Laser Cooling of Gallium. Lauren Rutherford

Size: px
Start display at page:

Download "Laser Cooling of Gallium. Lauren Rutherford"

Transcription

1 Laser Cooling of Gallium Lauren Rutherford

2 Laser Cooling Cooling mechanism depends on conservation of momentum during absorption and emission of radiation Incoming photons Net momentum transfer to atom Atoms are slowed in direction of laser beam. Can be extended to 3 dimensions: optical molasses Spontaneously emitted photons Incoming photons Stimulated emitted photons No net momentum transfer

3 Doppler Cooling For strong absorption the frequency of the laser, ν L, must match that of an allowed transition in the atom, ν As the atom is moving, the laser frequency will appear shifted due to the Doppler effect Slightly detuning the laser creates a velocity dependent force: if red-detuned, only atoms moving towards the laser beam will see its frequency shifted towards resonance

4 Density Matrix Approach The density operator, ρ, is used to describe the statistical state of a system w i : probability of the system being in the ith state (for a pure state w i = ) For a two-level system with ground state b and excited state a, the density matrix takes the form: ρ aa and ρ bb represent the populations of a and b ρ ab and ρ ba are coherences The density matrix evolves according to the Liouville equation Aim: to derive a master equation to describe the evolution of the system

5 Atom-Laser Interaction Total Hamiltonian is made up of two parts: atomic Hamiltonian and atom-laser interaction Substituting into the Liouville equation, and removing energy terms: where the dipole interaction Two-level atom interacts with monochromatic plane wave: Using the rotating wave approximation, the equations become: ω δ a ω b

6 Spontaneous Emission As the interaction time is much longer than the lifetime of the excited state, spontaneous emission needs to be included in the master equation a Transition rate, 2γ, is given by Density matrix equations for evolution of populations: b As state b does not decay, the evolution of the coherences is given by

7 Density-Matrix Equations To describe the complete system we use the Lindblad form of the Liouville equation: where describes spontaneous emission The complete master equations for a two-level atom are: ω δ a ω absorption/stimulated emission spontaneous emission b

8 Master equation - exact solution Exact solution known for two-level atom excited state population G γt 3 γ= As laser intensity increases, number of oscillations increases Damping rate remains constant 4 5 excited state population γ.6.8 When spontaneous emission rate, γ, is equal to G, there are no oscillations As γ decreases, oscillations increase until at γ=, pure Rabi oscillation is observed 2 4 γt G= 6 8

9 Liouville equation is ordinary differential equation for n-level system, contains three n x n matrices: ρ describes initial populations and coherences H Γ is the Hamiltonian matrix describes spontaneous emission Can be integrated using standard means... transform to rotating frame Numerical Solution ρ(t) = i[h, ρ(t)] + Γ ρ(t) t evolve by modified Euler (2 nd order Runge-Kutta) method ( Method 2 )

10 Method 2 vs Euler Method excited state population excited state population ! t (a) δ=, G= 2! t (c) δ=-2γ, G= excited state population excited state population ! t (b) δ=, G= ! t (d) δ=-2γ, G=5 exact solution Euler: h=.5 Method 2: h=.5 exact solution Euler: h=. Method 2: h=. exact solution Euler: h=.2 Method 2: h=.2 On resonance: Both methods highly accurate at low laser intensity At high laser intensity, Euler method takes longer to converge, even with very small step size Far off resonance: Euler method begins to diverge, even with very small step sizes and at low laser intensity At high laser intensity, Euler method is highly unstable, while Method 2 is much more robust

11 Method 2 - Step Size For accurate final populations, oscillations must be well resolved (a) G=, γ= (b) G=, γ= (c) G=5, γ= (d) G=, γ= Method 2 sensitivity to changes in step size exact soln h=. h=.5 h=. h=.25 h=.5

12 Error vs Step Size error linear with step size for step size up to.25 for laser intensity up to G=5 possible to predict how change in step size will affect error largest error occurs for lowest laser intensities error analysis ongoing...

13 Steady State Solution Population/Force Ground state population Excited state population Radiation Pressure Force Interaction of the laser field with the induced dipole moment in an atom results in a radiation pressure force where F (z, v, t) = U(z, v, t) z U(z, v, t) = tr(ρ ˆd) E(z, t) This force can be calculated from the atomic density matrix 2! t The atomic populations and radiation pressure force both tend to a constant value - this is the steady state solution. Figure (right) shows steady state solutions for a range of atomic velocities radiation pressure force opposes motion of atom force is strongest when Doppler shift, kv, is equal to the laser detuning, δ. Normalised Populations/Force G=, δ=-5γ!!9!8!7!6!5!4!3!2! Normalised Velocity, kv/!

14 Multi-level atoms Simplest multi-level system is (+3)-level atom e- e e Transitions driven by two counter-propagating laser beams σ - g σ + E = 2 E (e + e i(kz ωt) e e i(kz ωt) ) E 2 = 2 E ( e + e i(kz+ωt) + e e i(kz+ωt) ) Normalised Force and Populations !.2!.4!.6!.8 G=, δ=-5γ!!!8!6!4! Normalised Velocity, kv/! Figure shows velocity dependence of radiation pressure force (light blue ---) for (+3)-level atom Also shown are populations g (green) e- (blue) e (red)

15 Gallium Group III elements are vital to the semi-conductor industry In recent years much research has been carried out on atom lithography and the fabrication of nanoscale structures The ability to directly control and deposit gallium atoms could lead to many exciting new developments Gallium has two stable isotopes, 69 Ga and 7 Ga; both have nuclear spin I=3/2 hyperfine structure needs to be included Unstable isotopes include 66 Ga (I=) and 57 Ga (I=/2) System to be studied is a Λ-system, using two different laser frequencies 2 P/2 2 S/2: λ = 43nm 2 P3/2 2 S/2: λ2 = 47nm

16 Gallium equations Chen, R., McCann, J.F., Lane, I.C., J. Phys. B, 4 (27) 535

17 4p 2 P 5s 2 S Oscillator Strength In laser cooling, the lifetime of the excited state is an important parameter Probability of spontaneous emission described by Einstein coefficient, A2, the inverse of the spontaneous radiative lifetime This is related to the emission oscillator strength, f2, by where γ = e 2 ω 2 /(6πε m e c 3 ) frequency ω2. f 2 = 3 A 2/γ is the classical radiative decay rate at More commonly given as absorption oscillator strength, f2 g f 2 g 2 f 2 We have calculated the absorption oscillator strength for the 4p 2 P-5s 2 S transition in gallium using the general configuration interaction code CIV3. Hibbert, A., Comp. Phys. Commun., 9, 4 (975)

18 4p 2 P 5s 2 S Oscillator Strength Table shows a range of calculations of increasing complexity α contains basic configuration set 4s 2 4p 2 P and 4s 2 5s 2 S each calculation (β to ω) adds to this set calculations γ and δ incorporate 4d orbitals ε adds 6s orbital ω adds 4f orbital to allow for core polarization Our result is in good agreement with experimental data, giving a closer result than recently published relativistic calculations. Author Type f-value Migdalek (976) 3 Rel. SE.3 Migdalek and Baylis (979) 2 Rel. HF.33 Carlsson et al (986) 4 MCHF.9 Safranova et al (26) 5 Rel. MBPT.29 Present work CIV Migdalek, J., Can. J. Phys. 54, 8 (976). Neijzen, J.H.M. & Donszelmann, A., Physica B&C 4, 24 (982) 2. Migdalek, J., & Baylis, W.E., J. Phys. B 2, 6, 2595 (979) 4. Carlsson, J., et al., Z. Phys. D 3, 345 (986) 5. Safranova, U.I., et al., J. Phys. B 39, 749 (26)

19 Present and Future Work Publish CIV3 results Complete testing of numerical method error analysis include terms beyond RWA Apply method to Doppler cooling of gallium I=, I=/2 and I=3/2 Create algorithm to automate calculations

20 Thank You

THEORETICAL PROBLEM 2 DOPPLER LASER COOLING AND OPTICAL MOLASSES

THEORETICAL PROBLEM 2 DOPPLER LASER COOLING AND OPTICAL MOLASSES THEORETICAL PROBLEM 2 DOPPLER LASER COOLING AND OPTICAL MOLASSES The purpose of this problem is to develop a simple theory to understand the so-called laser cooling and optical molasses phenomena. This

More information

Laser Cooling and Trapping of Atoms

Laser Cooling and Trapping of Atoms Chapter 2 Laser Cooling and Trapping of Atoms Since its conception in 1975 [71, 72] laser cooling has revolutionized the field of atomic physics research, an achievement that has been recognized by the

More information

ELECTROMAGNETICALLY INDUCED TRANSPARENCY IN RUBIDIUM 85. Amrozia Shaheen

ELECTROMAGNETICALLY INDUCED TRANSPARENCY IN RUBIDIUM 85. Amrozia Shaheen ELECTROMAGNETICALLY INDUCED TRANSPARENCY IN RUBIDIUM 85 Amrozia Shaheen Electromagnetically induced transparency The concept of EIT was first given by Harris et al in 1990. When a strong coupling laser

More information

ATOMIC AND LASER SPECTROSCOPY

ATOMIC AND LASER SPECTROSCOPY ALAN CORNEY ATOMIC AND LASER SPECTROSCOPY CLARENDON PRESS OXFORD 1977 Contents 1. INTRODUCTION 1.1. Planck's radiation law. 1 1.2. The photoelectric effect 4 1.3. Early atomic spectroscopy 5 1.4. The postulates

More information

Today: general condition for threshold operation physics of atomic, vibrational, rotational gain media intro to the Lorentz model

Today: general condition for threshold operation physics of atomic, vibrational, rotational gain media intro to the Lorentz model Today: general condition for threshold operation physics of atomic, vibrational, rotational gain media intro to the Lorentz model Laser operation Simplified energy conversion processes in a laser medium:

More information

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009 Fundamentals of Spectroscopy for Optical Remote Sensing Course Outline 2009 Part I. Fundamentals of Quantum Mechanics Chapter 1. Concepts of Quantum and Experimental Facts 1.1. Blackbody Radiation and

More information

7 Three-level systems

7 Three-level systems 7 Three-level systems In this section, we will extend our treatment of atom-light interactions to situations with more than one atomic energy level, and more than one independent coherent driving field.

More information

Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era

Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era Peter van der Straten Universiteit Utrecht, The Netherlands and Harold Metcalf State University of New York, Stony Brook This

More information

The interaction of light and matter

The interaction of light and matter Outline The interaction of light and matter Denise Krol (Atom Optics) Photon physics 014 Lecture February 14, 014 1 / 3 Elementary processes Elementary processes 1 Elementary processes Einstein relations

More information

OPTI 511R: OPTICAL PHYSICS & LASERS

OPTI 511R: OPTICAL PHYSICS & LASERS OPTI 511R: OPTICAL PHYSICS & LASERS Instructor: R. Jason Jones Office Hours: TBD Teaching Assistant: Robert Rockmore Office Hours: Wed. (TBD) h"p://wp.op)cs.arizona.edu/op)511r/ h"p://wp.op)cs.arizona.edu/op)511r/

More information

Saturation Absorption Spectroscopy of Rubidium Atom

Saturation Absorption Spectroscopy of Rubidium Atom Saturation Absorption Spectroscopy of Rubidium Atom Jayash Panigrahi August 17, 2013 Abstract Saturated absorption spectroscopy has various application in laser cooling which have many relevant uses in

More information

LASER. Light Amplification by Stimulated Emission of Radiation

LASER. Light Amplification by Stimulated Emission of Radiation LASER Light Amplification by Stimulated Emission of Radiation Laser Fundamentals The light emitted from a laser is monochromatic, that is, it is of one color/wavelength. In contrast, ordinary white light

More information

OPTI 511, Spring 2016 Problem Set 9 Prof. R. J. Jones

OPTI 511, Spring 2016 Problem Set 9 Prof. R. J. Jones OPTI 5, Spring 206 Problem Set 9 Prof. R. J. Jones Due Friday, April 29. Absorption and thermal distributions in a 2-level system Consider a collection of identical two-level atoms in thermal equilibrium.

More information

MODERN OPTICS. P47 Optics: Unit 9

MODERN OPTICS. P47 Optics: Unit 9 MODERN OPTICS P47 Optics: Unit 9 Course Outline Unit 1: Electromagnetic Waves Unit 2: Interaction with Matter Unit 3: Geometric Optics Unit 4: Superposition of Waves Unit 5: Polarization Unit 6: Interference

More information

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks Ion traps Trapping of charged particles in electromagnetic fields Dynamics of trapped ions Applications to nuclear physics and QED The Paul trap Laser cooling, sympathetic cooling, optical clocks Coulomb

More information

Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths

Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths 4.1 The Natural Line Shape 4.2 Collisional Broadening 4.3 Doppler Broadening 4.4 Einstein Treatment of Stimulated Processes Width

More information

Laser cooling and trapping

Laser cooling and trapping Laser cooling and trapping William D. Phillips wdp@umd.edu Physics 623 14 April 2016 Why Cool and Trap Atoms? Original motivation and most practical current application: ATOMIC CLOCKS Current scientific

More information

Atomic Physics (Phys 551) Final Exam Solutions

Atomic Physics (Phys 551) Final Exam Solutions Atomic Physics (Phys 551) Final Exam Solutions Problem 1. For a Rydberg atom in n = 50, l = 49 state estimate within an order of magnitude the numerical value of a) Decay lifetime A = 1 τ = 4αω3 3c D (1)

More information

Lecture 25. atomic vapor. One determines how the response of the medium to the probe wave is modified by the presence of the pump wave.

Lecture 25. atomic vapor. One determines how the response of the medium to the probe wave is modified by the presence of the pump wave. Optical Wave Mixing in o-level Systems () Saturation Spectroscopy setup: strong pump + δ eak probe Lecture 5 atomic vapor δ + measure transmission of probe ave One determines ho the response of the medium

More information

Lecture 10. Lidar Effective Cross-Section vs. Convolution

Lecture 10. Lidar Effective Cross-Section vs. Convolution Lecture 10. Lidar Effective Cross-Section vs. Convolution q Introduction q Convolution in Lineshape Determination -- Voigt Lineshape (Lorentzian Gaussian) q Effective Cross Section for Single Isotope --

More information

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015)

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015) Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015) Interaction of x-ray with matter: - Photoelectric absorption - Elastic (coherent) scattering (Thomson Scattering) - Inelastic (incoherent) scattering

More information

9 Atomic Coherence in Three-Level Atoms

9 Atomic Coherence in Three-Level Atoms 9 Atomic Coherence in Three-Level Atoms 9.1 Coherent trapping - dark states In multi-level systems coherent superpositions between different states (atomic coherence) may lead to dramatic changes of light

More information

OPTI 511L Fall Objectives:

OPTI 511L Fall Objectives: RJ Jones OPTI 511L Fall 2017 Optical Sciences Experiment: Saturated Absorption Spectroscopy (2 weeks) In this experiment we explore the use of a single mode tunable external cavity diode laser (ECDL) to

More information

B2.III Revision notes: quantum physics

B2.III Revision notes: quantum physics B.III Revision notes: quantum physics Dr D.M.Lucas, TT 0 These notes give a summary of most of the Quantum part of this course, to complement Prof. Ewart s notes on Atomic Structure, and Prof. Hooker s

More information

QUANTUM THEORY OF LIGHT EECS 638/PHYS 542/AP609 FINAL EXAMINATION

QUANTUM THEORY OF LIGHT EECS 638/PHYS 542/AP609 FINAL EXAMINATION Instructor: Professor S.C. Rand Date: April 5 001 Duration:.5 hours QUANTUM THEORY OF LIGHT EECS 638/PHYS 54/AP609 FINAL EXAMINATION PLEASE read over the entire examination before you start. DO ALL QUESTIONS

More information

( ) /, so that we can ignore all

( ) /, so that we can ignore all Physics 531: Atomic Physics Problem Set #5 Due Wednesday, November 2, 2011 Problem 1: The ac-stark effect Suppose an atom is perturbed by a monochromatic electric field oscillating at frequency ω L E(t)

More information

Lecture 0. NC State University

Lecture 0. NC State University Chemistry 736 Lecture 0 Overview NC State University Overview of Spectroscopy Electronic states and energies Transitions between states Absorption and emission Electronic spectroscopy Instrumentation Concepts

More information

Laserphysik. Prof. Yong Lei & Dr. Yang Xu. Fachgebiet Angewandte Nanophysik, Institut für Physik

Laserphysik. Prof. Yong Lei & Dr. Yang Xu. Fachgebiet Angewandte Nanophysik, Institut für Physik Laserphysik Prof. Yong Lei & Dr. Yang Xu Fachgebiet Angewandte Nanophysik, Institut für Physik Contact: yong.lei@tu-ilmenau.de; yang.xu@tu-ilmenau.de Office: Heisenbergbau V 202, Unterpörlitzer Straße

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index 347 Index a AC fields 81 119 electric 81, 109 116 laser 81, 136 magnetic 112 microwave 107 109 AC field traps see Traps AC Stark effect 82, 84, 90, 96, 97 101, 104 109 Adiabatic approximation 3, 10, 32

More information

LASER. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe

LASER. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe LSER hallenging MQ questions by The Physics afe ompiled and selected by The Physics afe www.thephysicsafe.com www.pmc.sg 1 laser point creates a spot on a screen as it reflects 70% of the light striking

More information

Phys 622 Problems Chapter 5

Phys 622 Problems Chapter 5 1 Phys 622 Problems Chapter 5 Problem 1 The correct basis set of perturbation theory Consider the relativistic correction to the electron-nucleus interaction H LS = α L S, also known as the spin-orbit

More information

Introduction to Modern Quantum Optics

Introduction to Modern Quantum Optics Introduction to Modern Quantum Optics Jin-Sheng Peng Gao-Xiang Li Huazhong Normal University, China Vfe World Scientific» Singapore* * NewJerseyL Jersey* London* Hong Kong IX CONTENTS Preface PART I. Theory

More information

Γ43 γ. Pump Γ31 Γ32 Γ42 Γ41

Γ43 γ. Pump Γ31 Γ32 Γ42 Γ41 Supplementary Figure γ 4 Δ+δe Γ34 Γ43 γ 3 Δ Ω3,4 Pump Ω3,4, Ω3 Γ3 Γ3 Γ4 Γ4 Γ Γ Supplementary Figure Schematic picture of theoretical model: The picture shows a schematic representation of the theoretical

More information

Comments to Atkins: Physical chemistry, 7th edition.

Comments to Atkins: Physical chemistry, 7th edition. Comments to Atkins: Physical chemistry, 7th edition. Chapter 16: p. 483, Eq. (16.1). The definition that the wave number is the inverse of the wave length should be used. That is much smarter. p. 483-484.

More information

Optical Lattices. Chapter Polarization

Optical Lattices. Chapter Polarization Chapter Optical Lattices Abstract In this chapter we give details of the atomic physics that underlies the Bose- Hubbard model used to describe ultracold atoms in optical lattices. We show how the AC-Stark

More information

OPTI 511R, Spring 2018 Problem Set 10 Prof. R.J. Jones Due Thursday, April 19

OPTI 511R, Spring 2018 Problem Set 10 Prof. R.J. Jones Due Thursday, April 19 OPTI 511R, Spring 2018 Problem Set 10 Prof. R.J. Jones Due Thursday, April 19 1. (a) Suppose you want to use a lens focus a Gaussian laser beam of wavelength λ in order to obtain a beam waist radius w

More information

Chapter 2: Interacting Rydberg atoms

Chapter 2: Interacting Rydberg atoms Chapter : Interacting Rydberg atoms I. DIPOLE-DIPOLE AND VAN DER WAALS INTERACTIONS In the previous chapter, we have seen that Rydberg atoms are very sensitive to external electric fields, with their polarizability

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare http://ocw.mit.edu 5.74 Introductory Quantum Mechanics II Spring 9 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Andrei Tokmakoff,

More information

Chapter 2 Optical Transitions

Chapter 2 Optical Transitions Chapter 2 Optical Transitions 2.1 Introduction Among energy states, the state with the lowest energy is most stable. Therefore, the electrons in semiconductors tend to stay in low energy states. If they

More information

Complete nomenclature for electron orbitals

Complete nomenclature for electron orbitals Complete nomenclature for electron orbitals Bohr s model worked but it lacked a satisfactory reason why. De Broglie suggested that all particles have a wave nature. u l=h/p Enter de Broglie again It was

More information

Atomic Coherent Trapping and Properties of Trapped Atom

Atomic Coherent Trapping and Properties of Trapped Atom Commun. Theor. Phys. (Beijing, China 46 (006 pp. 556 560 c International Academic Publishers Vol. 46, No. 3, September 15, 006 Atomic Coherent Trapping and Properties of Trapped Atom YANG Guo-Jian, XIA

More information

Statistics. on Single Molecule Photon. Diffusion. Influence of Spectral

Statistics. on Single Molecule Photon. Diffusion. Influence of Spectral Influence of Spectral Diffusion on Single Molecule Photon Statistics Eli Barkai Yong He Bar-Ilan Feb. 24 25 Single Molecule Photon Statistics Sub-Poissonian Statistics, Mandel s Q parameter (198). Spectral

More information

Quantum control of dissipative systems. 1 Density operators and mixed quantum states

Quantum control of dissipative systems. 1 Density operators and mixed quantum states Quantum control of dissipative systems S. G. Schirmer and A. I. Solomon Quantum Processes Group, The Open University Milton Keynes, MK7 6AA, United Kingdom S.G.Schirmer@open.ac.uk, A.I.Solomon@open.ac.uk

More information

Quantum optics of many-body systems

Quantum optics of many-body systems Quantum optics of many-body systems Igor Mekhov Université Paris-Saclay (SPEC CEA) University of Oxford, St. Petersburg State University Lecture 2 Previous lecture 1 Classical optics light waves material

More information

Quantum Optics exam. M2 LOM and Nanophysique. 28 November 2017

Quantum Optics exam. M2 LOM and Nanophysique. 28 November 2017 Quantum Optics exam M LOM and Nanophysique 8 November 017 Allowed documents : lecture notes and problem sets. Calculators allowed. Aux francophones (et francographes) : vous pouvez répondre en français.

More information

10. SPONTANEOUS EMISSION & MULTIPOLE INTERACTIONS

10. SPONTANEOUS EMISSION & MULTIPOLE INTERACTIONS P4533 Fall 1995 (Zorn) Atoms in the Radiation Field, 2 page 10.1 10. SPONTANEOUS EMISSION & MULTIPOLE INTERACTIONS In this chapter we address two of the questions that remain as we build a theoretical

More information

Molecular spectroscopy

Molecular spectroscopy Molecular spectroscopy Origin of spectral lines = absorption, emission and scattering of a photon when the energy of a molecule changes: rad( ) M M * rad( ' ) ' v' 0 0 absorption( ) emission ( ) scattering

More information

Spontaneous Emission, Stimulated Emission, and Absorption

Spontaneous Emission, Stimulated Emission, and Absorption Chapter Six Spontaneous Emission, Stimulated Emission, and Absorption In this chapter, we review the general principles governing absorption and emission of radiation by absorbers with quantized energy

More information

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Single Emitter Detection with Fluorescence and Extinction Spectroscopy Single Emitter Detection with Fluorescence and Extinction Spectroscopy Michael Krall Elements of Nanophotonics Associated Seminar Recent Progress in Nanooptics & Photonics May 07, 2009 Outline Single molecule

More information

1 Longitudinal modes of a laser cavity

1 Longitudinal modes of a laser cavity Adrian Down May 01, 2006 1 Longitudinal modes of a laser cavity 1.1 Resonant modes For the moment, imagine a laser cavity as a set of plane mirrors separated by a distance d. We will return to the specific

More information

Interference effects on the probe absorption in a driven three-level atomic system. by a coherent pumping field

Interference effects on the probe absorption in a driven three-level atomic system. by a coherent pumping field Interference effects on the probe absorption in a driven three-level atomic system by a coherent pumping field V. Stancalie, O. Budriga, A. Mihailescu, V. Pais National Institute for Laser, Plasma and

More information

Atomic Quantum number summary. From last time. Na Optical spectrum. Another possibility: Stimulated emission. How do atomic transitions occur?

Atomic Quantum number summary. From last time. Na Optical spectrum. Another possibility: Stimulated emission. How do atomic transitions occur? From last time Hydrogen atom Multi-electron atoms This week s honors lecture: Prof. Brad Christian, Positron Emission Tomography Course evaluations next week Tues. Prof Montaruli Thurs. Prof. Rzchowski

More information

Requirements for scaleable QIP

Requirements for scaleable QIP p. 1/25 Requirements for scaleable QIP These requirements were presented in a very influential paper by David Divincenzo, and are widely used to determine if a particular physical system could potentially

More information

Supplementary Figure 1: Reflectivity under continuous wave excitation.

Supplementary Figure 1: Reflectivity under continuous wave excitation. SUPPLEMENTARY FIGURE 1 Supplementary Figure 1: Reflectivity under continuous wave excitation. Reflectivity spectra and relative fitting measured for a bias where the QD exciton transition is detuned from

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

Chapter-4 Stimulated emission devices LASERS

Chapter-4 Stimulated emission devices LASERS Semiconductor Laser Diodes Chapter-4 Stimulated emission devices LASERS The Road Ahead Lasers Basic Principles Applications Gas Lasers Semiconductor Lasers Semiconductor Lasers in Optical Networks Improvement

More information

10.4 Continuous Wave NMR Instrumentation

10.4 Continuous Wave NMR Instrumentation 10.4 Continuous Wave NMR Instrumentation coherent detection bulk magnetization the rotating frame, and effective magnetic field generating a rotating frame, and precession in the laboratory frame spin-lattice

More information

S.K. Saikin May 22, Lecture 13

S.K. Saikin May 22, Lecture 13 S.K. Saikin May, 007 13 Decoherence I Lecture 13 A physical qubit is never isolated from its environment completely. As a trivial example, as in the case of a solid state qubit implementation, the physical

More information

CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions

CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions I. General Features of Electronic spectroscopy. A. Visible and ultraviolet photons excite electronic state transitions. ε photon = 120 to 1200

More information

Population inversion occurs when there are more atoms in the excited state than in the ground state. This is achieved through the following:

Population inversion occurs when there are more atoms in the excited state than in the ground state. This is achieved through the following: Lasers and SemiconductorsTutorial Lasers 1. Fill in the table the differences between spontaneous emission and stimulated emission in atoms: External stimulus Direction of emission Phase & coherence of

More information

Chapter4: Quantum Optical Control

Chapter4: Quantum Optical Control Chapter4: Quantum Optical Control Laser cooling v A P3/ B P / C S / Figure : Figure A shows how an atom is hit with light with momentum k and slows down. Figure B shows atom will absorb light if frequency

More information

The Einstein A and B Coefficients

The Einstein A and B Coefficients The Einstein A and B Coefficients Austen Groener Department of Physics - Drexel University, Philadelphia, Pennsylvania 19104, USA Quantum Mechanics III December 10, 010 Abstract In this paper, the Einstein

More information

Atom assisted cavity cooling of a micromechanical oscillator in the unresolved sideband regime

Atom assisted cavity cooling of a micromechanical oscillator in the unresolved sideband regime Atom assisted cavity cooling of a micromechanical oscillator in the unresolved sideband regime Bijita Sarma and Amarendra K Sarma Department of Physics, Indian Institute of Technology Guwahati, Guwahati-781039,

More information

8 Quantized Interaction of Light and Matter

8 Quantized Interaction of Light and Matter 8 Quantized Interaction of Light and Matter 8.1 Dressed States Before we start with a fully quantized description of matter and light we would like to discuss the evolution of a two-level atom interacting

More information

Optical Pumping in 85 Rb and 87 Rb

Optical Pumping in 85 Rb and 87 Rb Optical Pumping in 85 Rb and 87 Rb John Prior III*, Quinn Pratt, Brennan Campbell, Kjell Hiniker University of San Diego, Department of Physics (Dated: December 14, 2015) Our experiment aimed to determine

More information

Quantum Mechanica. Peter van der Straten Universiteit Utrecht. Peter van der Straten (Atom Optics) Quantum Mechanica January 15, / 22

Quantum Mechanica. Peter van der Straten Universiteit Utrecht. Peter van der Straten (Atom Optics) Quantum Mechanica January 15, / 22 Quantum Mechanica Peter van der Straten Universiteit Utrecht Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 1 / 22 Matrix methode Peter van der Straten (Atom Optics) Quantum Mechanica

More information

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC)

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC) Building Blocks for Quantum Computing Part IV Design and Construction of the Trapped Ion Quantum Computer (TIQC) CSC801 Seminar on Quantum Computing Spring 2018 1 Goal Is To Understand The Principles And

More information

CONTENTS. vii. CHAPTER 2 Operators 15

CONTENTS. vii. CHAPTER 2 Operators 15 CHAPTER 1 Why Quantum Mechanics? 1 1.1 Newtonian Mechanics and Classical Electromagnetism 1 (a) Newtonian Mechanics 1 (b) Electromagnetism 2 1.2 Black Body Radiation 3 1.3 The Heat Capacity of Solids and

More information

Optical and Photonic Glasses. Lecture 31. Rare Earth Doped Glasses I. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 31. Rare Earth Doped Glasses I. Professor Rui Almeida Optical and Photonic Glasses : Rare Earth Doped Glasses I Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University Rare-earth doped glasses The lanthanide

More information

Example of a Plane Wave LECTURE 22

Example of a Plane Wave LECTURE 22 Example of a Plane Wave http://www.acs.psu.edu/drussell/demos/evanescentwaves/plane-x.gif LECTURE 22 EM wave Intensity I, pressure P, energy density u av from chapter 30 Light: wave or particle? 1 Electromagnetic

More information

Spontaneous Emission and the Vacuum State of EM Radiation. Miriam Klopotek 10 December 2007

Spontaneous Emission and the Vacuum State of EM Radiation. Miriam Klopotek 10 December 2007 Spontaneous Emission and the Vacuum State of EM Radiation Miriam Klopotek 10 December 2007 Content Introduction Atom inside thermal equilibrium cavity: stimulated emission, absorption and spontaneous decay

More information

Quantum Mechanics II Lecture 11 (www.sp.phy.cam.ac.uk/~dar11/pdf) David Ritchie

Quantum Mechanics II Lecture 11 (www.sp.phy.cam.ac.uk/~dar11/pdf) David Ritchie Quantum Mechanics II Lecture (www.sp.phy.cam.ac.u/~dar/pdf) David Ritchie Michaelmas. So far we have found solutions to Section 4:Transitions Ĥ ψ Eψ Solutions stationary states time dependence with time

More information

Quantum Light-Matter Interactions

Quantum Light-Matter Interactions Quantum Light-Matter Interactions QIC 895: Theory of Quantum Optics David Layden June 8, 2015 Outline Background Review Jaynes-Cummings Model Vacuum Rabi Oscillations, Collapse & Revival Spontaneous Emission

More information

Mie vs Rayleigh. Sun

Mie vs Rayleigh. Sun Mie vs Rayleigh Sun Chemists Probe Various Energy Levels of Molecules With Appropiate Energy Radiation It is convenient (and accurate enough for our purposes) to treat a molecule or system of molecules

More information

6. Molecular structure and spectroscopy I

6. Molecular structure and spectroscopy I 6. Molecular structure and spectroscopy I 1 6. Molecular structure and spectroscopy I 1 molecular spectroscopy introduction 2 light-matter interaction 6.1 molecular spectroscopy introduction 2 Molecular

More information

Elements of Quantum Optics

Elements of Quantum Optics Pierre Meystre Murray Sargent III Elements of Quantum Optics Fourth Edition With 124 Figures fya Springer Contents 1 Classical Electromagnetic Fields 1 1.1 Maxwell's Equations in a Vacuum 2 1.2 Maxwell's

More information

Higher -o-o-o- Past Paper questions o-o-o- 3.4 Spectra

Higher -o-o-o- Past Paper questions o-o-o- 3.4 Spectra Higher -o-o-o- Past Paper questions 1991-2010 -o-o-o- 3.4 Spectra 1992 Q37 The diagram below shows the energy levels for the hydrogen atom. (a) Between which two energy levels would an electron transition

More information

On the non-linear spectroscopy including saturated absorption and four-wave mixing in two and multi-level atoms: a computational study

On the non-linear spectroscopy including saturated absorption and four-wave mixing in two and multi-level atoms: a computational study Journal of Physics: Conference Series PPER OPEN CCESS On the non-linear spectroscopy including saturated absorption and four-wave mixing in two and multi-level atoms: a computational study To cite this

More information

Transit time broadening contribution to the linear evanescent susceptibility

Transit time broadening contribution to the linear evanescent susceptibility Supplementary note 1 Transit time broadening contribution to the linear evanescent susceptibility In this section we analyze numerically the susceptibility of atoms subjected to an evanescent field for

More information

Lecture 1. Physics of light forces and laser cooling

Lecture 1. Physics of light forces and laser cooling Lecture 1 Physics of light forces and laser cooling David Guéry-Odelin Laboratoire Collisions Agrégats Réactivité Université Paul Sabatier (Toulouse, France) Summer school "Basics on Quantum Control, August

More information

Quantum Optics Project I

Quantum Optics Project I Quantum Optics Project I Carey Phelps, Tim Sweeney, Jun Yin Department of Physics and Oregon Center for Optics 5 April 7 Problem I The Bloch equations for the two-level atom were integrated using numerical

More information

Other Devices from p-n junctions

Other Devices from p-n junctions Memory (5/7 -- Glenn Alers) Other Devices from p-n junctions Electron to Photon conversion devices LEDs and SSL (5/5) Lasers (5/5) Solid State Lighting (5/5) Photon to electron conversion devices Photodectors

More information

Neutrino Helicity Measurement

Neutrino Helicity Measurement PHYS 851 Introductory Nuclear Physics Instructor: Chary Rangacharyulu University of Saskatchewan Neutrino Helicity Measurement Stefan A. Gärtner stefan.gaertner@gmx.de December 9 th, 2005 2 1 Introduction

More information

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Section I Q1. Answer (i) (b) (ii) (d) (iii) (c) (iv) (c) (v) (a) (vi) (b) (vii) (b) (viii) (a) (ix)

More information

Chemistry Instrumental Analysis Lecture 5. Chem 4631

Chemistry Instrumental Analysis Lecture 5. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 5 Light Amplification by Stimulated Emission of Radiation High Intensities Narrow Bandwidths Coherent Outputs Applications CD/DVD Readers Fiber Optics Spectroscopy

More information

Chem 442 Review of Spectroscopy

Chem 442 Review of Spectroscopy Chem 44 Review of Spectroscopy General spectroscopy Wavelength (nm), frequency (s -1 ), wavenumber (cm -1 ) Frequency (s -1 ): n= c l Wavenumbers (cm -1 ): n =1 l Chart of photon energies and spectroscopies

More information

Optical Properties of Lattice Vibrations

Optical Properties of Lattice Vibrations Optical Properties of Lattice Vibrations For a collection of classical charged Simple Harmonic Oscillators, the dielectric function is given by: Where N i is the number of oscillators with frequency ω

More information

Signal regeneration - optical amplifiers

Signal regeneration - optical amplifiers Signal regeneration - optical amplifiers In any atom or solid, the state of the electrons can change by: 1) Stimulated absorption - in the presence of a light wave, a photon is absorbed, the electron is

More information

Linear and nonlinear spectroscopy

Linear and nonlinear spectroscopy Linear and nonlinear spectroscopy We ve seen that we can determine molecular frequencies and dephasing rates (for electronic, vibrational, or spin degrees of freedom) from frequency-domain or timedomain

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

Photon Physics. Week 4 26/02/2013

Photon Physics. Week 4 26/02/2013 Photon Physics Week 4 6//13 1 Classical atom-field interaction Lorentz oscillator: Classical electron oscillator with frequency ω and damping constant γ Eqn of motion: Final result: Classical atom-field

More information

Theoretical Tools for Spectro-Polarimetry

Theoretical Tools for Spectro-Polarimetry Theoretical Tools for Spectro-Polarimetry R. Casini High Altitude Observatory The High Altitude Observatory (HAO) at the National Center for Atmospheric Research (NCAR) The National Center for Atmospheric

More information

Dept. of Physics, MIT Manipal 1

Dept. of Physics, MIT Manipal 1 Chapter 1: Optics 1. In the phenomenon of interference, there is A Annihilation of light energy B Addition of energy C Redistribution energy D Creation of energy 2. Interference fringes are obtained using

More information

High Resolution Laser Spectroscopy of Cesium Vapor Layers with Nanometric Thickness

High Resolution Laser Spectroscopy of Cesium Vapor Layers with Nanometric Thickness 10 High Resolution Laser Spectroscopy of Cesium Vapor Layers with Nanometric Thickness Stefka Cartaleva 1, Anna Krasteva 1, Armen Sargsyan 2, David Sarkisyan 2, Dimitar Slavov 1, Petko Todorov 1 and Kapka

More information

In Situ Imaging of Cold Atomic Gases

In Situ Imaging of Cold Atomic Gases In Situ Imaging of Cold Atomic Gases J. D. Crossno Abstract: In general, the complex atomic susceptibility, that dictates both the amplitude and phase modulation imparted by an atom on a probing monochromatic

More information

Unit-2 LASER. Syllabus: Properties of lasers, types of lasers, derivation of Einstein A & B Coefficients, Working He-Ne and Ruby lasers.

Unit-2 LASER. Syllabus: Properties of lasers, types of lasers, derivation of Einstein A & B Coefficients, Working He-Ne and Ruby lasers. Unit-2 LASER Syllabus: Properties of lasers, types of lasers, derivation of Einstein A & B Coefficients, Working He-Ne and Ruby lasers. Page 1 LASER: The word LASER is acronym for light amplification by

More information

The amazing story of Laser Cooling and Trapping

The amazing story of Laser Cooling and Trapping The amazing story of Laser Cooling and Trapping following Bill Phillips Nobel Lecture http://www.nobelprize.org/nobel_prizes/physics/ laureates/1997/phillips-lecture.pdf Laser cooling of atomic beams 1

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 15. Optical Sources-LASER

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 15. Optical Sources-LASER FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 15 Optical Sources-LASER Fiber Optics, Prof. R.K. Shevgaonkar, Dept. of Electrical

More information

LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii

LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii ate LIST OF TOPICS Preface xiii Units and Notation xv List of Symbols xvii BASIC LASER PHYSICS Chapter 1 An Introduction to Lasers 1.1 What Is a Laser? 2 1.2 Atomic Energy Levels and Spontaneous Emission

More information

Scholars Research Library

Scholars Research Library Available online at www.scholarsresearchlibrary.com Archives of Physics Research, 2014, 5 (5):7-11 (http:scholarsresearchlibrary.comarchive.html) ISSN : 0976-0970 CODEN (USA): APRRC7 Spontaneous absorption

More information