formula was submitted as a correction for the previous formula for the rotation angle given in []. The formula given here now appears in [] in a slightly different form. The proof of Theorem 3 then follows easily from the proof of Theorem 1. While the formulas given in this note are undoubedtly known, and there are other ways of proving them, we found it interesting to use and highlight the results in [1] and in [3]. 1

2 Foci as a Function of the Coefficients Throughout, for a given ellipse, E 0, which is not a circle, we let θ denote the counterclockwise angle of rotation to the major axis of E 0 from the line thru the center of E 0 and parallel to the x axis, with 0 θ < π; We let (x 0,y 0 = center of E 0,a = length of semi majorand b = length of semi minor axes of E 0, respectively. Finally, we let F = (x c,y c denote the rightmost focus of E 0 (if θ = π, we let F denote the uppermost focus. Knowing F easily yields the other focus, F 1 = (x 0 x c,y 0 y c ; We now state an extension, and give a detailed proof, of the result in [1]. (i gives the equation of an ellipse, E 0, given the foci of E 0, while (ii gives the foci of E 0 given the equation of E 0. In each case, one must also know the length of the semi major axis of E 0. Theorem 1 Let E 0 be an ellipse which is not a circle, let F = (x c,y c be the rightmost focus of E 0, and let (x 0,y 0 be the center of E 0. (i Then the equation of E 0 can be written in the form A(x x 0 +(x x 0 (y y 0 + C(y y 0 a b = 0, where A = a (x c x 0, = (x c x 0 (y c y 0, and C = a (y c y 0. (ii If the equation of E 0 is written in the form A(x x 0 +(x x 0 (y y 0 + C(y y 0 a b = 0, where A,C > 0, then x c = x 0 + a A, (1 y c = y 0 (sgn a C if 0. In addition, if 0 θ < π, then < 0, while if π < θ < π, then > 0. Finally, x c = x (1 sgn(a C a A, ( y c = y (1+sgn(A C a C if = 0. Proof. It is clear that we may assume that x 0 = y 0 = 0, so that the equation of E 0 has the form Ax +xy +Cy +G = 0. (3 The implicit assumption in [1] is that 0 θ < π ; We outline the proof in the case when π θ < π as well. If 0 θ < π, then F lies in quadrant 1, while if π θ < π, then F lies in quadrant 4; Letting c = a b, we then have x c = ccosθ,y c = csinθ if 0 θ π x c = ccosθ,y c = csinθ if π < θ < π. (4

3 Recall that if θ = π, then F is the uppermost focus. Proceedingas in [1](we include the details here for completeness, we have: (x xc +(y y c + (x+x c +(y +y c = a, which implies that (x+x c +(y+y c = 4a 4a (x x c +(y y c +(x x c +(y y c, and so a ((x x c +(y y c = a 4 a (xx c +yy c +(xx c +yy c ; Some simplification yields (a x cx x c y c xy+(a y cy +a (c a = 0, and using b = a c gives (a x c x x c y c xy +(a y c y a b = 0. (5 Matching (3 with (5 yields A = a x c, = x cy c,c = a y c, (6 and G = a b, which proves (i. To prove (ii: Note that x c = a A and y c = a C. Case 1: 0 Then x c 0 y c by (6, which implies that 0 θ π by (4; If 0 < θ < π, then x c > 0 and y c > 0 by (4, which implies that < 0,x c = a A, and y c = a C; If π < θ < π, then x c > 0 and y c < 0 by (4, which implies that > 0,x c = a A, and y c = a C; That proves (1. Case : = 0 Then x c = 0 or y c = 0 by (6; If A < C, then by (6 again, a x c < a y c, which implies that y c < x c, and so y c = 0; Thus θ = 0, which implies that x c = c > 0 by (4 and so x c = a A; If A > C, then a x c > a y c, which implies that y c > x c, and so x c = 0; Thus θ = π, which implies thaty c = c > 0 by (4 and so y c = a C; That proves (. For the following two lemmas, we let = 4AC and δ = CD +AE DE F. The following result can be found in [3]. Lemma 1 Suppose that E 0 is an ellipse with equation Ax +xy+cy +Dx+ Ey+F = 0; Let a and b denote the lengths of the semi major and semi minor axes, respectively, of E 0, and let µ = 4δ. Then a = µ A+C + (A C + b = µ A+C (A C +. We state the following useful general lemma about equations of ellipses. The second condition ensures that the conic is non degenerate, while the first condition ensures that the conic is an ellipse. (7 3

4 Lemma The equation Ax +xy+cy +Dx+Ey+F = 0, with A,C > 0, is the equation of an ellipse if and only if > 0 and δ > 0. Using Lemma 1, we are now able to give a formula for the foci of E 0, given an equation of E 0, without knowing the length of the semi major axis of E 0, as with Theorem 1. Theorem Let E 0 be an ellipse which is not a circle, and let r = (A C + ; Let F = (x c,y c be the rightmost focus of E 0 and let (x 0,y 0 be the center of E 0. If the equation of E 0 is written in the form A(x x 0 +(x x 0 (y y 0 + C(y y 0 a b = 0, where A,C > 0, then x c = x 0 + (r +C A/, y c = y 0 (sgn (r +A C/ if 0, x c = x (1 sgn(a C (r +C A/, y c = y (1+sgn(A C (r +A C/ if = 0. Remark 1 To use Theorem, one must first rewrite the equation of E 0 so that it has the form given in Theorem. First one writes the equation of E 0 in the form A(x x 0 + (x x 0 (y y 0 + C(y y 0 + F = 0 using the formula x 0 = E CD, y 0 = D AE ; One can then obtain a b without needing to know a or b since it follows easily by Lemma 1 that a b = δ = 4AC CD +AE DE F(4AC, where Ax +xy+cy +Dx+Ey+F = 0 is any given equation of E 0. Multiplying thru by a b form. F then yields the proper Proof. Asin the proofoftheorem1, wemayassume, without lossofgenerality, that x 0 = y 0 = 0, so that the equation of E 0 has the form Ax +xy +Cy a b = 0. y Lemma, 0, and by Lemma 1, with D = E = 0 and F = a b, we have δ = a b, which implies that µ = 4a b = 4a b ( ; 4δ Also by Lemma 1, a b = µ 4 ((A+C (A C = 4 = 4δ 3 ; Thus δ = a b = 4δ 3, and so δ = 1 4 ; Hence µ = 4δ = 1, which implies, by Lemma 1, that a A+C +r =. Substituting a r +C A A = and a C = r+a C into Theorem 1 yields Theorem. 4

5 3 Rotation Angle elow we give a formula for the rotation angle, θ, of a non circular ellipse, E 0, as a function of the coefficients of an equation of E 0. We also give a simple formula for tanθ. Here we are assuming that 0 cot 1 x < π. Theorem 3 Let E 0 be an ellipse with equation Ax +xy+cy +Dx+Ey+F = 0, with A,C > 0; Let θ denote the counterclockwise angle of rotation tothe major axis of E 0 from the line thru the center of E 0 and parallel to the x axis, with 0 θ < π;let r = (A C +. (1+sgn π (i θ = ( A C cot 1 if 0 (1+sgn(A C π and if = 0 4 (ii tanθ = if 0 or = 0 and A < C. A C r Remark Note that if A = C and = 0, we have a circle and hence no rotation angle. Proof. Again, we assume that x 0 = y 0 = 0, where E 0 has center = (x 0,y 0 ; y (6 and (4, A C = yc x c = c sin θ c cos θ = (a b (sin θ cos θ = (b a cos(θ, and = x c y c = c cosθsinθ = (b a sin(θ for any 0 θ π; We use the well known formula cot(θ = A C, which implies that θ = 1 ( A C cot 1 or θ = π + 1 ( A C cot 1, depending upon whether θ lies in quadrant 1 or quadrant. Note that b a < 0; Case 1: 0 If < 0, then(b a sin(θ < 0,whichimpliesthatsin(θ > 0andso0 < θ < π ; Thus θ = 1 cot 1 ( A C ; If > 0, then (b a sin(θ > 0, which. implies that sin(θ < 0 and so π < θ < π; Thus θ = π + 1 ( A C cot 1 Case : = 0 Then sin(θ = 0, which implies that θ = 0 or θ = π ; If A > C, then A C = (b a cos(θ > 0, which implies that cos(θ < 0 and so θ = π ; If A < C, then A C = (b a cos(θ < 0, which implies that cos(θ > 0 and so θ = 0. That proves (i. While one could use the fact that cot(θ = A C, we find it easier to proceed as follows to prove (ii. Now by (4, tanθ = y c x c Case 1: 0 ThenbyTheorem,x c = (r +C A/andy c = (sgn (r+a C/, which implies that 5

6 tanθ = (sgn (r +A C/ r+a C r +A C = (sgn ; Now (r +C A/ r+c A r +C A simplifies to (r (A C, and r (A C = (A C + (A C > 0 using the inequality x +y x > 0 for any x; Thus tanθ = (sgn (r (A C = (sgn r (A C = r (A C = A C r ; Case : = 0 IfA < C, thenbytheorem,x c = (r +C A/andy c = (r+a C/, and the rest follows as above. 4 Example Consider the ellipse with equation 4x +xy+6y 6x+10y = 1; Using A = 4, =, C = 6, D = 6, and E = 10, one has = 4(4(6 = 9 and δ = 88; Using Remark 1 yields a b = 4δ 3 = 81 3 and x 0 = 1, y 0 = 1; Rewriting the equation gives 4(x 1 +(x 1(y +1 +6(y +1 9 = 0; Multiplying thru by a b = 9 36 yields (x (x 1(y (y = 0; Now we have A = 3 3, = 18 3, C = 54 3, and r = 18 ( 3 ; y Theorem, F = , 1 3+3, ( 3 3 which implies that F 1 = , ; y 3 3 Theorem 3, θ = (1+sgn π ( A C cot 1 = 7π ; One can verify that 8 tanθ = A C r = 1 ; References [1] C. ond, A New Algorithm for Scan Conversion of a General Ellipse, alg.pdf [] [3] Mohamed Ali Said, Calibration of an Ellipse s Algebraic Equation and Direct Determination of its Parameters, Acta Mathematica Academiae Paedagogicae Ny regyh aziensis Vol.19, No. (003,

CALIBRATION OF AN ELLIPSE S ALGEBRAIC EQUATION AND DIRECT DETERMINATION OF ITS PARAMETERS

CALIBRATION OF AN ELLIPSE S ALGEBRAIC EQUATION AND DIRECT DETERMINATION OF ITS PARAMETERS Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 19 (003), 1 5 www.emis.de/journals CALIBRATION OF AN ELLIPSE S ALGEBRAIC EQUATION AND DIRECT DETERMINATION OF ITS PARAMETERS MOHAMED ALI SAID Abstract.

More information

Rotation of Axes. By: OpenStaxCollege

Rotation of Axes. By: OpenStaxCollege Rotation of Axes By: OpenStaxCollege As we have seen, conic sections are formed when a plane intersects two right circular cones aligned tip to tip and extending infinitely far in opposite directions,

More information

MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically

MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically 1 MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically Definition Trigonometric identity Investigate 1. Using the diagram

More information

Pre- Calculus Mathematics Trigonometric Identities and Equations

Pre- Calculus Mathematics Trigonometric Identities and Equations Pre- Calculus Mathematics 12 6.1 Trigonometric Identities and Equations Goal: 1. Identify the Fundamental Trigonometric Identities 2. Simplify a Trigonometric Expression 3. Determine the restrictions on

More information

Trigonometric Ratios. θ + k 360

Trigonometric Ratios. θ + k 360 Trigonometric Ratios These notes are intended as a summary of section 6.1 (p. 466 474) in your workbook. You should also read the section for more complete explanations and additional examples. Coterminal

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

NON-AP CALCULUS SUMMER PACKET

NON-AP CALCULUS SUMMER PACKET NON-AP CALCULUS SUMMER PACKET These problems are to be completed to the best of your ability by the first day of school. You will be given the opportunity to ask questions about problems you found difficult

More information

MATH 100 REVIEW PACKAGE

MATH 100 REVIEW PACKAGE SCHOOL OF UNIVERSITY ARTS AND SCIENCES MATH 00 REVIEW PACKAGE Gearing up for calculus and preparing for the Assessment Test that everybody writes on at. You are strongly encouraged not to use a calculator

More information

3/31/ Product of Inertia. Sample Problem Sample Problem 10.6 (continue)

3/31/ Product of Inertia. Sample Problem Sample Problem 10.6 (continue) /1/01 10.6 Product of Inertia Product of Inertia: I xy = xy da When the x axis, the y axis, or both are an axis of symmetry, the product of inertia is zero. Parallel axis theorem for products of inertia:

More information

C3 A Booster Course. Workbook. 1. a) Sketch, on the same set of axis the graphs of y = x and y = 2x 3. (3) b) Hence, or otherwise, solve the equation

C3 A Booster Course. Workbook. 1. a) Sketch, on the same set of axis the graphs of y = x and y = 2x 3. (3) b) Hence, or otherwise, solve the equation C3 A Booster Course Workbook 1. a) Sketch, on the same set of axis the graphs of y = x and y = 2x 3. b) Hence, or otherwise, solve the equation x = 2x 3 (3) (4) BlueStar Mathematics Workshops (2011) 1

More information

A. Correct! These are the corresponding rectangular coordinates.

A. Correct! These are the corresponding rectangular coordinates. Precalculus - Problem Drill 20: Polar Coordinates No. 1 of 10 1. Find the rectangular coordinates given the point (0, π) in polar (A) (0, 0) (B) (2, 0) (C) (0, 2) (D) (2, 2) (E) (0, -2) A. Correct! These

More information

( )( ) Algebra 136 Semester 2 Review. ( ) 6. g( h( x) ( ) Name. In 1-6, use the functions below to find the solutions.

( )( ) Algebra 136 Semester 2 Review. ( ) 6. g( h( x) ( ) Name. In 1-6, use the functions below to find the solutions. Algebra 136 Semester Review In 1-6, use the functions below to find the solutions. Name f ( x) = 3x x + g( x) = x 3 h( x) = x + 3 1. ( f + h) ( x). ( h g) ( x) 3. h x g ( ) 4. ( gh) ( x). f g( x) ( ) 6.

More information

Introduction to conic sections. Author: Eduard Ortega

Introduction to conic sections. Author: Eduard Ortega Introduction to conic sections Author: Eduard Ortega 1 Introduction A conic is a two-dimensional figure created by the intersection of a plane and a right circular cone. All conics can be written in terms

More information

3.4 Conic sections. Such type of curves are called conics, because they arise from different slices through a cone

3.4 Conic sections. Such type of curves are called conics, because they arise from different slices through a cone 3.4 Conic sections Next we consider the objects resulting from ax 2 + bxy + cy 2 + + ey + f = 0. Such type of curves are called conics, because they arise from different slices through a cone Circles belong

More information

4.4: Optimization. Problem 2 Find the radius of a cylindrical container with a volume of 2π m 3 that minimizes the surface area.

4.4: Optimization. Problem 2 Find the radius of a cylindrical container with a volume of 2π m 3 that minimizes the surface area. 4.4: Optimization Problem 1 Suppose you want to maximize a continuous function on a closed interval, but you find that it only has one local extremum on the interval which happens to be a local minimum.

More information

Calculus III. George Voutsadakis 1. LSSU Math 251. Lake Superior State University. 1 Mathematics and Computer Science

Calculus III. George Voutsadakis 1. LSSU Math 251. Lake Superior State University. 1 Mathematics and Computer Science Calculus III George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 251 George Voutsadakis (LSSU) Calculus III January 2016 1 / 76 Outline 1 Parametric Equations,

More information

Practice Problems for MTH 112 Exam 2 Prof. Townsend Fall 2013

Practice Problems for MTH 112 Exam 2 Prof. Townsend Fall 2013 Practice Problems for MTH 11 Exam Prof. Townsend Fall 013 The problem list is similar to problems found on the indicated pages. means I checked my work on my TI-Nspire software Pages 04-05 Combine the

More information

Chapter 8B - Trigonometric Functions (the first part)

Chapter 8B - Trigonometric Functions (the first part) Fry Texas A&M University! Spring 2016! Math 150 Notes! Section 8B-I! Page 79 Chapter 8B - Trigonometric Functions (the first part) Recall from geometry that if 2 corresponding triangles have 2 angles of

More information

QUr_. Practice Second Midterm Exam. Conics

QUr_. Practice Second Midterm Exam. Conics Conics Practice Second Midterm Exam For #1-12, match the numbered quadratic equations in two variables with their lettered sets of solutions. Worth 1 2 point each. 1.) y = x 2 2.) x 2 y 2 = 0 3.) x 2 =

More information

DuVal High School Summer Review Packet AP Calculus

DuVal High School Summer Review Packet AP Calculus DuVal High School Summer Review Packet AP Calculus Welcome to AP Calculus AB. This packet contains background skills you need to know for your AP Calculus. My suggestion is, you read the information and

More information

Chapter 1 Analytic geometry in the plane

Chapter 1 Analytic geometry in the plane 3110 General Mathematics 1 31 10 General Mathematics For the students from Pharmaceutical Faculty 1/004 Instructor: Dr Wattana Toutip (ดร.ว ฒนา เถาว ท พย ) Chapter 1 Analytic geometry in the plane Overview:

More information

Notes: Vectors and Scalars

Notes: Vectors and Scalars A particle moving along a straight line can move in only two directions and we can specify which directions with a plus or negative sign. For a particle moving in three dimensions; however, a plus sign

More information

Information About Ellipses

Information About Ellipses Information About Ellipses David Eberly, Geometric Tools, Redmond WA 9805 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International License. To view

More information

Lesson 33 - Trigonometric Identities. Pre-Calculus

Lesson 33 - Trigonometric Identities. Pre-Calculus Lesson 33 - Trigonometric Identities Pre-Calculus 1 (A) Review of Equations An equation is an algebraic statement that is true for only several values of the variable The linear equation 5 = 2x 3 is only

More information

Preparation Mathematics 10 for

Preparation Mathematics 10 for Preparation Mathematics 0 for 208-9 You have four choices for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that question number. Use

More information

Simple Co-ordinate geometry problems

Simple Co-ordinate geometry problems Simple Co-ordinate geometry problems 1. Find the equation of straight line passing through the point P(5,2) with equal intercepts. 1. Method 1 Let the equation of straight line be + =1, a,b 0 (a) If a=b

More information

Things You Should Know Coming Into Calc I

Things You Should Know Coming Into Calc I Things You Should Know Coming Into Calc I Algebraic Rules, Properties, Formulas, Ideas and Processes: 1) Rules and Properties of Exponents. Let x and y be positive real numbers, let a and b represent real

More information

Precalculus Conic Sections Unit 6. Parabolas. Label the parts: Focus Vertex Axis of symmetry Focal Diameter Directrix

Precalculus Conic Sections Unit 6. Parabolas. Label the parts: Focus Vertex Axis of symmetry Focal Diameter Directrix PICTURE: Parabolas Name Hr Label the parts: Focus Vertex Axis of symmetry Focal Diameter Directrix Using what you know about transformations, label the purpose of each constant: y a x h 2 k It is common

More information

Section 5.4 The Other Trigonometric Functions

Section 5.4 The Other Trigonometric Functions Section 5.4 The Other Trigonometric Functions Section 5.4 The Other Trigonometric Functions In the previous section, we defined the e and coe functions as ratios of the sides of a right triangle in a circle.

More information

y 1 x 1 ) 2 + (y 2 ) 2 A circle is a set of points P in a plane that are equidistant from a fixed point, called the center.

y 1 x 1 ) 2 + (y 2 ) 2 A circle is a set of points P in a plane that are equidistant from a fixed point, called the center. Ch 12. Conic Sections Circles, Parabolas, Ellipses & Hyperbolas The formulas for the conic sections are derived by using the distance formula, which was derived from the Pythagorean Theorem. If you know

More information

SET 1. (1) Solve for x: (a) e 2x = 5 3x

SET 1. (1) Solve for x: (a) e 2x = 5 3x () Solve for x: (a) e x = 5 3x SET We take natural log on both sides: ln(e x ) = ln(5 3x ) x = 3 x ln(5) Now we take log base on both sides: log ( x ) = log (3 x ln 5) x = log (3 x ) + log (ln(5)) x x

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. and θ is in quadrant IV. 1)

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. and θ is in quadrant IV. 1) Chapter 5-6 Review Math 116 Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Use the fundamental identities to find the value of the trigonometric

More information

CHAPTER 4 Stress Transformation

CHAPTER 4 Stress Transformation CHAPTER 4 Stress Transformation ANALYSIS OF STRESS For this topic, the stresses to be considered are not on the perpendicular and parallel planes only but also on other inclined planes. A P a a b b P z

More information

Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters

Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters α( alpha), β ( beta), θ ( theta) as well as upper case letters A,B,

More information

Conic Sections and Polar Graphing Lab Part 1 - Circles

Conic Sections and Polar Graphing Lab Part 1 - Circles MAC 1114 Name Conic Sections and Polar Graphing Lab Part 1 - Circles 1. What is the standard equation for a circle with center at the origin and a radius of k? 3. Consider the circle x + y = 9. a. What

More information

Properties of surfaces II: Second moment of area

Properties of surfaces II: Second moment of area Properties of surfaces II: Second moment of area Just as we have discussing first moment of an area and its relation with problems in mechanics, we will now describe second moment and product of area of

More information

Section 6.2 Trigonometric Functions: Unit Circle Approach

Section 6.2 Trigonometric Functions: Unit Circle Approach Section. Trigonometric Functions: Unit Circle Approach The unit circle is a circle of radius centered at the origin. If we have an angle in standard position superimposed on the unit circle, the terminal

More information

(c) cos Arctan ( 3) ( ) PRECALCULUS ADVANCED REVIEW FOR FINAL FIRST SEMESTER

(c) cos Arctan ( 3) ( ) PRECALCULUS ADVANCED REVIEW FOR FINAL FIRST SEMESTER PRECALCULUS ADVANCED REVIEW FOR FINAL FIRST SEMESTER Work the following on notebook paper ecept for the graphs. Do not use our calculator unless the problem tells ou to use it. Give three decimal places

More information

Conic Sections Session 3: Hyperbola

Conic Sections Session 3: Hyperbola Conic Sections Session 3: Hyperbola Toh Pee Choon NIE Oct 2017 Toh Pee Choon (NIE) Session 3: Hyperbola Oct 2017 1 / 16 Problem 3.1 1 Recall that an ellipse is defined as the locus of points P such that

More information

Lesson 22 - Trigonometric Identities

Lesson 22 - Trigonometric Identities POP QUIZ Lesson - Trigonometric Identities IB Math HL () Solve 5 = x 3 () Solve 0 = x x 6 (3) Solve = /x (4) Solve 4 = x (5) Solve sin(θ) = (6) Solve x x x x (6) Solve x + = (x + ) (7) Solve 4(x ) = (x

More information

Preliminary algebra. Polynomial equations. and three real roots altogether. Continue an investigation of its properties as follows.

Preliminary algebra. Polynomial equations. and three real roots altogether. Continue an investigation of its properties as follows. 978-0-51-67973- - Student Solutions Manual for Mathematical Methods for Physics and Engineering: 1 Preliminary algebra Polynomial equations 1.1 It can be shown that the polynomial g(x) =4x 3 +3x 6x 1 has

More information

DESIGN OF THE QUESTION PAPER

DESIGN OF THE QUESTION PAPER DESIGN OF THE QUESTION PAPER MATHEMATICS - CLASS XI Time : 3 Hours Max. Marks : 00 The weightage of marks over different dimensions of the question paper shall be as follows:. Weigtage of Type of Questions

More information

Lecture 17. Implicit differentiation. Making y the subject: If xy =1,y= x 1 & dy. changed to the subject of y. Note: Example 1.

Lecture 17. Implicit differentiation. Making y the subject: If xy =1,y= x 1 & dy. changed to the subject of y. Note: Example 1. Implicit differentiation. Lecture 17 Making y the subject: If xy 1,y x 1 & dy dx x 2. But xy y 2 1 is harder to be changed to the subject of y. Note: d dx (f(y)) f (y) dy dx Example 1. Find dy dx given

More information

Trigonometry Final Exam Review

Trigonometry Final Exam Review Name Period Trigonometry Final Exam Review 2014-2015 CHAPTER 2 RIGHT TRIANGLES 8 1. Given sin θ = and θ terminates in quadrant III, find the following: 17 a) cos θ b) tan θ c) sec θ d) csc θ 2. Use a calculator

More information

Chapter 5: Trigonometric Functions of Angles Homework Solutions

Chapter 5: Trigonometric Functions of Angles Homework Solutions Chapter : Trigonometric Functions of Angles Homework Solutions Section.1 1. D = ( ( 1)) + ( ( )) = + 8 = 100 = 10. D + ( ( )) + ( ( )) = + = 1. (x + ) + (y ) =. (x ) + (y + 7) = r To find the radius, we

More information

CALCULUS ASSESSMENT REVIEW

CALCULUS ASSESSMENT REVIEW CALCULUS ASSESSMENT REVIEW DEPARTMENT OF MATHEMATICS CHRISTOPHER NEWPORT UNIVERSITY 1. Introduction and Topics The purpose of these notes is to give an idea of what to expect on the Calculus Readiness

More information

Example 2.1. Draw the points with polar coordinates: (i) (3, π) (ii) (2, π/4) (iii) (6, 2π/4) We illustrate all on the following graph:

Example 2.1. Draw the points with polar coordinates: (i) (3, π) (ii) (2, π/4) (iii) (6, 2π/4) We illustrate all on the following graph: Section 10.3: Polar Coordinates The polar coordinate system is another way to coordinatize the Cartesian plane. It is particularly useful when examining regions which are circular. 1. Cartesian Coordinates

More information

Chapter 5 Trigonometric Functions of Angles

Chapter 5 Trigonometric Functions of Angles Chapter 5 Trigonometric Functions of Angles Section 3 Points on Circles Using Sine and Cosine Signs Signs I Signs (+, +) I Signs II (+, +) I Signs II (, +) (+, +) I Signs II (, +) (+, +) I III Signs II

More information

PRACTICE PAPER 6 SOLUTIONS

PRACTICE PAPER 6 SOLUTIONS PRACTICE PAPER 6 SOLUTIONS SECTION A I.. Find the value of k if the points (, ) and (k, 3) are conjugate points with respect to the circle + y 5 + 8y + 6. Sol. Equation of the circle is + y 5 + 8y + 6

More information

Section 3.5: Implicit Differentiation

Section 3.5: Implicit Differentiation Section 3.5: Implicit Differentiation In the previous sections, we considered the problem of finding the slopes of the tangent line to a given function y = f(x). The idea of a tangent line however is not

More information

Warm Up = = 9 5 3) = = ) ) 99 = ) Simplify. = = 4 6 = 2 6 3

Warm Up = = 9 5 3) = = ) ) 99 = ) Simplify. = = 4 6 = 2 6 3 Warm Up Simplify. 1) 99 = 3 11 2) 125 + 2 20 = 5 5 + 4 5 = 9 5 3) 2 + 7 2 + 3 7 = 4 + 6 7 + 2 7 + 21 4) 4 42 3 28 = 4 3 3 2 = 4 6 6 = 25 + 8 7 = 2 6 3 Test Results Average Median 5 th : 76.5 78 7 th :

More information

SOLUTIONS FOR PRACTICE FINAL EXAM

SOLUTIONS FOR PRACTICE FINAL EXAM SOLUTIONS FOR PRACTICE FINAL EXAM ANDREW J. BLUMBERG. Solutions () Short answer questions: (a) State the mean value theorem. Proof. The mean value theorem says that if f is continuous on (a, b) and differentiable

More information

PreCalculus First Semester Exam Review

PreCalculus First Semester Exam Review PreCalculus First Semester Eam Review Name You may turn in this eam review for % bonus on your eam if all work is shown (correctly) and answers are correct. Please show work NEATLY and bo in or circle

More information

Sect 7.4 Trigonometric Functions of Any Angles

Sect 7.4 Trigonometric Functions of Any Angles Sect 7.4 Trigonometric Functions of Any Angles Objective #: Extending the definition to find the trigonometric function of any angle. Before we can extend the definition our trigonometric functions, we

More information

arxiv: v3 [math.mg] 17 Mar 2008

arxiv: v3 [math.mg] 17 Mar 2008 arxiv:0801.1929v3 [math.mg] 17 Mar 2008 The DNA Inequality in Non-Convex Regions Eric Larson May 10, 2009 Abstract The DNA Inequality states that the average curvature of a curve inside of a given closed

More information

sin cos 1 1 tan sec 1 cot csc Pre-Calculus Mathematics Trigonometric Identities and Equations

sin cos 1 1 tan sec 1 cot csc Pre-Calculus Mathematics Trigonometric Identities and Equations Pre-Calculus Mathematics 12 6.1 Trigonometric Identities and Equations Goal: 1. Identify the Fundamental Trigonometric Identities 2. Simplify a Trigonometric Expression 3. Determine the restrictions on

More information

Implicit Functions, Curves and Surfaces

Implicit Functions, Curves and Surfaces Chapter 11 Implicit Functions, Curves and Surfaces 11.1 Implicit Function Theorem Motivation. In many problems, objects or quantities of interest can only be described indirectly or implicitly. It is then

More information

Conic Sections Session 2: Ellipse

Conic Sections Session 2: Ellipse Conic Sections Session 2: Ellipse Toh Pee Choon NIE Oct 2017 Toh Pee Choon (NIE) Session 2: Ellipse Oct 2017 1 / 24 Introduction Problem 2.1 Let A, F 1 and F 2 be three points that form a triangle F 2

More information

a Write down the coordinates of the point on the curve where t = 2. b Find the value of t at the point on the curve with coordinates ( 5 4, 8).

a Write down the coordinates of the point on the curve where t = 2. b Find the value of t at the point on the curve with coordinates ( 5 4, 8). Worksheet A 1 A curve is given by the parametric equations x = t + 1, y = 4 t. a Write down the coordinates of the point on the curve where t =. b Find the value of t at the point on the curve with coordinates

More information

APPENDIX D Rotation and the General Second-Degree Equation

APPENDIX D Rotation and the General Second-Degree Equation APPENDIX D Rotation and the General Second-Degree Equation Rotation of Aes Invariants Under Rotation After rotation of the - and -aes counterclockwise through an angle, the rotated aes are denoted as the

More information

Week Quadratic forms. Principal axes theorem. Text reference: this material corresponds to parts of sections 5.5, 8.2,

Week Quadratic forms. Principal axes theorem. Text reference: this material corresponds to parts of sections 5.5, 8.2, Math 051 W008 Margo Kondratieva Week 10-11 Quadratic forms Principal axes theorem Text reference: this material corresponds to parts of sections 55, 8, 83 89 Section 41 Motivation and introduction Consider

More information

REQUIRED MATHEMATICAL SKILLS FOR ENTERING CADETS

REQUIRED MATHEMATICAL SKILLS FOR ENTERING CADETS REQUIRED MATHEMATICAL SKILLS FOR ENTERING CADETS The Department of Applied Mathematics administers a Math Placement test to assess fundamental skills in mathematics that are necessary to begin the study

More information

Some Highlights along a Path to Elliptic Curves

Some Highlights along a Path to Elliptic Curves 11/8/016 Some Highlights along a Path to Elliptic Curves Part : Conic Sections and Rational Points Steven J Wilson, Fall 016 Outline of the Series 1 The World of Algebraic Curves Conic Sections and Rational

More information

THE COMPOUND ANGLE IDENTITIES

THE COMPOUND ANGLE IDENTITIES TRIGONOMETRY THE COMPOUND ANGLE IDENTITIES Question 1 Prove the validity of each of the following trigonometric identities. a) sin x + cos x 4 4 b) cos x + + 3 sin x + 2cos x 3 3 c) cos 2x + + cos 2x cos

More information

A quadratic expression is a mathematical expression that can be written in the form 2

A quadratic expression is a mathematical expression that can be written in the form 2 118 CHAPTER Algebra.6 FACTORING AND THE QUADRATIC EQUATION Textbook Reference Section 5. CLAST OBJECTIVES Factor a quadratic expression Find the roots of a quadratic equation A quadratic expression is

More information

Section 2.4: Add and Subtract Rational Expressions

Section 2.4: Add and Subtract Rational Expressions CHAPTER Section.: Add and Subtract Rational Expressions Section.: Add and Subtract Rational Expressions Objective: Add and subtract rational expressions with like and different denominators. You will recall

More information

ORDINARY DIFFERENTIAL EQUATIONS

ORDINARY DIFFERENTIAL EQUATIONS ORDINARY DIFFERENTIAL EQUATIONS Basic concepts: Find y(x) where x is the independent and y the dependent varible, based on an equation involving x, y(x), y 0 (x),...e.g.: y 00 (x) = 1+y(x) y0 (x) 1+x or,

More information

y d y b x a x b Fundamentals of Engineering Review Fundamentals of Engineering Review 1 d x y Introduction - Algebra Cartesian Coordinates

y d y b x a x b Fundamentals of Engineering Review Fundamentals of Engineering Review 1 d x y Introduction - Algebra Cartesian Coordinates Fundamentals of Engineering Review RICHARD L. JONES FE MATH REVIEW ALGEBRA AND TRIG 8//00 Introduction - Algebra Cartesian Coordinates Lines and Linear Equations Quadratics Logs and exponents Inequalities

More information

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y:

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y: 3 Algebraic Methods b The first appearance of the equation E Mc 2 in Einstein s handwritten notes. So far, the only general class of differential equations that we know how to solve are directly integrable

More information

1 The theoretical constructions

1 The theoretical constructions Linear Transformations and Matrix Representations Samuel R Buss - Spring 003 Revision (Corrections appreciated!) These notes review the topics I lectured on while covering sections 4, 4, and 5 of the textbook

More information

Algebra II Final Exam Semester II Practice Test

Algebra II Final Exam Semester II Practice Test Name: Class: Date: Algebra II Final Exam Semester II Practice Test 1. (10 points) A bacteria population starts at,03 and decreases at about 15% per day. Write a function representing the number of bacteria

More information

C 3 C 4. R k C 1. (x,y)

C 3 C 4. R k C 1. (x,y) 16.4 1 16.4 Green s Theorem irculation Density (x,y + y) 3 (x+ x,y + y) 4 k 2 (x,y) 1 (x+ x,y) Suppose that F(x,y) M(x,y)i+N(x,y)j is the velocity field of a fluid flow in the plane and that the first

More information

True or False. Circle T if the statement is always true; otherwise circle F. for all angles θ. T F. 1 sin θ

True or False. Circle T if the statement is always true; otherwise circle F. for all angles θ. T F. 1 sin θ Math 90 Practice Midterm III Solutions Ch. 8-0 (Ebersole), 3.3-3.8 (Stewart) DISCLAIMER. This collection of practice problems is not guaranteed to be identical, in length or content, to the actual exam.

More information

Solutions to old Exam 3 problems

Solutions to old Exam 3 problems Solutions to old Exam 3 problems Hi students! I am putting this version of my review for the Final exam review here on the web site, place and time to be announced. Enjoy!! Best, Bill Meeks PS. There are

More information

+ 4 Ex: y = v = (1, 4) x = 1 Focus: (h, k + ) = (1, 6) L.R. = 8 units We can have parabolas that open sideways too (inverses) x = a (y k) 2 + h

+ 4 Ex: y = v = (1, 4) x = 1 Focus: (h, k + ) = (1, 6) L.R. = 8 units We can have parabolas that open sideways too (inverses) x = a (y k) 2 + h Unit 7 Notes Parabolas: E: reflectors, microphones, (football game), (Davinci) satellites. Light placed where ras will reflect parallel. This point is the focus. Parabola set of all points in a plane that

More information

Throughout Algebra II, students should continue to develop proficiency with the Common Core's eight Standards for Mathematical Practice:

Throughout Algebra II, students should continue to develop proficiency with the Common Core's eight Standards for Mathematical Practice: In Algebra I, students have already begun their study of algebraic concepts. They have used equations, tables, and graphs to describe relationships between quantities, with a particular focus on linear,

More information

(Section 4.7: Inverse Trig Functions) 4.82 PART F: EVALUATING INVERSE TRIG FUNCTIONS. Think:

(Section 4.7: Inverse Trig Functions) 4.82 PART F: EVALUATING INVERSE TRIG FUNCTIONS. Think: PART F: EVALUATING INVERSE TRIG FUNCTIONS Think: (Section 4.7: Inverse Trig Functions) 4.82 A trig function such as sin takes in angles (i.e., real numbers in its domain) as inputs and spits out outputs

More information

Linear Algebra. Chapter 8: Eigenvalues: Further Applications and Computations Section 8.2. Applications to Geometry Proofs of Theorems.

Linear Algebra. Chapter 8: Eigenvalues: Further Applications and Computations Section 8.2. Applications to Geometry Proofs of Theorems. Linear Algebra Chapter 8: Eigenvalues: Further Applications and Computations Section 8.2. Applications to Geometry Proofs of Theorems May 1, 2018 () Linear Algebra May 1, 2018 1 / 8 Table of contents 1

More information

These items need to be included in the notebook. Follow the order listed.

These items need to be included in the notebook. Follow the order listed. * Use the provided sheets. * This notebook should be your best written work. Quality counts in this project. Proper notation and terminology is important. We will follow the order used in class. Anyone

More information

Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves

Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves 7.1 Ellipse An ellipse is a curve that is the locus of all points in the plane the sum of whose distances r1 and r from two fixed

More information

Distance and Midpoint Formula 7.1

Distance and Midpoint Formula 7.1 Distance and Midpoint Formula 7.1 Distance Formula d ( x - x ) ( y - y ) 1 1 Example 1 Find the distance between the points (4, 4) and (-6, -). Example Find the value of a to make the distance = 10 units

More information

Math 120: Precalculus Autumn 2017 A List of Topics for the Final

Math 120: Precalculus Autumn 2017 A List of Topics for the Final Math 120: Precalculus Autumn 2017 A List of Topics for the Final Here s a fairly comprehensive list of things you should be comfortable doing for the final. Really Old Stuff 1. Unit conversion and rates

More information

Algebra II Introduction 1

Algebra II Introduction 1 Introduction 1 Building on their work with linear, quadratic, and exponential functions, students extend their repertoire of functions to include logarithmic, polynomial, rational, and radical functions

More information

MATH 135: COMPLEX NUMBERS

MATH 135: COMPLEX NUMBERS MATH 135: COMPLEX NUMBERS (WINTER, 010) The complex numbers C are important in just about every branch of mathematics. These notes 1 present some basic facts about them. 1. The Complex Plane A complex

More information

5.4 - Quadratic Functions

5.4 - Quadratic Functions Fry TAMU Spring 2017 Math 150 Notes Section 5.4 Page! 92 5.4 - Quadratic Functions Definition: A function is one that can be written in the form f (x) = where a, b, and c are real numbers and a 0. (What

More information

REFRESHER. William Stallings

REFRESHER. William Stallings BASIC MATH REFRESHER William Stallings Trigonometric Identities...2 Logarithms and Exponentials...4 Log Scales...5 Vectors, Matrices, and Determinants...7 Arithmetic...7 Determinants...8 Inverse of a Matrix...9

More information

Precalculus Table of Contents Unit 1 : Algebra Review Lesson 1: (For worksheet #1) Factoring Review Factoring Using the Distributive Laws Factoring

Precalculus Table of Contents Unit 1 : Algebra Review Lesson 1: (For worksheet #1) Factoring Review Factoring Using the Distributive Laws Factoring Unit 1 : Algebra Review Factoring Review Factoring Using the Distributive Laws Factoring Trinomials Factoring the Difference of Two Squares Factoring Perfect Square Trinomials Factoring the Sum and Difference

More information

AP Calculus (BC) Chapter 10 Test No Calculator Section. Name: Date: Period:

AP Calculus (BC) Chapter 10 Test No Calculator Section. Name: Date: Period: AP Calculus (BC) Chapter 10 Test No Calculator Section Name: Date: Period: Part I. Multiple-Choice Questions (5 points each; please circle the correct answer.) 1. The graph in the xy-plane represented

More information

Honors Algebra 2 Chapter 14 Page 1

Honors Algebra 2 Chapter 14 Page 1 Section. (Introduction) Graphs of Trig Functions Objectives:. To graph basic trig functions using t-bar method. A. Sine and Cosecant. y = sinθ y y y y 0 --- --- 80 --- --- 30 0 0 300 5 35 5 35 60 50 0

More information

The University of British Columbia Midterm 1 Solutions - February 3, 2012 Mathematics 105, 2011W T2 Sections 204, 205, 206, 211.

The University of British Columbia Midterm 1 Solutions - February 3, 2012 Mathematics 105, 2011W T2 Sections 204, 205, 206, 211. 1. a) Let The University of British Columbia Midterm 1 Solutions - February 3, 2012 Mathematics 105, 2011W T2 Sections 204, 205, 206, 211 fx, y) = x siny). If the value of x, y) changes from 0, π) to 0.1,

More information

2013/2014 SEMESTER 1 MID-TERM TEST. 1 October :30pm to 9:30pm PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY:

2013/2014 SEMESTER 1 MID-TERM TEST. 1 October :30pm to 9:30pm PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY: 2013/2014 SEMESTER 1 MID-TERM TEST MA1505 MATHEMATICS I 1 October 2013 8:30pm to 9:30pm PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY: 1. This test paper consists of TEN (10) multiple choice questions

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.1 Trigonometric Identities Copyright Cengage Learning. All rights reserved. Objectives Simplifying Trigonometric Expressions Proving

More information

More with Angles Reference Angles

More with Angles Reference Angles More with Angles Reference Angles A reference angle is the angle formed by the terminal side of an angle θ, and the (closest) x axis. A reference angle, θ', is always 0 o

More information

FFTs in Graphics and Vision. Homogenous Polynomials and Irreducible Representations

FFTs in Graphics and Vision. Homogenous Polynomials and Irreducible Representations FFTs in Graphics and Vision Homogenous Polynomials and Irreducible Representations 1 Outline The 2π Term in Assignment 1 Homogenous Polynomials Representations of Functions on the Unit-Circle Sub-Representations

More information

8.6 Translate and Classify Conic Sections

8.6 Translate and Classify Conic Sections 8.6 Translate and Classify Conic Sections Where are the symmetric lines of conic sections? What is the general 2 nd degree equation for any conic? What information can the discriminant tell you about a

More information

Pearson Mathematics Algebra 2 Common Core 2015

Pearson Mathematics Algebra 2 Common Core 2015 A Correlation of Pearson Mathematics Algebra 2 Common Core 2015 to the Common Core State Standards for Bid Category 13-050-10 A Correlation of Pearson Common Core Pearson Number and Quantity The Real Number

More information

Fundamental Trigonometric Identities

Fundamental Trigonometric Identities Fundamental Trigonometric Identities MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: recognize and write the fundamental trigonometric

More information

2. A die is rolled 3 times, the probability of getting a number larger than the previous number each time is

2. A die is rolled 3 times, the probability of getting a number larger than the previous number each time is . If P(A) = x, P = 2x, P(A B) = 2, P ( A B) = 2 3, then the value of x is (A) 5 8 5 36 6 36 36 2. A die is rolled 3 times, the probability of getting a number larger than the previous number each time

More information

(x 3)(x + 5) = (x 3)(x 1) = x + 5. sin 2 x e ax bx 1 = 1 2. lim

(x 3)(x + 5) = (x 3)(x 1) = x + 5. sin 2 x e ax bx 1 = 1 2. lim SMT Calculus Test Solutions February, x + x 5 Compute x x x + Answer: Solution: Note that x + x 5 x x + x )x + 5) = x )x ) = x + 5 x x + 5 Then x x = + 5 = Compute all real values of b such that, for fx)

More information

Part r A A A 1 Mark Part r B B B 2 Marks Mark P t ar t t C C 5 Mar M ks Part r E 4 Marks Mark Tot To a t l

Part r A A A 1 Mark Part r B B B 2 Marks Mark P t ar t t C C 5 Mar M ks Part r E 4 Marks Mark Tot To a t l Part Part P t Part Part Total A B C E 1 Mark 2 Marks 5 Marks M k 4 Marks CIRCLES 12 Marks approximately Definition ; A circle is defined as the locus of a point which moves such that its distance from

More information