On-the-Fly Model Checking for Extended Action-Based Probabilistic Operators

Size: px
Start display at page:

Download "On-the-Fly Model Checking for Extended Action-Based Probabilistic Operators"

Transcription

1 On-the-Fly Model Checking for Extended Action-Based Probabilistic Operators Radu Mateescu and José Ignacio Requeno Inria Grenoble and LIG / Convecs

2 SPIN Eindhoven, March Context Concurrent value-passing systems Action-based, branching-time setting Process calculi, bisimulations Objectives Handle actions, data, costs, discrete time, probabilities Provide on-the-fly quantitative analysis Integrate into the CADP toolbox ( SENSATION project FP

3 SPIN Eindhoven, March Probabilistic Transition Systems (value-passing)

4 SPIN Eindhoven, March Related Work Action-based probabilistic logics PML (probabilistic HML) on PTSs [Larsen-Skou-91] GPL (probabilistic Lμ 1 ) [Cleaveland-Iyer-Narasimba-05] On-the-fly verification PCTL [Latella-Loreti-Massink-14] Our contributions Extension of (action-based) Until PCTL operators Description of complex paths in the PTS Data handling (computation of costs over paths) On-the-fly verification on PTSs

5 SPIN Eindhoven, March Outline Glimpse of MCL (Model Checking Language) Regular probabilistic operator On-the-fly model checking Data-handling extensions Experiments and peak cost analysis Perspectives

6 SPIN Eindhoven, March MCL: Model Checking Language (dataless fragment) Action formulas α ::= false a α α 1 V α 2 Regular formulas (ACTL) boolean op. (PDL) β ::= α β 1.β 2 β 1 β 2 β* regular op. if ϕ then β 1 else β 2 end if conditional op. State formulas (PDL + L ) ϕ ::= false ϕ ϕ 1 V ϕ 2 boolean op. < β > ϕ [ β ] ϕ modal op. Y Y. ϕ νy. ϕ fixed point op.

7 SPIN Eindhoven, March Some Derived Operators Derived regular operators: β + = β. β* nil = false* if ϕ then β end if = if ϕ then β else nil end if transitive closure empty sequence if-then op. ϕ? = if not ϕ then false end if PDL testing op. CTL Until operator: E [ ϕ 1 U ϕ 2 ] = < (ϕ 1?. true)*. ϕ 2? > true

8 SPIN Eindhoven, March Probabilistic Regular Operator Syntax: { β } op p where op { <, <=, >, >=, = } Semantics: P op p (β) = μ (Cyl (β)) op p = β s 0 β s0 a 0 p 0 s 1 s k a k p k s k+1 = β (p 0 p k ) op p β Cyl (β)

9 SPIN Eindhoven, March Encoding Probabilistic Until Operators PCTL pure probabilistic Until [ϕ 1 U ϕ 2 ] >= p = { (ϕ 1?. true)*. ϕ 2? } >= p PACTL pure probabilistic Until [ϕ 1 α1 U ϕ 2 ] >= p = { (ϕ 1?. α 1 )*. ϕ 2? } >= p [ϕ 1 α1 U α2 ϕ 2 ] >= p = { (ϕ 1?. α 1 )*. ϕ 1?. α 2. ϕ 2? } >= p

10 SPIN Eindhoven, March Example { PUT 0. (not (PUT 0 or GET 0 ))*. GET 0 } >=

11 SPIN Eindhoven, March On-the-Fly Model Checking (syntactic steps) < PUT 0. (not (PUT 0 or GET 0 ))*. GET 0 > true MCL X 1 = < PUT 0. (not (PUT 0 or GET 0 ))*. GET 0 > X 2 X 2 = true PDLR elimination of regular operators X 1 = < PUT 0 > X 3 X 2 = true determinization HMLR [Larsen-88] X 3 = < GET 0 > X 2 or < not (PUT 0 or GET 0 ) > X 3

12 SPIN Eindhoven, March On-the-Fly Model Checking (semantic steps) X 1 = < PUT 0 > X 3 X 2 = true X 3 = < GET 0 > X 2 or < not (PUT 0 or GET 0 ) > X 3 synchronous products of HMLR and PTS BES for pruning unreachable suffixes HMLR Z 1,s = s PUT0 p s p Z 3,s Z 2,s = 1.0 Z 3,s = s GET0 p s p Z 2,s + s A p s p Z 3,s LES A PUT 0, GET 0 Y 1,s = V s PUT0 s Y 3,s Y 2,s = true Y 3,s = V s GET0 s Y 2,s or V s A s Y 3,s BES A PUT 0, GET 0

13 SPIN Eindhoven, March Local LES & BES 0.8 Resolution Z 1,0 = 0.5 Z 3,1 = Z 2,s = 1.0 Z 3,1 = Z 2,0 + Z 3,3 Z 3,3 = 0.8 Z 2,2 + Z 3,1 0.8 LES represented as Signal Flow Graph BES represented as Boolean Graph forward exploration of dependencies backward propagation / substitution

14 SPIN Eindhoven, March Data-Handling Extensions PTS for value-passing systems data-carrying actions Action predicates of MCL { c!e?x:t... where b } c v 1 v n p Data-handling probabilistic regular operator { β } op p where β Is built over action predicates Enables data capture and propagation

15 SPIN Eindhoven, March Counter-Based Regular Operators β ::= β { e } iteration e times β { e } iteration e times β { e 1 e 2 } iteration between e 1 and e 2 times for n:nat from e 1 to e 2 step e 3 stepwise iteration do β end for

16 SPIN Eindhoven, March Data-Handling Examples Probability of P i s first access to its critical section { { NCS?i:Nat }. (not { CS!ENTER })*. { CS!ENTER!i } } >= 0.5 PCTL full probabilistic Until data capture and propagation [ϕ 1 U <= t ϕ 2 ] >= p = { (ϕ 1?. true) { t }. ϕ 2? } >= p But: reasoning about weights (costs, energy,...) requires more expressive regular operators

17 SPIN Eindhoven, March Generalized Iteration Operators iteration parameter return parameter loop (x:t:=e 0 ) : (x :T ) in β end loop body of the loop continue (e) start next iteration and set x to e exit (e ) terminate the loop and set x to e

18 SPIN Eindhoven, March Encoding of Regular Operators β* = loop exit β. continue end loop β+ = loop β. (exit continue) end loop β { e 1 e 2 } = loop (c 1 :nat:=e 1, c 2 :nat:=e 2 e 1 ) in if c 1 > 0 then β. continue (c 1 1, c 2 ) elsif c 2 > 0 then exit β. continue (c 1, c 2 1) else exit end if end loop

19 SPIN Eindhoven, March On-the-Fly Verification Method (Evaluator 4.0) LNT specification translation MCL formula implicit LTS Caesar_Solve compilation parameterized HMLR encoding parameterized BES & LES optimisation On-the-fly activities Open/Caesar environment instantiation & resolution verdict & diagnostic

20 SPIN Eindhoven, March Case Study: Mutual Exclusion Protocols [Mateescu-Serwe-13] N concurrent processes competing for a shared resource Accesses to shared variables (read/write/tas/cas ) NUMA (caches/local/remote) various latencies Four sections executed cyclically Non critical section Entry section Critical section Exit section // do not use the resource // request access to the resource // access the resource // release the resource Five protocols (CLH, MCS, BL, TAS, TTAS) with N 4 PTS with equal probabilities for neighbour transitions

21 SPIN Eindhoven, March Overtaking Degree (for starvation-free protocols) Sequence with d overtakes of P i by P j : true*. NCS (i). (not MEM (i))*. MEM (i). ( for k:nat from 0 to N-1 do (not CS (i))*. MEM (k) end for. (not CS)*. CS (j) ) { d } Maximum value of d: overtaking degree

22 SPIN Eindhoven, March Overtaking Degree (BL protocol probability that Pj overtakes Pi d times) higher priority (lower index) processes have better overtaking chances Pj_Pi: Pj overtakes Pi d

23 SPIN Eindhoven, March Memory Latency until Critical Section Sequence with memory latency max for P i : (not NCS (i))*. NCS (i). loop (cost:nat := 0) in (not CS (i))*. if cost < max then { MEM?c:nat!i }. continue (cost + c) else exit end if end loop. CS (i)

24 Memory Latency (probability to access the CS with a memory latency max) max SPIN Eindhoven, March

25 SPIN Eindhoven, March Analysis of Peak Cost Sequences 1. specify the desired sequence as β (cost) 2. if sequences with peak cost are finite then 3. else Check < β (cost) > true using standard on-the-fly model checking Use dichotomic search to determine peak cost Check { β (peak) } op p to get the probability of peak cost sequence Check { β (cost) } op p for variable cost values

26 SPIN Eindhoven, March Perspectives Extend MCL and the model checker User-defined types and functions Connect to IPCs [Coste-Hermanns-et-al-10] Extend the approach to handle infinite sequences using the < β operator of MCL Enhance the back-end verification engine Distributed resolution of BESs Connection to the distributed MUMPS LES solver Further experiments Compare with (explicit-state) PRISM on PCTL formulas

27 SPIN Eindhoven, March Thank you Further information

On-the-Fly Model Checking for Extended Action-Based Probabilistic Operators

On-the-Fly Model Checking for Extended Action-Based Probabilistic Operators On-the-Fly Model Checking for Extended Action-Based Probabilistic Operators Radu Mateescu, José Requeno To cite this version: Radu Mateescu, José Requeno. On-the-Fly Model Checking for Extended Action-Based

More information

A Brief Introduction to Model Checking

A Brief Introduction to Model Checking A Brief Introduction to Model Checking Jan. 18, LIX Page 1 Model Checking A technique for verifying finite state concurrent systems; a benefit on this restriction: largely automatic; a problem to fight:

More information

Abstractions and Decision Procedures for Effective Software Model Checking

Abstractions and Decision Procedures for Effective Software Model Checking Abstractions and Decision Procedures for Effective Software Model Checking Prof. Natasha Sharygina The University of Lugano, Carnegie Mellon University Microsoft Summer School, Moscow, July 2011 Lecture

More information

Dynamic Semantics. Dynamic Semantics. Operational Semantics Axiomatic Semantics Denotational Semantic. Operational Semantics

Dynamic Semantics. Dynamic Semantics. Operational Semantics Axiomatic Semantics Denotational Semantic. Operational Semantics Dynamic Semantics Operational Semantics Denotational Semantic Dynamic Semantics Operational Semantics Operational Semantics Describe meaning by executing program on machine Machine can be actual or simulated

More information

ESE601: Hybrid Systems. Introduction to verification

ESE601: Hybrid Systems. Introduction to verification ESE601: Hybrid Systems Introduction to verification Spring 2006 Suggested reading material Papers (R14) - (R16) on the website. The book Model checking by Clarke, Grumberg and Peled. What is verification?

More information

Formal Verification Techniques. Riccardo Sisto, Politecnico di Torino

Formal Verification Techniques. Riccardo Sisto, Politecnico di Torino Formal Verification Techniques Riccardo Sisto, Politecnico di Torino State exploration State Exploration and Theorem Proving Exhaustive exploration => result is certain (correctness or noncorrectness proof)

More information

Overview. overview / 357

Overview. overview / 357 Overview overview6.1 Introduction Modelling parallel systems Linear Time Properties Regular Properties Linear Temporal Logic (LTL) Computation Tree Logic syntax and semantics of CTL expressiveness of CTL

More information

T Reactive Systems: Temporal Logic LTL

T Reactive Systems: Temporal Logic LTL Tik-79.186 Reactive Systems 1 T-79.186 Reactive Systems: Temporal Logic LTL Spring 2005, Lecture 4 January 31, 2005 Tik-79.186 Reactive Systems 2 Temporal Logics Temporal logics are currently the most

More information

Chapter 4: Computation tree logic

Chapter 4: Computation tree logic INFOF412 Formal verification of computer systems Chapter 4: Computation tree logic Mickael Randour Formal Methods and Verification group Computer Science Department, ULB March 2017 1 CTL: a specification

More information

MODEL CHECKING. Arie Gurfinkel

MODEL CHECKING. Arie Gurfinkel 1 MODEL CHECKING Arie Gurfinkel 2 Overview Kripke structures as models of computation CTL, LTL and property patterns CTL model-checking and counterexample generation State of the Art Model-Checkers 3 SW/HW

More information

Double Header. Model Checking. Model Checking. Overarching Plan. Take-Home Message. Spoiler Space. Topic: (Generic) Model Checking

Double Header. Model Checking. Model Checking. Overarching Plan. Take-Home Message. Spoiler Space. Topic: (Generic) Model Checking Double Header Model Checking #1 Two Lectures Model Checking SoftwareModel Checking SLAM and BLAST Flying Boxes It is traditional to describe this stuff (especially SLAM and BLAST) with high-gloss animation

More information

Computer-Aided Program Design

Computer-Aided Program Design Computer-Aided Program Design Spring 2015, Rice University Unit 3 Swarat Chaudhuri February 5, 2015 Temporal logic Propositional logic is a good language for describing properties of program states. However,

More information

Timo Latvala. February 4, 2004

Timo Latvala. February 4, 2004 Reactive Systems: Temporal Logic LT L Timo Latvala February 4, 2004 Reactive Systems: Temporal Logic LT L 8-1 Temporal Logics Temporal logics are currently the most widely used specification formalism

More information

Automata-Theoretic Model Checking of Reactive Systems

Automata-Theoretic Model Checking of Reactive Systems Automata-Theoretic Model Checking of Reactive Systems Radu Iosif Verimag/CNRS (Grenoble, France) Thanks to Tom Henzinger (IST, Austria), Barbara Jobstmann (CNRS, Grenoble) and Doron Peled (Bar-Ilan University,

More information

Model Checking. Boris Feigin March 9, University College London

Model Checking. Boris Feigin March 9, University College London b.feigin@cs.ucl.ac.uk University College London March 9, 2005 Outline 1 2 Techniques Symbolic 3 Software 4 Vs. Deductive Verification Summary Further Reading In a nutshell... Model checking is a collection

More information

The Expressivity of Universal Timed CCP: Undecidability of Monadic FLTL and Closure Operators for Security

The Expressivity of Universal Timed CCP: Undecidability of Monadic FLTL and Closure Operators for Security The Expressivity of Universal Timed CCP: Undecidability of Monadic FLTL and Closure Operators for Security Carlos Olarte and Frank D. Valencia INRIA /CNRS and LIX, Ecole Polytechnique Motivation Concurrent

More information

Model Checking: An Introduction

Model Checking: An Introduction Model Checking: An Introduction Meeting 3, CSCI 5535, Spring 2013 Announcements Homework 0 ( Preliminaries ) out, due Friday Saturday This Week Dive into research motivating CSCI 5535 Next Week Begin foundations

More information

Compositional Verification of Asynchronous Concurrent Systems using CADP (extended version)

Compositional Verification of Asynchronous Concurrent Systems using CADP (extended version) Compositional Verification of Asynchronous Concurrent Systems using CADP (extended version) Hubert Garavel, Frédéric Lang, Radu Mateescu To cite this version: Hubert Garavel, Frédéric Lang, Radu Mateescu.

More information

Software Verification using Predicate Abstraction and Iterative Refinement: Part 1

Software Verification using Predicate Abstraction and Iterative Refinement: Part 1 using Predicate Abstraction and Iterative Refinement: Part 1 15-414 Bug Catching: Automated Program Verification and Testing Sagar Chaki November 28, 2011 Outline Overview of Model Checking Creating Models

More information

Software Verification

Software Verification Software Verification Grégoire Sutre LaBRI, University of Bordeaux, CNRS, France Summer School on Verification Technology, Systems & Applications September 2008 Grégoire Sutre Software Verification VTSA

More information

Temporal Logic of Actions

Temporal Logic of Actions Advanced Topics in Distributed Computing Dominik Grewe Saarland University March 20, 2008 Outline Basic Concepts Transition Systems Temporal Operators Fairness Introduction Definitions Example TLC - A

More information

Helsinki University of Technology Laboratory for Theoretical Computer Science Research Reports 99

Helsinki University of Technology Laboratory for Theoretical Computer Science Research Reports 99 Helsinki University of Technology Laboratory for Theoretical Computer Science Research Reports 99 Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 99 Espoo 2005 HUT-TCS-A99

More information

CS 267: Automated Verification. Lecture 1: Brief Introduction. Transition Systems. Temporal Logic LTL. Instructor: Tevfik Bultan

CS 267: Automated Verification. Lecture 1: Brief Introduction. Transition Systems. Temporal Logic LTL. Instructor: Tevfik Bultan CS 267: Automated Verification Lecture 1: Brief Introduction. Transition Systems. Temporal Logic LTL. Instructor: Tevfik Bultan What do these people have in common? 2013 Leslie Lamport 2007 Clarke, Edmund

More information

Probabilistic Model Checking Michaelmas Term Dr. Dave Parker. Department of Computer Science University of Oxford

Probabilistic Model Checking Michaelmas Term Dr. Dave Parker. Department of Computer Science University of Oxford Probabilistic Model Checking Michaelmas Term 2011 Dr. Dave Parker Department of Computer Science University of Oxford Overview Temporal logic Non-probabilistic temporal logic CTL Probabilistic temporal

More information

Linear Temporal Logic and Büchi Automata

Linear Temporal Logic and Büchi Automata Linear Temporal Logic and Büchi Automata Yih-Kuen Tsay Department of Information Management National Taiwan University FLOLAC 2009 Yih-Kuen Tsay (SVVRL @ IM.NTU) Linear Temporal Logic and Büchi Automata

More information

3-Valued Abstraction-Refinement

3-Valued Abstraction-Refinement 3-Valued Abstraction-Refinement Sharon Shoham Academic College of Tel-Aviv Yaffo 1 Model Checking An efficient procedure that receives: A finite-state model describing a system A temporal logic formula

More information

Temporal logics and explicit-state model checking. Pierre Wolper Université de Liège

Temporal logics and explicit-state model checking. Pierre Wolper Université de Liège Temporal logics and explicit-state model checking Pierre Wolper Université de Liège 1 Topics to be covered Introducing explicit-state model checking Finite automata on infinite words Temporal Logics and

More information

Model checking the basic modalities of CTL with Description Logic

Model checking the basic modalities of CTL with Description Logic Model checking the basic modalities of CTL with Description Logic Shoham Ben-David Richard Trefler Grant Weddell David R. Cheriton School of Computer Science University of Waterloo Abstract. Model checking

More information

Model Checking. Temporal Logic. Fifth International Symposium in Programming, volume. of concurrent systems in CESAR. In Proceedings of the

Model Checking. Temporal Logic. Fifth International Symposium in Programming, volume. of concurrent systems in CESAR. In Proceedings of the Sérgio Campos, Edmund Why? Advantages: No proofs Fast Counter-examples No problem with partial specifications can easily express many concurrency properties Main Disadvantage: State Explosion Problem Too

More information

A Tableau Calculus for Minimal Modal Model Generation

A Tableau Calculus for Minimal Modal Model Generation M4M 2011 A Tableau Calculus for Minimal Modal Model Generation Fabio Papacchini 1 and Renate A. Schmidt 2 School of Computer Science, University of Manchester Abstract Model generation and minimal model

More information

Temporal Logic Model Checking

Temporal Logic Model Checking 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 1 Temporal Logic Model Checking Thomas Wahl Computing Laboratory, Oxford University 18 Feb, 2009 Thomas Wahl, Oxford University

More information

Communication and Concurrency: CCS. R. Milner, A Calculus of Communicating Systems, 1980

Communication and Concurrency: CCS. R. Milner, A Calculus of Communicating Systems, 1980 Communication and Concurrency: CCS R. Milner, A Calculus of Communicating Systems, 1980 Why calculi? Prove properties on programs and languages Principle: tiny syntax, small semantics, to be handled on

More information

Lecture Notes on Emptiness Checking, LTL Büchi Automata

Lecture Notes on Emptiness Checking, LTL Büchi Automata 15-414: Bug Catching: Automated Program Verification Lecture Notes on Emptiness Checking, LTL Büchi Automata Matt Fredrikson André Platzer Carnegie Mellon University Lecture 18 1 Introduction We ve seen

More information

Computation Tree Logic

Computation Tree Logic Computation Tree Logic Hao Zheng Department of Computer Science and Engineering University of South Florida Tampa, FL 33620 Email: zheng@cse.usf.edu Phone: (813)974-4757 Fax: (813)974-5456 Hao Zheng (CSE,

More information

The TLA + proof system

The TLA + proof system The TLA + proof system Stephan Merz Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport INRIA Nancy & INRIA-MSR Joint Centre, France Amir Pnueli Memorial Symposium New York University, May 8, 2010 Stephan

More information

Model Checking & Program Analysis

Model Checking & Program Analysis Model Checking & Program Analysis Markus Müller-Olm Dortmund University Overview Introduction Model Checking Flow Analysis Some Links between MC and FA Conclusion Apology for not giving proper credit to

More information

Temporal & Modal Logic. Acronyms. Contents. Temporal Logic Overview Classification PLTL Syntax Semantics Identities. Concurrency Model Checking

Temporal & Modal Logic. Acronyms. Contents. Temporal Logic Overview Classification PLTL Syntax Semantics Identities. Concurrency Model Checking Temporal & Modal Logic E. Allen Emerson Presenter: Aly Farahat 2/12/2009 CS5090 1 Acronyms TL: Temporal Logic BTL: Branching-time Logic LTL: Linear-Time Logic CTL: Computation Tree Logic PLTL: Propositional

More information

Semantic Equivalences and the. Verification of Infinite-State Systems 1 c 2004 Richard Mayr

Semantic Equivalences and the. Verification of Infinite-State Systems 1 c 2004 Richard Mayr Semantic Equivalences and the Verification of Infinite-State Systems Richard Mayr Department of Computer Science Albert-Ludwigs-University Freiburg Germany Verification of Infinite-State Systems 1 c 2004

More information

Verifying Randomized Distributed Algorithms with PRISM

Verifying Randomized Distributed Algorithms with PRISM Verifying Randomized Distributed Algorithms with PRISM Marta Kwiatkowska, Gethin Norman, and David Parker University of Birmingham, Birmingham B15 2TT, United Kingdom {M.Z.Kwiatkowska,G.Norman,D.A.Parker}@cs.bham.ac.uk

More information

Modal and Temporal Logics

Modal and Temporal Logics Modal and Temporal Logics Colin Stirling School of Informatics University of Edinburgh July 23, 2003 Why modal and temporal logics? 1 Computational System Modal and temporal logics Operational semantics

More information

Communication and Concurrency: CCS

Communication and Concurrency: CCS Communication and Concurrency: CCS R. Milner, A Calculus of Communicating Systems, 1980 cours SSDE Master 1 Why calculi? Prove properties on programs and languages Principle: tiny syntax, small semantics,

More information

Towards Algorithmic Synthesis of Synchronization for Shared-Memory Concurrent Programs

Towards Algorithmic Synthesis of Synchronization for Shared-Memory Concurrent Programs Towards Algorithmic Synthesis of Synchronization for Shared-Memory Concurrent Programs Roopsha Samanta The University of Texas at Austin July 6, 2012 Roopsha Samanta Algorithmic Synthesis of Synchronization

More information

Decidability of SHI with transitive closure of roles

Decidability of SHI with transitive closure of roles 1/20 Decidability of SHI with transitive closure of roles Chan LE DUC INRIA Grenoble Rhône-Alpes - LIG 2/20 Example : Transitive Closure in Concept Axioms Devices have as their direct part a battery :

More information

Chapter 6: Computation Tree Logic

Chapter 6: Computation Tree Logic Chapter 6: Computation Tree Logic Prof. Ali Movaghar Verification of Reactive Systems Outline We introduce Computation Tree Logic (CTL), a branching temporal logic for specifying system properties. A comparison

More information

Reasoning about Time and Reliability

Reasoning about Time and Reliability Reasoning about Time and Reliability Probabilistic CTL model checking Daniel Bruns Institut für theoretische Informatik Universität Karlsruhe 13. Juli 2007 Seminar Theorie und Anwendung von Model Checking

More information

Operational Semantics

Operational Semantics Operational Semantics Semantics and applications to verification Xavier Rival École Normale Supérieure Xavier Rival Operational Semantics 1 / 50 Program of this first lecture Operational semantics Mathematical

More information

Improper Nesting Example

Improper Nesting Example Improper Nesting Example One of the limits on the use of parbegin/parend, and any related constructs, is that the program involved must be properly nested. Not all programs are. For example, consider the

More information

Logic Model Checking

Logic Model Checking Logic Model Checking Lecture Notes 10:18 Caltech 101b.2 January-March 2004 Course Text: The Spin Model Checker: Primer and Reference Manual Addison-Wesley 2003, ISBN 0-321-22862-6, 608 pgs. the assignment

More information

Theoretical Foundations of the UML

Theoretical Foundations of the UML Theoretical Foundations of the UML Lecture 17+18: A Logic for MSCs Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group moves.rwth-aachen.de/teaching/ws-1718/fuml/ 5.

More information

Automata-based Verification - III

Automata-based Verification - III CS3172: Advanced Algorithms Automata-based Verification - III Howard Barringer Room KB2.20/22: email: howard.barringer@manchester.ac.uk March 2005 Third Topic Infinite Word Automata Motivation Büchi Automata

More information

Petri nets. s 1 s 2. s 3 s 4. directed arcs.

Petri nets. s 1 s 2. s 3 s 4. directed arcs. Petri nets Petri nets Petri nets are a basic model of parallel and distributed systems (named after Carl Adam Petri). The basic idea is to describe state changes in a system with transitions. @ @R s 1

More information

Automatic Verification of Parameterized Data Structures

Automatic Verification of Parameterized Data Structures Automatic Verification of Parameterized Data Structures Jyotirmoy V. Deshmukh, E. Allen Emerson and Prateek Gupta The University of Texas at Austin The University of Texas at Austin 1 Outline Motivation

More information

Axiomatic Semantics. Stansifer Ch 2.4, Ch. 9 Winskel Ch.6 Slonneger and Kurtz Ch. 11 CSE

Axiomatic Semantics. Stansifer Ch 2.4, Ch. 9 Winskel Ch.6 Slonneger and Kurtz Ch. 11 CSE Axiomatic Semantics Stansifer Ch 2.4, Ch. 9 Winskel Ch.6 Slonneger and Kurtz Ch. 11 CSE 6341 1 Outline Introduction What are axiomatic semantics? First-order logic & assertions about states Results (triples)

More information

Model Checking, Theorem Proving, and Abstract Interpretation: The Convergence of Formal Verification Technologies

Model Checking, Theorem Proving, and Abstract Interpretation: The Convergence of Formal Verification Technologies Model Checking, Theorem Proving, and Abstract Interpretation: The Convergence of Formal Verification Technologies Tom Henzinger EPFL Three Verification Communities Model checking: -automatic, but inefficient

More information

An Informal introduction to Formal Verification

An Informal introduction to Formal Verification An Informal introduction to Formal Verification Osman Hasan National University of Sciences and Technology (NUST), Islamabad, Pakistan O. Hasan Formal Verification 2 Agenda q Formal Verification Methods,

More information

The algorithmic analysis of hybrid system

The algorithmic analysis of hybrid system The algorithmic analysis of hybrid system Authors: R.Alur, C. Courcoubetis etc. Course teacher: Prof. Ugo Buy Xin Li, Huiyong Xiao Nov. 13, 2002 Summary What s a hybrid system? Definition of Hybrid Automaton

More information

Models for Efficient Timed Verification

Models for Efficient Timed Verification Models for Efficient Timed Verification François Laroussinie LSV / ENS de Cachan CNRS UMR 8643 Monterey Workshop - Composition of embedded systems Model checking System Properties Formalizing step? ϕ Model

More information

Modeling Concurrent Systems

Modeling Concurrent Systems Modeling Concurrent Systems Wolfgang Schreiner Wolfgang.Schreiner@risc.uni-linz.ac.at Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria http://www.risc.uni-linz.ac.at

More information

Automata-based Verification - III

Automata-based Verification - III COMP30172: Advanced Algorithms Automata-based Verification - III Howard Barringer Room KB2.20: email: howard.barringer@manchester.ac.uk March 2009 Third Topic Infinite Word Automata Motivation Büchi Automata

More information

Probabilistic and Nondeterministic Systems. Arvind Soni

Probabilistic and Nondeterministic Systems. Arvind Soni ABSTRACT SONI, ARVIND. Probabilistic and Nondeterministic Systems. (Under the direction of Professor Dr. S. Purushothaman Iyer). Probabilistic and nondeterministic systems are important to model systems

More information

Computer Science Introductory Course MSc - Introduction to Java

Computer Science Introductory Course MSc - Introduction to Java Computer Science Introductory Course MSc - Introduction to Java Lecture 1: Diving into java Pablo Oliveira ENST Outline 1 Introduction 2 Primitive types 3 Operators 4 5 Control Flow

More information

Chapter 5: Linear Temporal Logic

Chapter 5: Linear Temporal Logic Chapter 5: Linear Temporal Logic Prof. Ali Movaghar Verification of Reactive Systems Spring 94 Outline We introduce linear temporal logic (LTL), a logical formalism that is suited for specifying LT properties.

More information

Ten Years of Performance Evaluation for Concurrent Systems Using CADP

Ten Years of Performance Evaluation for Concurrent Systems Using CADP Ten Years of Performance Evaluation for Concurrent Systems Using CADP Nicolas Coste, Hubert Garavel, Holger Hermanns, Frédéric Lang, Radu Mateescu, Wendelin Serwe To cite this version: Nicolas Coste, Hubert

More information

Verification Using Temporal Logic

Verification Using Temporal Logic CMSC 630 February 25, 2015 1 Verification Using Temporal Logic Sources: E.M. Clarke, O. Grumberg and D. Peled. Model Checking. MIT Press, Cambridge, 2000. E.A. Emerson. Temporal and Modal Logic. Chapter

More information

Temporal Logic. Stavros Tripakis University of California, Berkeley. We have designed a system. We want to check that it is correct.

Temporal Logic. Stavros Tripakis University of California, Berkeley. We have designed a system. We want to check that it is correct. EE 244: Fundamental Algorithms for System Modeling, Analysis, and Optimization Fall 2016 Temporal logic Stavros Tripakis University of California, Berkeley Stavros Tripakis (UC Berkeley) EE 244, Fall 2016

More information

EAHyper: Satisfiability, Implication, and Equivalence Checking of Hyperproperties

EAHyper: Satisfiability, Implication, and Equivalence Checking of Hyperproperties EAHyper: Satisfiability, Implication, and Equivalence Checking of Hyperproperties Bernd Finkbeiner, Christopher Hahn, and Marvin Stenger Saarland Informatics Campus, Saarland University, Saarbrücken, Germany

More information

Chapter 7 Propositional Satisfiability Techniques

Chapter 7 Propositional Satisfiability Techniques Lecture slides for Automated Planning: Theory and Practice Chapter 7 Propositional Satisfiability Techniques Dana S. Nau CMSC 722, AI Planning University of Maryland, Spring 2008 1 Motivation Propositional

More information

What is SSA? each assignment to a variable is given a unique name all of the uses reached by that assignment are renamed

What is SSA? each assignment to a variable is given a unique name all of the uses reached by that assignment are renamed Another Form of Data-Flow Analysis Propagation of values for a variable reference, where is the value produced? for a variable definition, where is the value consumed? Possible answers reaching definitions,

More information

Symmetry Reductions. A. Prasad Sistla University Of Illinois at Chicago

Symmetry Reductions. A. Prasad Sistla University Of Illinois at Chicago Symmetry Reductions. A. Prasad Sistla University Of Illinois at Chicago Model-Checking Concurrent PGM Temporal SPEC Model Checker Yes/No Counter Example Approach Build the global state graph Algorithm

More information

Reasoning About Imperative Programs. COS 441 Slides 10b

Reasoning About Imperative Programs. COS 441 Slides 10b Reasoning About Imperative Programs COS 441 Slides 10b Last time Hoare Logic: { P } C { Q } Agenda If P is true in the initial state s. And C in state s evaluates to s. Then Q must be true in s. Program

More information

Modelling and Analysing Variability in Product Families

Modelling and Analysing Variability in Product Families Modelling and Analysing Variability in Product Families Maurice H. ter Beek ISTI CNR, Pisa, Italy joint work with P. Asirelli A. Fantechi S. Gnesi ISTI CNR University of Florence ISTI CNR University of

More information

Bilateral Proofs of Safety and Progress Properties of Concurrent Programs (Working Draft)

Bilateral Proofs of Safety and Progress Properties of Concurrent Programs (Working Draft) Bilateral Proofs of Safety and Progress Properties of Concurrent Programs (Working Draft) Jayadev Misra December 18, 2015 Contents 1 Introduction 3 2 Program and Execution Model 4 2.1 Program Structure..........................

More information

Temporal Logic. M φ. Outline. Why not standard logic? What is temporal logic? LTL CTL* CTL Fairness. Ralf Huuck. Kripke Structure

Temporal Logic. M φ. Outline. Why not standard logic? What is temporal logic? LTL CTL* CTL Fairness. Ralf Huuck. Kripke Structure Outline Temporal Logic Ralf Huuck Why not standard logic? What is temporal logic? LTL CTL* CTL Fairness Model Checking Problem model, program? M φ satisfies, Implements, refines property, specification

More information

SAT-Based Verification with IC3: Foundations and Demands

SAT-Based Verification with IC3: Foundations and Demands SAT-Based Verification with IC3: Foundations and Demands Aaron R. Bradley ECEE, CU Boulder & Summit Middle School SAT-Based Verification with IC3:Foundations and Demands 1/55 Induction Foundation of verification

More information

SMV the Symbolic Model Verifier. Example: the alternating bit protocol. LTL Linear Time temporal Logic

SMV the Symbolic Model Verifier. Example: the alternating bit protocol. LTL Linear Time temporal Logic Model Checking (I) SMV the Symbolic Model Verifier Example: the alternating bit protocol LTL Linear Time temporal Logic CTL Fixed Points Correctness Slide 1 SMV - Symbolic Model Verifier SMV - Symbolic

More information

Chapter 7 Propositional Satisfiability Techniques

Chapter 7 Propositional Satisfiability Techniques Lecture slides for Automated Planning: Theory and Practice Chapter 7 Propositional Satisfiability Techniques Dana S. Nau University of Maryland 12:58 PM February 15, 2012 1 Motivation Propositional satisfiability:

More information

ONR MURI AIRFOILS: Animal Inspired Robust Flight with Outer and Inner Loop Strategies. Calin Belta

ONR MURI AIRFOILS: Animal Inspired Robust Flight with Outer and Inner Loop Strategies. Calin Belta ONR MURI AIRFOILS: Animal Inspired Robust Flight with Outer and Inner Loop Strategies Provable safety for animal inspired agile flight Calin Belta Hybrid and Networked Systems (HyNeSs) Lab Department of

More information

Alan Bundy. Automated Reasoning LTL Model Checking

Alan Bundy. Automated Reasoning LTL Model Checking Automated Reasoning LTL Model Checking Alan Bundy Lecture 9, page 1 Introduction So far we have looked at theorem proving Powerful, especially where good sets of rewrite rules or decision procedures have

More information

Chapter 6 Constraint Satisfaction Problems

Chapter 6 Constraint Satisfaction Problems Chapter 6 Constraint Satisfaction Problems CS5811 - Artificial Intelligence Nilufer Onder Department of Computer Science Michigan Technological University Outline CSP problem definition Backtracking search

More information

Verification. Arijit Mondal. Dept. of Computer Science & Engineering Indian Institute of Technology Patna

Verification. Arijit Mondal. Dept. of Computer Science & Engineering Indian Institute of Technology Patna IIT Patna 1 Verification Arijit Mondal Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in Introduction The goal of verification To ensure 100% correct in functionality

More information

Symbolic Counterexample Generation for Large Discrete-Time Markov Chains

Symbolic Counterexample Generation for Large Discrete-Time Markov Chains Symbolic Counterexample Generation for Large Discrete-Time Markov Chains Nils Jansen a,, Ralf Wimmer b, Erika Ábraháma, Barna Zajzon a, Joost-Pieter Katoen a, Bernd Becker b, Johann Schuster c a RWTH Aachen

More information

Axiomatic Semantics: Verification Conditions. Review of Soundness and Completeness of Axiomatic Semantics. Announcements

Axiomatic Semantics: Verification Conditions. Review of Soundness and Completeness of Axiomatic Semantics. Announcements Axiomatic Semantics: Verification Conditions Meeting 12, CSCI 5535, Spring 2009 Announcements Homework 4 is due tonight Wed forum: papers on automated testing using symbolic execution 2 Questions? Review

More information

Symbolic Trajectory Evaluation (STE): Orna Grumberg Technion, Israel

Symbolic Trajectory Evaluation (STE): Orna Grumberg Technion, Israel Symbolic Trajectory Evaluation (STE): Automatic Refinement and Vacuity Detection Orna Grumberg Technion, Israel Marktoberdort 2007 1 Agenda Model checking Symbolic Trajectory Evaluation Basic Concepts

More information

G54FOP: Lecture 17 & 18 Denotational Semantics and Domain Theory III & IV

G54FOP: Lecture 17 & 18 Denotational Semantics and Domain Theory III & IV G54FOP: Lecture 17 & 18 Denotational Semantics and Domain Theory III & IV Henrik Nilsson University of Nottingham, UK G54FOP: Lecture 17 & 18 p.1/33 These Two Lectures Revisit attempt to define denotational

More information

Benefits of Interval Temporal Logic for Specification of Concurrent Systems

Benefits of Interval Temporal Logic for Specification of Concurrent Systems Benefits of Interval Temporal Logic for Specification of Concurrent Systems Ben Moszkowski Software Technology Research Laboratory De Montfort University Leicester Great Britain email: benm@dmu.ac.uk http://www.tech.dmu.ac.uk/~benm

More information

Introduction to Temporal Logic. The purpose of temporal logics is to specify properties of dynamic systems. These can be either

Introduction to Temporal Logic. The purpose of temporal logics is to specify properties of dynamic systems. These can be either Introduction to Temporal Logic The purpose of temporal logics is to specify properties of dynamic systems. These can be either Desired properites. Often liveness properties like In every infinite run action

More information

Unbounded, Fully Symbolic Model Checking of Timed Automata using Boolean Methods

Unbounded, Fully Symbolic Model Checking of Timed Automata using Boolean Methods Unbounded, Fully Symbolic Model Checking of Timed Automata using Boolean Methods Sanjit A. Seshia and Randal E. Bryant Computer Science Department Carnegie Mellon University Verifying Timed Embedded Systems

More information

CS357: CTL Model Checking (two lectures worth) David Dill

CS357: CTL Model Checking (two lectures worth) David Dill CS357: CTL Model Checking (two lectures worth) David Dill 1 CTL CTL = Computation Tree Logic It is a propositional temporal logic temporal logic extended to properties of events over time. CTL is a branching

More information

One Year Later. Iliano Cervesato. ITT Industries, NRL Washington, DC. MSR 3.0:

One Year Later. Iliano Cervesato. ITT Industries, NRL Washington, DC.  MSR 3.0: MSR 3.0: The Logical Meeting Point of Multiset Rewriting and Process Algebra MSR 3: Iliano Cervesato iliano@itd.nrl.navy.mil One Year Later ITT Industries, inc @ NRL Washington, DC http://www.cs.stanford.edu/~iliano

More information

Programming Languages and Types

Programming Languages and Types Programming Languages and Types Klaus Ostermann based on slides by Benjamin C. Pierce Where we re going Type Systems... Type systems are one of the most fascinating and powerful aspects of programming

More information

Verifying Concurrent Programs

Verifying Concurrent Programs Lesson 4 Verifying Concurrent Programs Advanced Critical Section Solutions Ch 4.1-3, App B [BenA 06] Ch 5 (no proofs) [BenA 06] Propositional Calculus Invariants Temporal Logic Automatic Verification Bakery

More information

Finite-State Model Checking

Finite-State Model Checking EECS 219C: Computer-Aided Verification Intro. to Model Checking: Models and Properties Sanjit A. Seshia EECS, UC Berkeley Finite-State Model Checking G(p X q) Temporal logic q p FSM Model Checker Yes,

More information

Principles of Program Analysis: A Sampler of Approaches

Principles of Program Analysis: A Sampler of Approaches Principles of Program Analysis: A Sampler of Approaches Transparencies based on Chapter 1 of the book: Flemming Nielson, Hanne Riis Nielson and Chris Hankin: Principles of Program Analysis Springer Verlag

More information

Alternating Time Temporal Logics*

Alternating Time Temporal Logics* Alternating Time Temporal Logics* Sophie Pinchinat Visiting Research Fellow at RSISE Marie Curie Outgoing International Fellowship * @article{alur2002, title={alternating-time Temporal Logic}, author={alur,

More information

Helsinki University of Technology Laboratory for Theoretical Computer Science Research Reports 66

Helsinki University of Technology Laboratory for Theoretical Computer Science Research Reports 66 Helsinki University of Technology Laboratory for Theoretical Computer Science Research Reports 66 Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 66 Espoo 2000 HUT-TCS-A66

More information

Intelligent Agents. Formal Characteristics of Planning. Ute Schmid. Cognitive Systems, Applied Computer Science, Bamberg University

Intelligent Agents. Formal Characteristics of Planning. Ute Schmid. Cognitive Systems, Applied Computer Science, Bamberg University Intelligent Agents Formal Characteristics of Planning Ute Schmid Cognitive Systems, Applied Computer Science, Bamberg University Extensions to the slides for chapter 3 of Dana Nau with contributions by

More information

CSC 7101: Programming Language Structures 1. Axiomatic Semantics. Stansifer Ch 2.4, Ch. 9 Winskel Ch.6 Slonneger and Kurtz Ch. 11.

CSC 7101: Programming Language Structures 1. Axiomatic Semantics. Stansifer Ch 2.4, Ch. 9 Winskel Ch.6 Slonneger and Kurtz Ch. 11. Axiomatic Semantics Stansifer Ch 2.4, Ch. 9 Winskel Ch.6 Slonneger and Kurtz Ch. 11 1 Overview We ll develop proof rules, such as: { I b } S { I } { I } while b do S end { I b } That allow us to verify

More information

An Introduction to Modal Logic III

An Introduction to Modal Logic III An Introduction to Modal Logic III Soundness of Normal Modal Logics Marco Cerami Palacký University in Olomouc Department of Computer Science Olomouc, Czech Republic Olomouc, October 24 th 2013 Marco Cerami

More information

Logic. Propositional Logic: Syntax

Logic. Propositional Logic: Syntax Logic Propositional Logic: Syntax Logic is a tool for formalizing reasoning. There are lots of different logics: probabilistic logic: for reasoning about probability temporal logic: for reasoning about

More information

Knowledge-Based Systems

Knowledge-Based Systems Knowledge-Based Systems xxx (2008) xxx xxx Contents lists available at ScienceDirect Knowledge-Based Systems journal homepage: www.elsevier.com/locate/knosys Model checking communicative agent-based systems

More information