Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices

Size: px
Start display at page:

Download "Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices"

Transcription

1 Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices Kristóf Ábele-Nagy Eötvös Loránd University (ELTE); Corvinus University of Budapest (BCE) Sándor Bozóki Computer and Automation Research Institute, Hungarian Academy of Sciences (MTA SZTAKI); Corvinus University of Budapest (BCE) 15 December, 2010 Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 1/39

2 Outline Pairwise comparison matrix Incomplete pairwise comparison matrix Eigenvalue optimization Cyclic coordinates Newton s method in one variable Newton s method in higher dimensions Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 2/39

3 Given n objects with weights w 1,w 2,w 3,...,w n. The pairwise comparison matrix is defined as follows: w 1 1 w 1 w w 2 w w n w 2 w w w w w n w 3 w 3 w w 1 w w n, w n w where w n w 1 for any i,j,k indices. w n w 2 w ij > 0, w ij = 1 w ji, w ij = w ik w kj. Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 3/39

4 In real decision situations, weights are unknown, but pairwise comparisons can be made: 1 a 12 a a 1n a 21 1 a a 2n A = a 31 a a 3n, a n1 a n2 a n where a ij > 0, a ij = 1 a ji. for i,j = 1,...,n. The aim is to determine the weight vector w = (w 1,w 2,...,w n ) R n +. Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 4/39

5 In the Eigenvector Method (EM) the approximation w EM of w is defined by Aw EM = λ max w EM, where λ max denotes the maximal eigenvalue, also known as Perron eigenvalue, of A and w EM denotes the the right-hand side eigenvector of A corresponding to λ max. By Perron s theorem, w EM is positive and unique up to a scalar multiplication. The most often used normalization is n wi EM = 1. i=1 Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 5/39

6 Saaty defined the inconsistency ratio as CR = λ max n n 1 RI n, where λ max is the Perron eigenvalue of the complete pairwise comparison matrix given by the decision maker, and RI n is defined as λ max n n 1, where λ max is an average value of the Perron eigenvalues of randomly generated n n pairwise comparison matrices. It is well known that λ max n and equals to n if and only if the matrix is consistent, i.e., the transitivity property holds. It follows from the definition that CR is a positive linear transformation of λ max. According to Saaty, larger value of CR indicates higher level of inconsistency and the 10%-rule (CR 0.10) separates acceptable matrices from unacceptable ones. Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 6/39

7 Incomplete pairwise comparison matrix ( = pairwise comparison matrix with missing elements) A = 1 a a 1n 1/a 12 1 a /a a 3n /a 1n 1/a 3n Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 7/39

8 Incomplete pairwise comparison matrix ( = pairwise comparison matrix with missing elements) A = 1 a 12 x 1... a 1n 1/a 12 1 a /x 1 1/a a 3n /a 1n 1/a 3n Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 8/39

9 Incomplete pairwise comparison matrix ( = pairwise comparison matrix with missing elements) A = 1 a 12 x 1... a 1n 1/a 12 1 a x d 1/x 1 1/a a 3n /a 1n 1/x d 1/a 3n... 1, Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 9/39

10 Incomplete pairwise comparison matrix ( = pairwise comparison matrix with missing elements) A = 1 a 12 x 1... a 1n 1/a 12 1 a x d 1/x 1 1/a a 3n /a 1n 1/x d 1/a 3n... 1, where x 1,x 2,...,x d R +. Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 10/39

11 Based on the idea above, Shiraishi, Obata and Daigo considered the eigenvalue optimization problems as follows. In case of one missing element, denoted by x, the λ max (A(x)) to be minimized: min x>0 λ max(a(x)). In case of more than one missing elements, arranged in vector x, the aim is to solve min λ max(a(x)). x>0 Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 11/39

12 Graph representation of a pairwise comparison matrix Given A incomplete pairwise comparison matrix of size n n. Graph G = (V,E) is defined as follows: V = {1, 2,...,n} E = {e(i,j) a ij (and a ji ) are given and i j} Special case: all the comparisons are given, the corresponding graph is K n. Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 12/39

13 Graph representation of a pairwise comparison matrix Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 13/39

14 Theorem (B., Fülöp, Rónyai, 2010): The optimal solution of the eigenvalue minimization problem min λ max(a(x)). x>0 is unique if and only if the graph G corresponding to the incomplete pairwise comparison matrix is connected. If graph G corresponding to the incomplete pairwise comparison matrix is connected, then by using the exponential parametrization x 1 = e y 1,x 2 = e y 2,...x d = e y d, the eigenvalue minimization problem is transformed into a strictly convex optimization problem. Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 14/39

15 Example Q = 1 2 x 1/ /x 1/4 1 λ max (Q(x)) and, by using the exponential scaling x = e t, λ max (Q(e t )) are plotted. Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 15/39

16 Algorithms for solving the eigenvalue minimization problem min x>0 λ max(a(x)). cyclic coordinates with Matlab s function fminbnd cyclic coordinates univariate Newton s method multivariate Newton s method Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 16/39

17 Method of cyclic coordinates M(x) = /3 1/4 1/5 1 x 1 5 x 2 3 x 3 1/7 1/3 1/x 1 1 x 4 3 x 5 6 x 6 1/7 1/5 1/x 4 1 x 7 1/4 x 8 1/8 1/6 1/x 2 1/3 1/x 7 1 x 9 1/5 x 10 1/6 1/3 1/x 5 4 1/x 9 1 x 11 1/6 3 1/x 3 1/6 1/x 8 5 1/x 11 1 x /x 6 8 1/x /x 12 1 Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 17/39

18 Method of cyclic coordinates Let x (k) i denote the value of x i in the k-th step of the iteration, which has d (in the example, d = 12) substeps for each k. For k = 0 : Let the initial points be equal to 1 for every variable: while x (0) i := 1 (i = 1, 2,...,d). max i=1,2,...,d xk i xk 1 i > T x (k) i := arg min λ max (M(x (k) x 1,...,x(k) i i 1,x i,x (k 1) i+1,...,x (k 1) d )), i = 1, 2,...,d next k end while Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 18/39

19 Method of cyclic coordinates Focus on min x i λ max (M(x (k) 1,...,x(k) i 1,x i,x (k 1) i+1,...,x (k 1) d )) Matlab s function fminbnd solves is directly and fast. Univariate Newton s method can be also applied. Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 19/39

20 min x>0 λ max(a(x)) Let x = e t and L(t) = λ max (e t ). t n+1 = t n L (t n ) L (t n ) = t n 2 λ max (x) ( x) 2 λ max (x) x e t n + λ max (x) x. By Harker, formal derivatives λ max(x) x known. and 2 λ max (x) ( x) 2 are Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 20/39

21 Harker s formula for the first derivative λ max(x) x ( ) λmax (A) i > j = a ij ( [y(a) i x(a) j ] [y(a) ) jx(a) i ] [a ij ] 2 where vectors x(a), y(a) are the right-hand side and left-hand side eigenvectors of A, respectively. Normalization y(a) T x(a) = 1 is applied. Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 21/39

22 Harker s formula for the second derivative 2 λ max (A) a ij a kl = (x(a)y(a) T ) li Q + jk + (x(a)y(a)t ) jk Q + li if i k or j l, (x(a)y(a)t ) ki Q + jl + (x(a)y(a)t ) jl Q + ki [a kl ] 2 (x(a)y(a)t ) lj Q + ik + (x(a)y(a)t ) ik Q + lj [a ij ] 2 + (x(a)y(a)t ) kl Q + il + (x(a)y(a)t ) il Q + kj [a ij ] 2 [a kl ] 2 Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 22/39

23 Harker s formula for the second derivative 2 λ max (A) a ij a kl = 2(x(A)y(A)T ) ij [a ij ] 3 + 2(x(A)y(A) T ) ji Q + ii 2 (x(a)y(a)t ) ii Q + jj + (x(a)y(a)t ) jj Q + ii [a ij ] 2 +2 (x(a)y(a)t ) ij Q + ij [a ij ] 4 if i = k and j = l, where Q = λ max (A)I A and Q + denotes the Moore-Penrose pseudoinverse of Q. Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 23/39

24 Multivariate Newton s method t n+1 = t n [HL(t n )] 1 L(t n ). Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 24/39

25 Computational results: All methods mentioned above are fast enough for typical matrices in multi-attribute decision making; in the talk s example (8 8 matrix, 12 variables, 20 cycles with f minbnd: 0.3 seconds, 1-variable Newton: 5.3 seconds); as a test, in a matrix, variables, 1 cycle takes 1.5 hours with fminbnd. Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 25/39

26 Applications of the results: A generalization of the Eigenvector Method for the incomplete case CR-inconsistency can be computed during the filling in process, as soon as a connected graph is given User may get an automatic warning in case of misprints, detected as a high jump in CR-inconsistency. Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 26/39

27 Questions: How many comparisons are needed, if less than n(n 1)/2? Thresholds for warning the user? Other inconsistency indices, presented by Attila Poesz on Monday (session 2A). Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 27/39

28 References 1/2 Ábele-Nagy, K. [2010]: Incomplete pairwise comparison matrices in multi-attribute decision making, Master s Thesis, Eötvös Loránd University. Bozóki, S., Fülöp, J., Rónyai, L. [2010]: On optimal completions of incomplete pairwise comparison matrices, Mathematical and Computer Modelling, 52, pp Harker, P.T. [1987]: Incomplete pairwise comparisons in the analytic hierarchy process. Mathematical Modelling, 9(11), pp Harker, P.T. [1987]: Derivatives of the Perron root of a positive reciprocal matrix: with application to the Analytic Hierarchy Process. Applied Mathematics and Computation, 22, pp Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 28/39

29 References 2/2 Saaty, T.L. [1977]: A scaling method for priorities in hierarchical structures, Journal of Mathematical Psychology, 15, pp Saaty, T.L. [1980]: The analytic hierarchy process, McGraw-Hill, New York. Shiraishi, S., Obata, T., Daigo, M. [1998]: Properties of a positive reciprocal matrix and their application to AHP. Journal of the Operations Research Society of Japan, 41(3), pp Shiraishi, S., Obata, T. [2002]: On a maximization problem arising from a positive reciprocal matrix in AHP. Bulletin of Informatics and Cybernetics, 34(2), pp Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 29/39

30 Thank you for attention. bozoki Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 30/39

31 Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 31/39

32 Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 32/39

33 Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 33/39

34 Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 34/39

35 Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 35/39

36 Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 36/39

37 Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 37/39

38 Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 38/39

39 Newton s method in eigenvalue optimization for incomplete pairwise comparison matrices p. 39/39

Incomplete Pairwise Comparison Matrices and Weighting Methods

Incomplete Pairwise Comparison Matrices and Weighting Methods Incomplete Pairwise Comparison Matrices and Weighting Methods László Csató Lajos Rónyai arxiv:1507.00461v2 [math.oc] 27 Aug 2015 August 28, 2015 Abstract A special class of preferences, given by a directed

More information

On optimal completions of incomplete pairwise comparison matrices

On optimal completions of incomplete pairwise comparison matrices On optimal completions of incomplete pairwise comparison matrices Sándor BOZÓKI 1,2, János FÜLÖP 2, Lajos RÓNYAI 3 Abstract An important variant of a key problem for multi-attribute decision making is

More information

On pairwise comparison matrices that can be made consistent by the modification of a few elements

On pairwise comparison matrices that can be made consistent by the modification of a few elements Noname manuscript No. (will be inserted by the editor) On pairwise comparison matrices that can be made consistent by the modification of a few elements Sándor Bozóki 1,2 János Fülöp 1,3 Attila Poesz 2

More information

ASSESSMENT FOR AN INCOMPLETE COMPARISON MATRIX AND IMPROVEMENT OF AN INCONSISTENT COMPARISON: COMPUTATIONAL EXPERIMENTS

ASSESSMENT FOR AN INCOMPLETE COMPARISON MATRIX AND IMPROVEMENT OF AN INCONSISTENT COMPARISON: COMPUTATIONAL EXPERIMENTS ISAHP 1999, Kobe, Japan, August 12 14, 1999 ASSESSMENT FOR AN INCOMPLETE COMPARISON MATRIX AND IMPROVEMENT OF AN INCONSISTENT COMPARISON: COMPUTATIONAL EXPERIMENTS Tsuneshi Obata, Shunsuke Shiraishi, Motomasa

More information

An LP-based inconsistency monitoring of pairwise comparison matrices

An LP-based inconsistency monitoring of pairwise comparison matrices arxiv:1505.01902v1 [cs.oh] 8 May 2015 An LP-based inconsistency monitoring of pairwise comparison matrices S. Bozóki, J. Fülöp W.W. Koczkodaj September 13, 2018 Abstract A distance-based inconsistency

More information

Spanning trees and logarithmic least squares optimality for complete and incomplete pairwise comparison matrices. Sándor Bozóki

Spanning trees and logarithmic least squares optimality for complete and incomplete pairwise comparison matrices. Sándor Bozóki Spanning trees and logarithmic least squares optimality for complete and incomplete pairwise comparison matrices Sándor Bozóki Institute for Computer Science and Control Hungarian Academy of Sciences (MTA

More information

Analysis of pairwise comparison matrices: an empirical research *

Analysis of pairwise comparison matrices: an empirical research * Analysis of pairwise comparison matrices: an empirical research * Sándor Bozóki Computer and Automation Research Institute, Hungarian Academy of Sciences (MTA SZTAKI); Department of Operations Research

More information

Inverse Sensitive Analysis of Pairwise Comparison Matrices

Inverse Sensitive Analysis of Pairwise Comparison Matrices Inverse Sensitive Analysis of Pairwise Comparison Matrices Kouichi TAJI Keiji Matsumoto October 18, 2005, Revised September 5, 2006 Abstract In the analytic hierarchy process (AHP), the consistency of

More information

A characterization of the Logarithmic Least Squares Method

A characterization of the Logarithmic Least Squares Method A characterization of the Logarithmic Least Squares Method László Csató arxiv:1704.05321v5 [math.oc] 16 Sep 2018 Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Laboratory

More information

Mathematical foundations of the methods for multicriterial decision making

Mathematical foundations of the methods for multicriterial decision making Mathematical Communications 2(1997), 161 169 161 Mathematical foundations of the methods for multicriterial decision making Tihomir Hunjak Abstract In this paper the mathematical foundations of the methods

More information

PROPERTIES OF A POSITIVE RECIPROCAL MATRIX AND THEIR APPLICATION TO AHP

PROPERTIES OF A POSITIVE RECIPROCAL MATRIX AND THEIR APPLICATION TO AHP Journal of the Operations Research Society of Japan Vol. 41, No. 3, September 1998 1998 The Operations Research Society of Japan PROPERTIES OF A POSITIVE RECIPROCAL MATRIX AND THEIR APPLICATION TO AHP

More information

ANALYTIC HIERARCHY PROCESS (AHP)

ANALYTIC HIERARCHY PROCESS (AHP) ANALYTIC HIERARCHY PROCESS (AHP) PAIRWISE COMPARISON Is it or less important? How much or less important is it? equal equal equal equal equal equal PAIRWISE COMPARISON Is it or less important? How much

More information

First-Level Transitivity Rule Method for Filling in Incomplete Pair-Wise Comparison Matrices in the Analytic Hierarchy Process

First-Level Transitivity Rule Method for Filling in Incomplete Pair-Wise Comparison Matrices in the Analytic Hierarchy Process Appl. Math. Inf. Sci. 8, No. 2, 459-467 (2014) 459 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.12785/amis/080202 First-Level Transitivity Rule Method for Filling

More information

REMOVING INCONSISTENCY IN PAIRWISE COMPARISON MATRIX IN THE AHP

REMOVING INCONSISTENCY IN PAIRWISE COMPARISON MATRIX IN THE AHP MULTIPLE CRITERIA DECISION MAKING Vol. 11 2016 Sławomir Jarek * REMOVING INCONSISTENCY IN PAIRWISE COMPARISON MATRIX IN THE AHP DOI: 10.22367/mcdm.2016.11.05 Abstract The Analytic Hierarchy Process (AHP)

More information

International Journal of Information Technology & Decision Making c World Scientific Publishing Company

International Journal of Information Technology & Decision Making c World Scientific Publishing Company International Journal of Information Technology & Decision Making c World Scientific Publishing Company A MIN-MAX GOAL PROGRAMMING APPROACH TO PRIORITY DERIVATION IN AHP WITH INTERVAL JUDGEMENTS DIMITRIS

More information

THE IMPACT ON SCALING ON THE PAIR-WISE COMPARISON OF THE ANALYTIC HIERARCHY PROCESS

THE IMPACT ON SCALING ON THE PAIR-WISE COMPARISON OF THE ANALYTIC HIERARCHY PROCESS ISAHP 200, Berne, Switzerland, August 2-4, 200 THE IMPACT ON SCALING ON THE PAIR-WISE COMPARISON OF THE ANALYTIC HIERARCHY PROCESS Yuji Sato Department of Policy Science, Matsusaka University 846, Kubo,

More information

Characterization of an inconsistency measure for pairwise comparison matrices

Characterization of an inconsistency measure for pairwise comparison matrices Characterization of an inconsistency measure for pairwise comparison matrices László Csató Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Laboratory on Engineering

More information

NON-NUMERICAL RANKING BASED ON PAIRWISE COMPARISONS

NON-NUMERICAL RANKING BASED ON PAIRWISE COMPARISONS NON-NUMERICAL RANKING BASED ON PAIRWISE COMPARISONS By Yun Zhai, M.Sc. A Thesis Submitted to the School of Graduate Studies in partial fulfilment of the requirements for the degree of Ph.D. Department

More information

A Group Analytic Network Process (ANP) for Incomplete Information

A Group Analytic Network Process (ANP) for Incomplete Information A Group Analytic Network Process (ANP) for Incomplete Information Kouichi TAJI Yousuke Sagayama August 5, 2004 Abstract In this paper, we propose an ANP framework for group decision-making problem with

More information

Tropical Optimization Framework for Analytical Hierarchy Process

Tropical Optimization Framework for Analytical Hierarchy Process Tropical Optimization Framework for Analytical Hierarchy Process Nikolai Krivulin 1 Sergeĭ Sergeev 2 1 Faculty of Mathematics and Mechanics Saint Petersburg State University, Russia 2 School of Mathematics

More information

Measuring transitivity of fuzzy pairwise comparison matrix

Measuring transitivity of fuzzy pairwise comparison matrix Measuring transitivity of fuzzy pairwise comparison matrix Jaroslav Ramík 1 Abstract. A pair-wise comparison matrix is the result of pair-wise comparison a powerful method in multi-criteria optimization.

More information

PREFERENCE MATRICES IN TROPICAL ALGEBRA

PREFERENCE MATRICES IN TROPICAL ALGEBRA PREFERENCE MATRICES IN TROPICAL ALGEBRA 1 Introduction Hana Tomášková University of Hradec Králové, Faculty of Informatics and Management, Rokitanského 62, 50003 Hradec Králové, Czech Republic e-mail:

More information

Axiomatizations of inconsistency indices for triads

Axiomatizations of inconsistency indices for triads Axiomatizations of inconsistency indices for triads László Csató * Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Laboratory on Engineering and Management Intelligence,

More information

A note on deriving weights from pairwise comparison ratio matrices

A note on deriving weights from pairwise comparison ratio matrices 144 European Journal of Operational Research 73 (1994) 144-149 North-Holland Theory and Methodology A note on deriving weights from pairwise comparison ratio matrices Akihiro Hashimoto Institute of Socio-Economic

More information

Metoda porównywania parami

Metoda porównywania parami Metoda porównywania parami Podejście HRE Konrad Kułakowski Akademia Górniczo-Hutnicza 24 Czerwiec 2014 Advances in the Pairwise Comparisons Method Heuristic Rating Estimation Approach Konrad Kułakowski

More information

15-18, 2011, SORRENTO,

15-18, 2011, SORRENTO, The Eleventh International Symposium on the Analytic Hierarchy Process Dr. Dmitriy BORODIN Prof. Viktor GORELIK Bert Van Vreckem ir. Wim De Bruyn Production Information Systems Lab (University College

More information

ORDER STABILITY ANALYSIS OF RECIPROCAL JUDGMENT MATRIX

ORDER STABILITY ANALYSIS OF RECIPROCAL JUDGMENT MATRIX ISAHP 003, Bali, Indonesia, August 7-9, 003 ORDER STABILITY ANALYSIS OF RECIPROCAL JUDGMENT MATRIX Mingzhe Wang a Danyi Wang b a Huazhong University of Science and Technology, Wuhan, Hubei 430074 - P.

More information

B best scales 51, 53 best MCDM method 199 best fuzzy MCDM method bound of maximum consistency 40 "Bridge Evaluation" problem

B best scales 51, 53 best MCDM method 199 best fuzzy MCDM method bound of maximum consistency 40 Bridge Evaluation problem SUBJECT INDEX A absolute-any (AA) critical criterion 134, 141, 152 absolute terms 133 absolute-top (AT) critical criterion 134, 141, 151 actual relative weights 98 additive function 228 additive utility

More information

Decision-Making with the AHP: Why is The Principal Eigenvector Necessary

Decision-Making with the AHP: Why is The Principal Eigenvector Necessary Decision-Making with the AHP: Why is The Principal Eigenvector Necessary Thomas L. Saaty Keywords: complex order, consistent, near consistent, priority, principal eigenvector Summary: We will show here

More information

Additive Consistency of Fuzzy Preference Relations: Characterization and Construction. Extended Abstract

Additive Consistency of Fuzzy Preference Relations: Characterization and Construction. Extended Abstract Additive Consistency of Fuzzy Preference Relations: Characterization and Construction F. Herrera a, E. Herrera-Viedma a, F. Chiclana b Dept. of Computer Science and Artificial Intelligence a University

More information

Axioms of the Analytic Hierarchy Process (AHP) and its Generalization to Dependence and Feedback: The Analytic Network Process (ANP)

Axioms of the Analytic Hierarchy Process (AHP) and its Generalization to Dependence and Feedback: The Analytic Network Process (ANP) Axioms of the Analytic Hierarchy Process (AHP) and its Generalization to Dependence and Feedback: The Analytic Network Process (ANP) Thomas L. Saaty Distinguished University Professor, University of Pittsburgh;

More information

Budapest Bridges Benchmarking

Budapest Bridges Benchmarking Budapest Bridges Benchmarking András Farkas Óbuda University, Faculty of Economics 1084 Budapest, Tavaszmező u. 17, Hungary e-mail: farkas.andras@kgk.uni-obuda.hu Abstract: This paper is concerned with

More information

DECISION MAKING SUPPORT AND EXPERT SYSTEMS

DECISION MAKING SUPPORT AND EXPERT SYSTEMS 325 ITHEA DECISION MAKING SUPPORT AND EXPERT SYSTEMS UTILITY FUNCTION DESIGN ON THE BASE OF THE PAIRED COMPARISON MATRIX Stanislav Mikoni Abstract: In the multi-attribute utility theory the utility functions

More information

Combinatorial Types of Tropical Eigenvector

Combinatorial Types of Tropical Eigenvector Combinatorial Types of Tropical Eigenvector arxiv:1105.55504 Ngoc Mai Tran Department of Statistics, UC Berkeley Joint work with Bernd Sturmfels 2 / 13 Tropical eigenvalues and eigenvectors Max-plus: (R,,

More information

linearly indepedent eigenvectors as the multiplicity of the root, but in general there may be no more than one. For further discussion, assume matrice

linearly indepedent eigenvectors as the multiplicity of the root, but in general there may be no more than one. For further discussion, assume matrice 3. Eigenvalues and Eigenvectors, Spectral Representation 3.. Eigenvalues and Eigenvectors A vector ' is eigenvector of a matrix K, if K' is parallel to ' and ' 6, i.e., K' k' k is the eigenvalue. If is

More information

CS 246 Review of Linear Algebra 01/17/19

CS 246 Review of Linear Algebra 01/17/19 1 Linear algebra In this section we will discuss vectors and matrices. We denote the (i, j)th entry of a matrix A as A ij, and the ith entry of a vector as v i. 1.1 Vectors and vector operations A vector

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2017/18 Part 2: Direct Methods PD Dr.

More information

Research Article Deriving Weights of Criteria from Inconsistent Fuzzy Comparison Matrices by Using the Nearest Weighted Interval Approximation

Research Article Deriving Weights of Criteria from Inconsistent Fuzzy Comparison Matrices by Using the Nearest Weighted Interval Approximation Advances in Operations Research Volume 202, Article ID 57470, 7 pages doi:0.55/202/57470 Research Article Deriving Weights of Criteria from Inconsistent Fuzzy Comparison Matrices by Using the Nearest Weighted

More information

arxiv: v2 [cs.dm] 23 Mar 2018

arxiv: v2 [cs.dm] 23 Mar 2018 When is the condition of order preservation met? Konrad Kułakowski arxiv:802.02397v2 [cs.dm] 23 Mar 208 Abstract AGH University of Science and Technology, Poland Jiří Mazurek Silesian University Opava,

More information

Normalized priority vectors for fuzzy preference relations

Normalized priority vectors for fuzzy preference relations Normalized priority vectors for fuzzy preference relations Michele Fedrizzi, Matteo Brunelli Dipartimento di Informatica e Studi Aziendali Università di Trento, Via Inama 5, TN 38100 Trento, Italy e mail:

More information

arxiv: v1 [math.oc] 14 Oct 2015

arxiv: v1 [math.oc] 14 Oct 2015 arxiv:1510.04315v1 [math.oc] 14 Oct 2015 Deriving Priorities From Inconsistent PCM using the Network Algorithms Marcin Anholcer 1 and Janos Fülöp 2 1 Poznań University of Economics, Faculty of Informatics

More information

A Straightforward Explanation of the Mathematical Foundation of the Analytic Hierarchy Process (AHP)

A Straightforward Explanation of the Mathematical Foundation of the Analytic Hierarchy Process (AHP) A Straightforward Explanation of the Mathematical Foundation of the Analytic Hierarchy Process (AHP) This is a full methodological briefing with all of the math and background from the founders of AHP

More information

Cartesian Tensors. e 2. e 1. General vector (formal definition to follow) denoted by components

Cartesian Tensors. e 2. e 1. General vector (formal definition to follow) denoted by components Cartesian Tensors Reference: Jeffreys Cartesian Tensors 1 Coordinates and Vectors z x 3 e 3 y x 2 e 2 e 1 x x 1 Coordinates x i, i 123,, Unit vectors: e i, i 123,, General vector (formal definition to

More information

5.6. PSEUDOINVERSES 101. A H w.

5.6. PSEUDOINVERSES 101. A H w. 5.6. PSEUDOINVERSES 0 Corollary 5.6.4. If A is a matrix such that A H A is invertible, then the least-squares solution to Av = w is v = A H A ) A H w. The matrix A H A ) A H is the left inverse of A and

More information

Properties of Matrices and Operations on Matrices

Properties of Matrices and Operations on Matrices Properties of Matrices and Operations on Matrices A common data structure for statistical analysis is a rectangular array or matris. Rows represent individual observational units, or just observations,

More information

Closed-Form Solution Of Absolute Orientation Using Unit Quaternions

Closed-Form Solution Of Absolute Orientation Using Unit Quaternions Closed-Form Solution Of Absolute Orientation Using Unit Berthold K. P. Horn Department of Computer and Information Sciences November 11, 2004 Outline 1 Introduction 2 3 The Problem Given: two sets of corresponding

More information

Principal Component Analysis (PCA) for Sparse High-Dimensional Data

Principal Component Analysis (PCA) for Sparse High-Dimensional Data AB Principal Component Analysis (PCA) for Sparse High-Dimensional Data Tapani Raiko, Alexander Ilin, and Juha Karhunen Helsinki University of Technology, Finland Adaptive Informatics Research Center Principal

More information

DEN: Linear algebra numerical view (GEM: Gauss elimination method for reducing a full rank matrix to upper-triangular

DEN: Linear algebra numerical view (GEM: Gauss elimination method for reducing a full rank matrix to upper-triangular form) Given: matrix C = (c i,j ) n,m i,j=1 ODE and num math: Linear algebra (N) [lectures] c phabala 2016 DEN: Linear algebra numerical view (GEM: Gauss elimination method for reducing a full rank matrix

More information

344 A. Davoodi / IJIM Vol. 1, No. 4 (2009)

344 A. Davoodi / IJIM Vol. 1, No. 4 (2009) Available online at http://ijim.srbiau.ac.ir Int. J. Industrial Mathematics Vol., No. (009) -0 On Inconsistency of a Pairise Comparison Matrix A. Davoodi Department of Mathematics, Islamic Azad University,

More information

SPECIFICATION OF THE AHP HIERARCHY AND RANK REVERSAL. Guang Xiao

SPECIFICATION OF THE AHP HIERARCHY AND RANK REVERSAL. Guang Xiao SPECIFICATION OF THE AHP HIERARCHY AND RANK REVERSAL by Guang Xiao A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Master of

More information

Notes on the Analytic Hierarchy Process * Jonathan Barzilai

Notes on the Analytic Hierarchy Process * Jonathan Barzilai Notes on the Analytic Hierarchy Process * by Jonathan Barzilai Proceedings of the NSF Design and Manufacturing Research Conference pp. 1 6, Tampa, Florida, January 2001 * Research supported in part by

More information

I = i 0,

I = i 0, Special Types of Matrices Certain matrices, such as the identity matrix 0 0 0 0 0 0 I = 0 0 0, 0 0 0 have a special shape, which endows the matrix with helpful properties The identity matrix is an example

More information

A NEW WAY TO ANALYZE PAIRED COMPARISON RULES

A NEW WAY TO ANALYZE PAIRED COMPARISON RULES A NEW WAY TO ANALYZE PAIRED COMPARISON RULES DONALD G. SAARI Abstract. The importance of paired comparisons, whether ordinal or cardinal, has led to the creation of several methodological approaches; missing,

More information

MATRIX BALANCING PROBLEM AND BINARY AHP

MATRIX BALANCING PROBLEM AND BINARY AHP Journal of the Operations Research Society of Japan 007, Vol. 50, No. 4, 55-539 MATRIX BALANCING PROBLEM AND BINARY AHP Koichi Genma Yutaka Kato Kazuyuki Sekitani Shizuoka University Hosei University Shizuoka

More information

Multi-criteria Decision Making by Incomplete Preferences

Multi-criteria Decision Making by Incomplete Preferences Journal of Uncertain Systems Vol.2, No.4, pp.255-266, 2008 Online at: www.jus.org.uk Multi-criteria Decision Making by Incomplete Preferences Lev V. Utkin Natalia V. Simanova Department of Computer Science,

More information

Conjugate Gradient (CG) Method

Conjugate Gradient (CG) Method Conjugate Gradient (CG) Method by K. Ozawa 1 Introduction In the series of this lecture, I will introduce the conjugate gradient method, which solves efficiently large scale sparse linear simultaneous

More information

DECISION MAKING BY METHOD OF KEY SUCCESS FACTORS DISCRIMINATION: KEYANP

DECISION MAKING BY METHOD OF KEY SUCCESS FACTORS DISCRIMINATION: KEYANP 9th ISAHP 007, Chile, Vina del Mar, August 3-6 007 DECISION MAKING BY METHOD OF KEY SUCCESS FACTORS DISCRIMINATION: KEYANP Prof., Dr.Sci Anatoliy Slyeptsov Donets National University, Uraine anatoliy-slyeptsov@yandex.ru

More information

Chapter 1 Matrices and Systems of Equations

Chapter 1 Matrices and Systems of Equations Chapter 1 Matrices and Systems of Equations System of Linear Equations 1. A linear equation in n unknowns is an equation of the form n i=1 a i x i = b where a 1,..., a n, b R and x 1,..., x n are variables.

More information

arxiv: v2 [math.oc] 28 Nov 2015

arxiv: v2 [math.oc] 28 Nov 2015 Rating Alternatives from Pairwise Comparisons by Solving Tropical Optimization Problems arxiv:1504.00800v2 [math.oc] 28 Nov 2015 N. Krivulin Abstract We consider problems of rating alternatives based on

More information

EA = I 3 = E = i=1, i k

EA = I 3 = E = i=1, i k MTH5 Spring 7 HW Assignment : Sec.., # (a) and (c), 5,, 8; Sec.., #, 5; Sec.., #7 (a), 8; Sec.., # (a), 5 The due date for this assignment is //7. Sec.., # (a) and (c). Use the proof of Theorem. to obtain

More information

Linear Algebra for Machine Learning. Sargur N. Srihari

Linear Algebra for Machine Learning. Sargur N. Srihari Linear Algebra for Machine Learning Sargur N. srihari@cedar.buffalo.edu 1 Overview Linear Algebra is based on continuous math rather than discrete math Computer scientists have little experience with it

More information

April 26, Applied mathematics PhD candidate, physics MA UC Berkeley. Lecture 4/26/2013. Jed Duersch. Spd matrices. Cholesky decomposition

April 26, Applied mathematics PhD candidate, physics MA UC Berkeley. Lecture 4/26/2013. Jed Duersch. Spd matrices. Cholesky decomposition Applied mathematics PhD candidate, physics MA UC Berkeley April 26, 2013 UCB 1/19 Symmetric positive-definite I Definition A symmetric matrix A R n n is positive definite iff x T Ax > 0 holds x 0 R n.

More information

Approximation algorithms for nonnegative polynomial optimization problems over unit spheres

Approximation algorithms for nonnegative polynomial optimization problems over unit spheres Front. Math. China 2017, 12(6): 1409 1426 https://doi.org/10.1007/s11464-017-0644-1 Approximation algorithms for nonnegative polynomial optimization problems over unit spheres Xinzhen ZHANG 1, Guanglu

More information

Math 443 Differential Geometry Spring Handout 3: Bilinear and Quadratic Forms This handout should be read just before Chapter 4 of the textbook.

Math 443 Differential Geometry Spring Handout 3: Bilinear and Quadratic Forms This handout should be read just before Chapter 4 of the textbook. Math 443 Differential Geometry Spring 2013 Handout 3: Bilinear and Quadratic Forms This handout should be read just before Chapter 4 of the textbook. Endomorphisms of a Vector Space This handout discusses

More information

Notes on Linear Algebra and Matrix Theory

Notes on Linear Algebra and Matrix Theory Massimo Franceschet featuring Enrico Bozzo Scalar product The scalar product (a.k.a. dot product or inner product) of two real vectors x = (x 1,..., x n ) and y = (y 1,..., y n ) is not a vector but a

More information

Group Decision-Making with Incomplete Fuzzy Linguistic Preference Relations

Group Decision-Making with Incomplete Fuzzy Linguistic Preference Relations Group Decision-Making with Incomplete Fuzzy Linguistic Preference Relations S. Alonso Department of Software Engineering University of Granada, 18071, Granada, Spain; salonso@decsai.ugr.es, F.J. Cabrerizo

More information

CONSISTENCY-DRIVEN APPROXIMATION OF A PAIRWISE COMPARISON MATRIX

CONSISTENCY-DRIVEN APPROXIMATION OF A PAIRWISE COMPARISON MATRIX KYBERNETIKA VOŁÜME» (2003), NUMBER 5, PAGES 561-568 CONSISTENCY-DRIVEN APPROXIMATION OF A PAIRWISE COMPARISON MATRIX ESTHER DOPAZO AND JACINTO GONZÁLEZ-PACHÓN The pairwise comparison method is an interesting

More information

Comparison of Judgment Scales of the Analytical Hierarchy Process - A New Approach

Comparison of Judgment Scales of the Analytical Hierarchy Process - A New Approach Comparison of Judgment Scales of the Analytical Hierarchy Process - A New Approach Klaus D. Goepel a a BPMSG Business Performance Management Singapore 2 Bedok Reservoir View #17-02, Singapore 479232 E-mail

More information

Lecture 5 Singular value decomposition

Lecture 5 Singular value decomposition Lecture 5 Singular value decomposition Weinan E 1,2 and Tiejun Li 2 1 Department of Mathematics, Princeton University, weinan@princeton.edu 2 School of Mathematical Sciences, Peking University, tieli@pku.edu.cn

More information

Complex Hadamard matrices and 3-class association schemes

Complex Hadamard matrices and 3-class association schemes Complex Hadamard matrices and 3-class association schemes Akihiro Munemasa 1 (joint work with Takuya Ikuta) 1 Graduate School of Information Sciences Tohoku University June 27, 2014 Algebraic Combinatorics:

More information

Game Theory and its Applications to Networks - Part I: Strict Competition

Game Theory and its Applications to Networks - Part I: Strict Competition Game Theory and its Applications to Networks - Part I: Strict Competition Corinne Touati Master ENS Lyon, Fall 200 What is Game Theory and what is it for? Definition (Roger Myerson, Game Theory, Analysis

More information

Math 5630: Iterative Methods for Systems of Equations Hung Phan, UMass Lowell March 22, 2018

Math 5630: Iterative Methods for Systems of Equations Hung Phan, UMass Lowell March 22, 2018 1 Linear Systems Math 5630: Iterative Methods for Systems of Equations Hung Phan, UMass Lowell March, 018 Consider the system 4x y + z = 7 4x 8y + z = 1 x + y + 5z = 15. We then obtain x = 1 4 (7 + y z)

More information

6. Iterative Methods for Linear Systems. The stepwise approach to the solution...

6. Iterative Methods for Linear Systems. The stepwise approach to the solution... 6 Iterative Methods for Linear Systems The stepwise approach to the solution Miriam Mehl: 6 Iterative Methods for Linear Systems The stepwise approach to the solution, January 18, 2013 1 61 Large Sparse

More information

Graph Models The PageRank Algorithm

Graph Models The PageRank Algorithm Graph Models The PageRank Algorithm Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2013 The PageRank Algorithm I Invented by Larry Page and Sergey Brin around 1998 and

More information

A NEW WAY TO ANALYZE PAIRED COMPARISONS

A NEW WAY TO ANALYZE PAIRED COMPARISONS A NEW WAY TO ANALYZE PAIRED COMPARISONS DONALD G. SAARI Abstract. The importance of paired comparisons, whether ordinal or cardinal, has motivated the creation of several methodological approaches; missing,

More information

Decision-making for the best selection of suppliers by using minor ANP

Decision-making for the best selection of suppliers by using minor ANP J Intell Manuf (202) 23:27 278 DOI 0.007/s0845-0-0563-z Decision-making for the best selection of suppliers by using minor ANP Toshimasa Ozaki Mei-Chen Lo Eizo Kinoshita Gwo-Hshiung Tzeng Received: 3 July

More information

ApplyingDecisionMakingWithAnalyticHierarchyProcessAHPforMaintenanceStrategySelectionofFlexblePavement

ApplyingDecisionMakingWithAnalyticHierarchyProcessAHPforMaintenanceStrategySelectionofFlexblePavement Global Journal of Researches in ngineering: Civil And Structural ngineering Volume 16 Issue 5 Version 1.0 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc.

More information

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming CSC2411 - Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming Notes taken by Mike Jamieson March 28, 2005 Summary: In this lecture, we introduce semidefinite programming

More information

Sampling and incomplete network data

Sampling and incomplete network data 1/58 Sampling and incomplete network data 567 Statistical analysis of social networks Peter Hoff Statistics, University of Washington 2/58 Network sampling methods It is sometimes difficult to obtain a

More information

Distributed Computation of Minimum Time Consensus for Multi-Agent Systems

Distributed Computation of Minimum Time Consensus for Multi-Agent Systems Distributed Computation of Minimum Time Consensus for Multi-Agent Systems Ameer Mulla, Deepak Patil, Debraj Chakraborty IIT Bombay, India Conference on Decision and Control 2014 Los Angeles, California,

More information

MTH 309 Supplemental Lecture Notes Based on Robert Messer, Linear Algebra Gateway to Mathematics

MTH 309 Supplemental Lecture Notes Based on Robert Messer, Linear Algebra Gateway to Mathematics MTH 309 Supplemental Lecture Notes Based on Robert Messer, Linear Algebra Gateway to Mathematics Ulrich Meierfrankenfeld Department of Mathematics Michigan State University East Lansing MI 48824 meier@math.msu.edu

More information

MATRICES. a m,1 a m,n A =

MATRICES. a m,1 a m,n A = MATRICES Matrices are rectangular arrays of real or complex numbers With them, we define arithmetic operations that are generalizations of those for real and complex numbers The general form a matrix of

More information

COURSE Iterative methods for solving linear systems

COURSE Iterative methods for solving linear systems COURSE 0 4.3. Iterative methods for solving linear systems Because of round-off errors, direct methods become less efficient than iterative methods for large systems (>00 000 variables). An iterative scheme

More information

Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor

Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor Somnath Bhowmick Materials Science and Engineering, IIT Kanpur April 6, 2018 Tensile test and Hooke s Law Upto certain strain (0.75),

More information

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2.

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2. APPENDIX A Background Mathematics A. Linear Algebra A.. Vector algebra Let x denote the n-dimensional column vector with components 0 x x 2 B C @. A x n Definition 6 (scalar product). The scalar product

More information

I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Introduction Edps/Psych/Stat/ 584 Applied Multivariate Statistics Carolyn J Anderson Department of Educational Psychology I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN c Board of Trustees,

More information

Distributed Optimization over Networks Gossip-Based Algorithms

Distributed Optimization over Networks Gossip-Based Algorithms Distributed Optimization over Networks Gossip-Based Algorithms Angelia Nedić angelia@illinois.edu ISE Department and Coordinated Science Laboratory University of Illinois at Urbana-Champaign Outline Random

More information

Quick Tour of Linear Algebra and Graph Theory

Quick Tour of Linear Algebra and Graph Theory Quick Tour of Linear Algebra and Graph Theory CS224W: Social and Information Network Analysis Fall 2014 David Hallac Based on Peter Lofgren, Yu Wayne Wu, and Borja Pelato s previous versions Matrices and

More information

Convex Optimization CMU-10725

Convex Optimization CMU-10725 Convex Optimization CMU-10725 Simulated Annealing Barnabás Póczos & Ryan Tibshirani Andrey Markov Markov Chains 2 Markov Chains Markov chain: Homogen Markov chain: 3 Markov Chains Assume that the state

More information

Matrix Arithmetic. j=1

Matrix Arithmetic. j=1 An m n matrix is an array A = Matrix Arithmetic a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn of real numbers a ij An m n matrix has m rows and n columns a ij is the entry in the i-th row and j-th column

More information

Note on Deriving Weights from Pairwise Comparison Matrices in AHP

Note on Deriving Weights from Pairwise Comparison Matrices in AHP M19N38 2008/8/15 12:18 page 507 #1 Information and Management Sciences Volume 19, Number 3, pp. 507-517, 2008 Note on Deriving Weights from Pairwise Comparison Matrices in AHP S. K. Jason Chang Hsiu-li

More information

Linear Systems and Matrices

Linear Systems and Matrices Department of Mathematics The Chinese University of Hong Kong 1 System of m linear equations in n unknowns (linear system) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.......

More information

Incentive-Based Pricing for Network Games with Complete and Incomplete Information

Incentive-Based Pricing for Network Games with Complete and Incomplete Information Incentive-Based Pricing for Network Games with Complete and Incomplete Information Hongxia Shen and Tamer Başar Coordinated Science Laboratory University of Illinois at Urbana-Champaign hshen1, tbasar@control.csl.uiuc.edu

More information

An impossibility theorem for paired comparisons

An impossibility theorem for paired comparisons An impossibility theorem for paired comparisons László Csató Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Laboratory on Engineering and Management Intelligence,

More information

Boolean Inner-Product Spaces and Boolean Matrices

Boolean Inner-Product Spaces and Boolean Matrices Boolean Inner-Product Spaces and Boolean Matrices Stan Gudder Department of Mathematics, University of Denver, Denver CO 80208 Frédéric Latrémolière Department of Mathematics, University of Denver, Denver

More information

Assignment 11 (C + C ) = (C + C ) = (C + C) i(c C ) ] = i(c C) (AB) = (AB) = B A = BA 0 = [A, B] = [A, B] = (AB BA) = (AB) AB

Assignment 11 (C + C ) = (C + C ) = (C + C) i(c C ) ] = i(c C) (AB) = (AB) = B A = BA 0 = [A, B] = [A, B] = (AB BA) = (AB) AB Arfken 3.4.6 Matrix C is not Hermition. But which is Hermitian. Likewise, Assignment 11 (C + C ) = (C + C ) = (C + C) [ i(c C ) ] = i(c C ) = i(c C) = i ( C C ) Arfken 3.4.9 The matrices A and B are both

More information

MATH 320: PRACTICE PROBLEMS FOR THE FINAL AND SOLUTIONS

MATH 320: PRACTICE PROBLEMS FOR THE FINAL AND SOLUTIONS MATH 320: PRACTICE PROBLEMS FOR THE FINAL AND SOLUTIONS There will be eight problems on the final. The following are sample problems. Problem 1. Let F be the vector space of all real valued functions on

More information

COMPARISON OF A DOZEN AHP TECHNIQUES FOR GLOBAL VECTORS IN MULTIPERSON DECISION MAKING AND COMPLEX HIERARCHY

COMPARISON OF A DOZEN AHP TECHNIQUES FOR GLOBAL VECTORS IN MULTIPERSON DECISION MAKING AND COMPLEX HIERARCHY COMPARISON OF A DOZEN AHP TECHNIQUES FOR GLOBAL VECTORS IN MULTIPERSON DECISION MAKING AND COMPLEX HIERARCHY Stan Lipovetsky GfK Custom Research North America Minneapolis, MN, USA E-mail: stan.lipovetsky@gfk.com

More information

Clustering K-means. Machine Learning CSE546. Sham Kakade University of Washington. November 15, Review: PCA Start: unsupervised learning

Clustering K-means. Machine Learning CSE546. Sham Kakade University of Washington. November 15, Review: PCA Start: unsupervised learning Clustering K-means Machine Learning CSE546 Sham Kakade University of Washington November 15, 2016 1 Announcements: Project Milestones due date passed. HW3 due on Monday It ll be collaborative HW2 grades

More information

Recognizing single-peaked preferences on aggregated choice data

Recognizing single-peaked preferences on aggregated choice data Recognizing single-peaked preferences on aggregated choice data Smeulders B. KBI_1427 Recognizing Single-Peaked Preferences on Aggregated Choice Data Smeulders, B. Abstract Single-Peaked preferences play

More information