Elem Calc w/trig II Spring 08 Class time: TR 9:30 am to 10:45 am Classroom: Whit 257 Helmi Temimi: PhD Teaching Assistant, 463 C

Size: px
Start display at page:

Download "Elem Calc w/trig II Spring 08 Class time: TR 9:30 am to 10:45 am Classroom: Whit 257 Helmi Temimi: PhD Teaching Assistant, 463 C"

Transcription

1 Elem Calc w/trig II Spring 08 Class time: TR 9:30 am to 10:45 am Classroom: Whit 257 Helmi Temimi: PhD Teaching Assistant, 463 C temimi@vt.edu Office Hours 11:00 am 12:00 pm Course contract, Syllabus

2 Riemann Sums and Accumulated Change

3 Math 1016 Given data, find the rate of change. Math 2015 Given a rate of change, find the total change. Example: Velocity and Distance Traveled

4 Recovering Distance From Velocity If we travel 2 feet per second for 4 seconds, Then we traveled a total of 8 feet. Why?

5 Recovering Distance From Velocity Model Train Data: t (sec) v (ft/sec) How far does it travel between t =4 and t =8?

6 Recovering Distance From Velocity Three ways to answer: t (sec) v (ft/sec)

7 Recovering Distance From Velocity Three ways to answer: t (sec) v (ft/sec) Use the first velocity:

8 Recovering Distance From Velocity Three ways to answer: t (sec) v (ft/sec) Use the first velocity: (2 feet/sec)(4 sec) = 8 feet

9 Recovering Distance From Velocity Three ways to answer: t (sec) v (ft/sec) Use the first velocity: (2 feet/sec)(4 sec) = 8 feet Use the middle velocity:

10 Recovering Distance From Velocity Three ways to answer: t (sec) v (ft/sec) Use the first velocity: (2 feet/sec)(4 sec) = 8 feet Use the middle velocity: (3 feet/sec)(4 sec) = 12 feet

11 Recovering Distance From Velocity Three ways to answer: t (sec) v (ft/sec) Use the first velocity: (2 feet/sec)(4 sec) = 8 feet Use the middle velocity: (3 feet/sec)(4 sec) = 12 feet Use the final velocity:

12 Recovering Distance From Velocity Three ways to answer: t (sec) v (ft/sec) Use the first velocity: (2 feet/sec)(4 sec) = 8 feet Use the middle velocity: (3 feet/sec)(4 sec) = 12 feet Use the final velocity: (3.5 feet/sec)(4 sec) = 14 feet

13 A Useful Aside: Suppose we know the train is speeding up. We Claim: It must have gone at least 8 feet, and less than 14 feet. Is it right? Why or why not?

14 A Useful Aside: Suppose we know the train is speeding up. We Claim: It must have gone at least 8 feet, and less than 14 feet. Is it right? Why or why not? Using first velocity: 8 feet Using middle velocity: 12 feet Using final velocity: 14 feet

15 It s Right! If it s speeding up, the first speed is the lowest, and the last is the highest.

16 It s Right! If it s speeding up, the first speed is the lowest, and the last is the highest. If it s always faster than 2 ft/sec, the train travels more than (2 feet/sec)(4 sec) = 8 feet

17 It s Right! If it s speeding up, the first speed is the lowest, and the last is the highest. If it s always faster than 2 ft/sec, the train travels more than (2 feet/sec)(4 sec) = 8 feet If it s always going slower than 3.5 ft/sec, the train travels less than (3.5 feet/sec)(4 sec) = 14 feet

18 But what if it s not speeding up? Then anything might happen! The total distance might be less than 8 feet

19 But what if it s not speeding up? Then anything might happen! The total distance might be less than 8 feet Or more than 14 feet!

20 Subintervals How far just from t =4 to t =6? t (sec) v (ft/sec)

21 Subintervals How far just from t =4 to t =6? t (sec) v (ft/sec) Using the starting v:

22 Subintervals How far just from t =4 to t =6? t (sec) v (ft/sec) Using the starting v: Using the ending v:

23 Subintervals What about from t =6 to t =8? t (sec) v (ft/sec)

24 Subintervals What about from t =6 to t =8? t (sec) v (ft/sec) Using the starting v:

25 Subintervals What about from t =6 to t =8? t (sec) v (ft/sec) Using the starting v: Using the ending v:

26 Subintervals The total distance traveled is approximately t (sec) v (ft/sec)

27 Subintervals The total distance traveled is approximately t (sec) v (ft/sec) If we use the first velocity in each subinterval:

28 Subintervals The total distance traveled is approximately t (sec) v (ft/sec) If we use the first velocity in each subinterval: (2 x 2) + (3 x 2) = 4ft + 6 ft = 10 ft. Called a Left-hand sum.

29 Subintervals The total distance traveled is approximately t (sec) v (ft/sec)

30 Subintervals The total distance traveled is approximately t (sec) v (ft/sec) If we use the last velocity in each subinterval:

31 Subintervals The total distance traveled is approximately t (sec) v (ft/sec) If we use the last velocity in each subinterval: (3 x 2) + ( 3.5 x 2) = = 13 feet Called a Right-hand sum.

32 Left and Right hand sums are both examples of Riemann sums, after this guy. Georg Friedrich Bernhard Riemann September 17, 1826 July 20, 1866

33 Question: 1) If the train is speeding up, is either sum an over or underestimate of the distance?

34 Question: 1) If the train is speeding up, is either sum an over or underestimate of the distance? The left-hand sum is an underestimate; The right-hand sum is an overestimate.

35 Question: 2) What if the train were slowing down instead?

36 Question: 2) What if the train were slowing down instead? If the train were slowing down, The left-hand sum would be an overestimate; The right-hand sum would be an underestimate.

37 Improving our Estimates We can improve our estimates by:

38 Improving our Estimates We can improve our estimates by: averaging left and right hand sums, or

39 Improving our Estimates We can improve our estimates by: averaging left and right hand sums, or using more subintervals.

40 More Data Suppose we collect additional data about our train s velocity: t v

41 Left-Hand Sum Table t v Interval t t v Distance #1 [4, 5.5]

42 Left-Hand Sum Table Which subinterval t v Interval t t v Distance #1 [4, 5.5]

43 Left-Hand Sum Table t v Interval t t v Distance #1 [4, 5.5] What t values

44 Left-Hand Sum Table t v Subinterval width Interval t t v Distance #1 [4, 5.5]

45 Left-Hand Sum Table t v Interval t t v Distance #1 [4, 5.5] Velocity for this subinterval

46 Left-Hand Sum Table t v Interval t t v Distance #1 [4, 5.5] Traveled in this subinterval

47 Left-Hand Sum t v Interval t t v Distance #1 [4, 5.5] #2 [5.5, 6] 0.5? 1.35 #3 [6, 6.2] #4 [6.2, 7]? #5????

48 Left-Hand Sum t v Interval t t v Distance #1 [4, 5.5] #2 [5.5, 6] #3 [6, 6.2] #4 [6.2, 7] #5 [7, 8]

49 Left-Hand Sum Interval t t v Distance #1 [4, 5.5] #2 [5.5, 6] #3 [6, 6.2] #4 [6.2, 7] #5 [7, 8] Total: 10.73

50 Right-Hand Sum t v Interval t t v Distance #1 [4, 5.5] 1.5? 4.05 #2 [5.5, 6] #3 [6, 6.2] #4 [6.2, 7] #5 [7, 8]

51 Right-Hand Sum t v Interval t t v Distance #1 [4, 5.5] #2 [5.5, 6] #3 [6, 6.2] #4 [6.2, 7] #5 [7, 8]

52 Right-Hand Sum Interval t t v Distance #1 [4, 5.5] #2 [5.5, 6] #3 [6, 6.2] #4 [6.2, 7] #5 [7, 8] Total: Average of LHS and RHS: feet

53 Pictures On the velocity graph: Velocity is height t is width So v(t) t is the area of a rectangle! Note: Height depends on which velocity we use!

54 Pictures Riemann sum rectangles, t = 4 and n =1:

55 Pictures Riemann sum rectangles, t = 2 and n =2:

56 Pictures Riemann sum rectangles, n =5 ( t varies)

57 Accumulated Change Velocity is the rate of change of position. We can apply Riemann sums to any other rate of change. A Riemann sum applied to a rate of change estimates the total change over the interval.

58 Example: A Reservoir Filling at variable rate, starting with 1,000 gallons at noon. Total volume at 1:00? Time (minutes past noon) Rate (gal/min)

59 Example: A Reservoir First, estimate the change: Left-hand sum: Right-hand sum: Best Estimate: Time (minutes past noon) Rate (gal/min)

60 Example: A Reservoir Total volume at 1:00 is the change added to the original volume:

61 Example: A Reservoir Total volume at 1:00 is the change added to the original volume: 1, ,310 = 2,310 gallons

62 Summary Approximate total change from rate of change using left/right hand sums. For increasing functions, left hand sums underestimate and right hand overestimate. Left hand sum: multiply function at left of each subinterval by width of subinterval. Riemann sums look like areas of rectangles.

63 Assignment Go to the Math 2015 Homepage: 1. Read the Announcements - after every class 2. Read and complete the Assignment

64 In-Class Assignment A car starts moving at time t=0 and goes faster and faster. Its velocity is shown in the following table. Estimate how far the car travels during the 12 seconds? t (sec) Velocity (ft/sec)

Welcome to. Elementary Calculus with Trig II CRN(13828) Instructor: Quanlei Fang. Department of Mathematics, Virginia Tech, Spring 2008

Welcome to. Elementary Calculus with Trig II CRN(13828) Instructor: Quanlei Fang. Department of Mathematics, Virginia Tech, Spring 2008 Welcome to Elementary Calculus with Trig II CRN(13828) Instructor: Quanlei Fang Department of Mathematics, Virginia Tech, Spring 2008 1 Be sure to read the course contract Contact Information Text Grading

More information

AP Calculus AB Riemann Sums

AP Calculus AB Riemann Sums AP Calculus AB Riemann Sums Name Intro Activity: The Gorilla Problem A gorilla (wearing a parachute) jumped off of the top of a building. We were able to record the velocity of the gorilla with respect

More information

5.1 Area and Estimating with Finite Sums

5.1 Area and Estimating with Finite Sums 5.1 Area and Estimating with Finite Sums Ideas for this section The ideas for this section are Left-Hand Sums Ideas for this section The ideas for this section are Left-Hand Sums Right-Hand Sums Ideas

More information

Day 5 Notes: The Fundamental Theorem of Calculus, Particle Motion, and Average Value

Day 5 Notes: The Fundamental Theorem of Calculus, Particle Motion, and Average Value AP Calculus Unit 6 Basic Integration & Applications Day 5 Notes: The Fundamental Theorem of Calculus, Particle Motion, and Average Value b (1) v( t) dt p( b) p( a), where v(t) represents the velocity and

More information

Motion with Integrals Worksheet 4: What you need to know about Motion along the x-axis (Part 2)

Motion with Integrals Worksheet 4: What you need to know about Motion along the x-axis (Part 2) Motion with Integrals Worksheet 4: What you need to know about Motion along the x-axis (Part 2) 1. Speed is the absolute value of. 2. If the velocity and acceleration have the sign (either both positive

More information

A.P. Calculus BC Summer Assignment 2018 I am so excited you are taking Calculus BC! For your summer assignment, I would like you to complete the

A.P. Calculus BC Summer Assignment 2018 I am so excited you are taking Calculus BC! For your summer assignment, I would like you to complete the A.P. Calculus BC Summer Assignment 2018 I am so excited you are taking Calculus BC! For your summer assignment, I would like you to complete the attached packet of problems, and turn it in on Monday, August

More information

Math 131 Exam II "Sample Questions"

Math 131 Exam II Sample Questions Math 11 Exam II "Sample Questions" This is a compilation of exam II questions from old exams (written by various instructors) They cover chapters and The solutions can be found at the end of the document

More information

Accumulated change from rates of change

Accumulated change from rates of change Section 6.1 1 Accumulated change from rates of change Suppose that r(t) measures a rate of change with respect to a time variable t. For example, say that for a two-hour period ( 0 t 2), we have r(t) =

More information

y=5 y=1+x 2 AP Calculus Chapter 5 Testbank Part I. Multiple-Choice Questions

y=5 y=1+x 2 AP Calculus Chapter 5 Testbank Part I. Multiple-Choice Questions AP Calculus Chapter 5 Testbank Part I. Multiple-Choice Questions. Which of the following integrals correctly corresponds to the area of the shaded region in the figure to the right? (A) (B) (C) (D) (E)

More information

ANOTHER FIVE QUESTIONS:

ANOTHER FIVE QUESTIONS: No peaking!!!!! See if you can do the following: f 5 tan 6 sin 7 cos 8 sin 9 cos 5 e e ln ln @ @ Epress sin Power Series Epansion: d as a Power Series: Estimate sin Estimate MACLAURIN SERIES ANOTHER FIVE

More information

AP Calculus. Area Accumulation and Approximation

AP Calculus. Area Accumulation and Approximation AP Calculus Area Accumulation and Approximation Student Handout 26 27 EDITION Use the following link or scan the QR code to complete the evaluation for the Study Session https://www.surveymonkey.com/r/s_sss

More information

Unit #6 Basic Integration and Applications Homework Packet

Unit #6 Basic Integration and Applications Homework Packet Unit #6 Basic Integration and Applications Homework Packet For problems, find the indefinite integrals below.. x 3 3. x 3x 3. x x 3x 4. 3 / x x 5. x 6. 3x x3 x 3 x w w 7. y 3 y dy 8. dw Daily Lessons and

More information

Section 1: The Definite Integral

Section 1: The Definite Integral Chapter The Integral Applied Calculus 70 Section : The Definite Integral Distance from Velocity Example Suppose a car travels on a straight road at a constant speed of 40 miles per hour for two hours.

More information

Accumulation. area. the function is. f(x)

Accumulation. area. the function is. f(x) Left and right Riemann sums Right Riemann Sum Left Riemann Sum Correct justification for over and under approximations: f(x) Left Riemann Sum Right Riemann Sum Increasing (f '(x) > ) Under approximates

More information

y=5 y=1+x 2 AP Calculus Chapter 5 Testbank Part I. Multiple-Choice Questions

y=5 y=1+x 2 AP Calculus Chapter 5 Testbank Part I. Multiple-Choice Questions AP Calculus Chapter 5 Testbank Part I. Multiple-Choice Questions. Which of the following integrals correctly corresponds to the area of the shaded region in the figure to the right? (A) (B) (C) (D) (E)

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus 5. Worksheet All work must be shown in this course for full credit. Unsupported answers may receive NO credit.. Suppose an oil pump is producing 8 gallons per hour for the first 5 hours of

More information

AP Calculus Prep Session Handout. Table Problems

AP Calculus Prep Session Handout. Table Problems AP Calculus Prep Session Handout The AP Calculus Exams include multiple choice and free response questions in which the stem of the question includes a table of numerical information from which the students

More information

( ) for t 0. Rectilinear motion CW. ( ) = t sin t ( Calculator)

( ) for t 0. Rectilinear motion CW. ( ) = t sin t ( Calculator) Rectilinear motion CW 1997 ( Calculator) 1) A particle moves along the x-axis so that its velocity at any time t is given by v(t) = 3t 2 2t 1. The position x(t) is 5 for t = 2. a) Write a polynomial expression

More information

Sections 5.1: Areas and Distances

Sections 5.1: Areas and Distances Sections.: Areas and Distances In this section we shall consider problems closely related to the problems we considered at the beginning of the semester (the tangent and velocity problems). Specifically,

More information

Overview. NASA Distance-Rate-Time Math In Air Traffic Control. World s Largest D-R-T Problem. Challenges of Air Traffic Control

Overview. NASA Distance-Rate-Time Math In Air Traffic Control. World s Largest D-R-T Problem. Challenges of Air Traffic Control National Aeronautics and Space Administration NASA Distance-Rate-Time Math In Air Traffic Control Grades 5-9 Welcome Overview Introduction to Standards- Based Physical Experiment Six Math Methods Online

More information

Math 1526 Excel Lab 2 Summer 2012

Math 1526 Excel Lab 2 Summer 2012 Math 1526 Excel Lab 2 Summer 2012 Riemann Sums, Trapezoidal Rule and Simpson's Rule: In this lab you will learn how to recover information from rate of change data. For instance, if you have data for marginal

More information

A MATH 1225 Practice Test 4 NAME: SOLUTIONS CRN:

A MATH 1225 Practice Test 4 NAME: SOLUTIONS CRN: A MATH 5 Practice Test 4 NAME: SOLUTIONS CRN: Multiple Choice No partial credit will be given. Clearly circle one answer. No calculator!. Which of the following must be true (you may select more than one

More information

Math 115 Final Review 5 December 15, 2015

Math 115 Final Review 5 December 15, 2015 Math 115 Final Review 5 December 15, 2015 Name: 1. (From Team Homework 7) A 12-foot tree is 8 feet from a light that can be raised up and down, as shown in the figure below. 12 ft h shadow 8 ft The height

More information

CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS. Second Fundamental Theorem of Calculus (Chain Rule Version): f t dt

CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS. Second Fundamental Theorem of Calculus (Chain Rule Version): f t dt CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS d d d d t dt 6 cos t dt Second Fundamental Theorem of Calculus: d f tdt d a d d 4 t dt d d a f t dt d d 6 cos t dt Second Fundamental

More information

Distance And Velocity

Distance And Velocity Unit #8 - The Integral Some problems and solutions selected or adapted from Hughes-Hallett Calculus. Distance And Velocity. The graph below shows the velocity, v, of an object (in meters/sec). Estimate

More information

April 23, 2009 SOLUTIONS SECTION NUMBER:

April 23, 2009 SOLUTIONS SECTION NUMBER: MATH 5 FINAL EXAM April, 9 NAME: SOLUTIONS INSTRUCTOR: SECTION NUMBER:. Do not open this exam until you are told to begin.. This exam has pages including this cover. There are 9 questions.. Do not separate

More information

AP CALCULUS AB SECTION I, Part A Time 55 Minutes Number of questions 28 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM

AP CALCULUS AB SECTION I, Part A Time 55 Minutes Number of questions 28 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM AP CALCULUS AB SECTION I, Part A Time 55 Minutes Number of questions 28 Time Began: Time Ended: A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM Directions: Solve each of the following problems, using

More information

Lesson 6: Graphs of Linear Functions and Rate of Change

Lesson 6: Graphs of Linear Functions and Rate of Change Lesson 6 Lesson 6: Graphs of Linear Functions and Rate of Change Classwork Opening Exercise Functions 1, 2, and 3 have the tables shown below. Examine each of them, make a conjecture about which will be

More information

1998 Calculus AB Scoring Guidelines

1998 Calculus AB Scoring Guidelines 41 Velocity (feet per second) v(t) 9 8 7 6 5 4 1 O 1998 Calculus AB Scoring Guidelines 5 1 15 5 5 4 45 5 Time (seconds) t t v(t) (seconds) (feet per second) 5 1 1 15 55 5 7 78 5 81 4 75 45 6 5 7. The graph

More information

Calculus Jeopardy Sample

Calculus Jeopardy Sample In the purchased version, the game board has 6 categories and is interactive, allowing you to click on category and money amount to see the answers. In this sample just scroll through the document. www.mastermathmentor.com

More information

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA CALCULUS AB SECTION I, Part A Time 55 minutes Number of questions 8 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM. Directions: Solve each of the following problems,

More information

Pre Calculus. Intro to Integrals.

Pre Calculus. Intro to Integrals. 1 Pre Calculus Intro to Integrals 2015 03 24 www.njctl.org 2 Riemann Sums Trapezoid Rule Table of Contents click on the topic to go to that section Accumulation Function Antiderivatives & Definite Integrals

More information

t over the interval 0 t

t over the interval 0 t Student Name: Period: Applications of Riemann Sums (AP Style) 1. A plane has just crashed six minutes after takeoff. There may be survivors, but you must locate the plane quickly without an extensive search.

More information

Chapter 6: The Definite Integral

Chapter 6: The Definite Integral Name: Date: Period: AP Calc AB Mr. Mellina Chapter 6: The Definite Integral v v Sections: v 6.1 Estimating with Finite Sums v 6.5 Trapezoidal Rule v 6.2 Definite Integrals 6.3 Definite Integrals and Antiderivatives

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus 6.. Worksheet Estimating with Finite Sums All work must be shown in this course for full credit. Unsupported answers may receive NO credit.. Suppose an oil pump is producing 8 gallons per hour

More information

Spring 2015, Math 111 Lab 4: Kinematics of Linear Motion

Spring 2015, Math 111 Lab 4: Kinematics of Linear Motion Spring 2015, Math 111 Lab 4: William and Mary February 24, 2015 Spring 2015, Math 111 Lab 4: Learning Objectives Today, we will be looking at applications of derivatives in the field of kinematics. Learning

More information

Week In Review #8 Covers sections: 5.1, 5.2, 5.3 and 5.4. Things you must know

Week In Review #8 Covers sections: 5.1, 5.2, 5.3 and 5.4. Things you must know Week In Review #8 Covers sections: 5.1, 5.2, 5.3 and 5. Things you must know Know how to get an accumulated change by finding an upper or a lower estimate value Know how to approximate a definite integral

More information

Practice problems from old exams for math 132 William H. Meeks III

Practice problems from old exams for math 132 William H. Meeks III Practice problems from old exams for math 32 William H. Meeks III Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These practice tests are

More information

A. 1 B. 2 C. 4.5 D. 7 E. 8

A. 1 B. 2 C. 4.5 D. 7 E. 8 Calculus & Advanced Topics Spring 2011 1. The derivative of x 2 cos(x) is 2x sin(x) x 2 sin(x) 2x cos(x) x 2 sin(x) 2x sin(x) 2x cos(x) 2. 1 2 4.5 7 8 3. 0 1 6/5 3/2 undefined 4. Find the derivative of

More information

PARTICLE MOTION: DAY 2

PARTICLE MOTION: DAY 2 PARTICLE MOTION: DAY 2 Section 3.6A Calculus AP/Dual, Revised 2018 viet.dang@humbleisd.net 7/30/2018 1:24 AM 3.6A: Particle Motion Day 2 1 WHEN YOU SEE THINK When you see Think Initially t = 0 At rest

More information

Solutions x. Figure 1: g(x) x g(t)dt ; x 0,

Solutions x. Figure 1: g(x) x g(t)dt ; x 0, MATH Quiz 4 Spring 8 Solutions. (5 points) Express ln() in terms of ln() and ln(3). ln() = ln( 3) = ln( ) + ln(3) = ln() + ln(3). (5 points) If g(x) is pictured in Figure and..5..5 3 4 5 6 x Figure : g(x)

More information

Review for Chapter 8

Review for Chapter 8 Review for Chapter 8 The function v(t) is the velocity of an object moving on the x-axis at any time t 0 where the velocity is measured in ft/sec. a) Determine when the object is moving right, left and

More information

APPLICATIONS OF INTEGRATION

APPLICATIONS OF INTEGRATION 6 APPLICATIONS OF INTEGRATION APPLICATIONS OF INTEGRATION 6.5 Average Value of a Function In this section, we will learn about: Applying integration to find out the average value of a function. AVERAGE

More information

INTEGRATION: AREAS AND RIEMANN SUMS MR. VELAZQUEZ AP CALCULUS

INTEGRATION: AREAS AND RIEMANN SUMS MR. VELAZQUEZ AP CALCULUS INTEGRATION: AREAS AND RIEMANN SUMS MR. VELAZQUEZ AP CALCULUS APPROXIMATING AREA For today s lesson, we will be using different approaches to the area problem. The area problem is to definite integrals

More information

Chapter 1: Integral Calculus. Chapter 1: Integral Calculus. Chapter 1: Integral Calculus. Chapter 1: Integral Calculus

Chapter 1: Integral Calculus. Chapter 1: Integral Calculus. Chapter 1: Integral Calculus. Chapter 1: Integral Calculus Chapter 1: Integral Calculus Chapter 1: Integral Calculus Chapter 1: Integral Calculus B 600m, obviously. Chapter 1: Integral Calculus B 600m, obviously. C 600m, obviously. Is this a trick question? Chapter

More information

Review. The derivative of y = f(x) has four levels of meaning: Physical: If y is a quantity depending on x, the derivative dy

Review. The derivative of y = f(x) has four levels of meaning: Physical: If y is a quantity depending on x, the derivative dy Math 132 Area and Distance Stewart 4.1/I Review. The derivative of y = f(x) has four levels of meaning: Physical: If y is a quantity depending on x, the derivative dy dx x=a is the rate of change of y

More information

AP CALCULUS AB/CALCULUS BC 2015 SCORING GUIDELINES

AP CALCULUS AB/CALCULUS BC 2015 SCORING GUIDELINES AP CALCULUS AB/CALCULUS BC 15 SCORING GUIDELINES Question 3 t (minutes) vt ( ) (meters per minute) 1 4 4 4 15 Johanna jogs along a straight path. For t 4, Johanna s velocity is given by a differentiable

More information

Calculus Test Chapter 5 You can use a calculator on all of the test. Each multiple choice & each part of the free response is worth 5 points.

Calculus Test Chapter 5 You can use a calculator on all of the test. Each multiple choice & each part of the free response is worth 5 points. Calculus Test 2013- Chapter 5 Name You can use a calculator on all of the test. Each multiple choice & each part of the free response is worth 5 points. 1. A bug begins to crawl up a vertical wire at time

More information

The area under a curve. Today we (begin to) ask questions of the type: How much area sits under the graph of f(x) = x 2 over the interval [ 1, 2]?

The area under a curve. Today we (begin to) ask questions of the type: How much area sits under the graph of f(x) = x 2 over the interval [ 1, 2]? The area under a curve. Today we (begin to) ask questions of the type: How much area sits under the graph of f(x) = x 2 over the interval [ 1, 2]? Before we work on How we will figure out Why velocity

More information

Particle Motion. Typically, if a particle is moving along the x-axis at any time, t, x()

Particle Motion. Typically, if a particle is moving along the x-axis at any time, t, x() Typically, if a particle is moving along the x-axis at any time, t, x() t represents the position of the particle; along the y-axis, yt () is often used; along another straight line, st () is often used.

More information

Math 116 Practice for Exam 1

Math 116 Practice for Exam 1 Math 116 Practice for Exam 1 Generated September 6, 17 Name: SOLUTIONS Instructor: Section Number: 1. This exam has 4 questions. Note that the problems are not of equal difficulty, so you may want to skip

More information

Calculus Test Chapter You can use a calculator on the whole test. I know! You re welcome! Each question is worth 4 points.

Calculus Test Chapter You can use a calculator on the whole test. I know! You re welcome! Each question is worth 4 points. Calculus Test Chapter 5 2015 Name You can use a calculator on the whole test. I know! You re welcome! Each question is worth 4 points. 1. A table of values for a continuous function is shown. If four equal

More information

Final Exam Review Sheet Solutions

Final Exam Review Sheet Solutions Final Exam Review Sheet Solutions. Find the derivatives of the following functions: a) f x x 3 tan x 3. f ' x x 3 tan x 3 x 3 sec x 3 3 x. Product rule and chain rule used. b) g x x 6 5 x ln x. g ' x 6

More information

AP Calculus AB Integration

AP Calculus AB Integration Slide 1 / 175 Slide 2 / 175 AP Calculus AB Integration 2015-11-24 www.njctl.org Slide 3 / 175 Table of Contents click on the topic to go to that section Riemann Sums Trapezoid Approximation Area Under

More information

() Chapter 8 November 9, / 1

() Chapter 8 November 9, / 1 Example 1: An easy area problem Find the area of the region in the xy-plane bounded above by the graph of f(x) = 2, below by the x-axis, on the left by the line x = 1 and on the right by the line x = 5.

More information

1.1 Areas under curves - introduction and examples

1.1 Areas under curves - introduction and examples Chapter 1 Integral Calculus 1.1 Areas under curves - introduction and examples Problem 1.1.1. A car travels in a straight line for one minute, at a constant speed of 10m/s. How far has the car travelled

More information

Review Sheet for Exam 1 SOLUTIONS

Review Sheet for Exam 1 SOLUTIONS Math b Review Sheet for Eam SOLUTIONS The first Math b midterm will be Tuesday, February 8th, 7 9 p.m. Location: Schwartz Auditorium Room ) The eam will cover: Section 3.6: Inverse Trig Appendi F: Sigma

More information

K. Function Analysis. ). This is commonly called the first derivative test. f ( x) is concave down for values of k such that f " ( k) < 0.

K. Function Analysis. ). This is commonly called the first derivative test. f ( x) is concave down for values of k such that f  ( k) < 0. K. Function Analysis What you are finding: You have a function f ( ). You want to find intervals where f ( ) is increasing and decreasing, concave up and concave down. You also want to find values of where

More information

Chapter 3 The Integral Business Calculus 197

Chapter 3 The Integral Business Calculus 197 Chapter The Integral Business Calculus 97 Chapter Exercises. Let A(x) represent the area bounded by the graph and the horizontal axis and vertical lines at t=0 and t=x for the graph in Fig.. Evaluate A(x)

More information

3.4 Solving Quadratic Equations by Completing

3.4 Solving Quadratic Equations by Completing .4. Solving Quadratic Equations by Completing the Square www.ck1.org.4 Solving Quadratic Equations by Completing the Square Learning objectives Complete the square of a quadratic expression. Solve quadratic

More information

E 2320 = 0, to 3-decimals, find the average change in

E 2320 = 0, to 3-decimals, find the average change in Name Date Period Worksheet 2.5 Rates of Change and Particle Motion I Show all work. No calculator unless otherwise stated. Short Answer 1. Let E( x) be the elevation, in feet, of the Mississippi River

More information

( 10, ). Which of the following are possible, and which are not possible? Hint: draw a

( 10, ). Which of the following are possible, and which are not possible? Hint: draw a Recitation Worksheet 6C f x = x x 4 x 9 = x 4x + 49x 36. Find the intervals on which. Suppose ( ) ( )( )( ) 3 f ( x ) is increasing and the intervals on which f ( ). Suppose ( ) ( )( )( ) 3 x is decreasing.

More information

P (t) = rp (t) 22, 000, 000 = 20, 000, 000 e 10r = e 10r. ln( ) = 10r 10 ) 10. = r. 10 t. P (30) = 20, 000, 000 e

P (t) = rp (t) 22, 000, 000 = 20, 000, 000 e 10r = e 10r. ln( ) = 10r 10 ) 10. = r. 10 t. P (30) = 20, 000, 000 e APPM 360 Week Recitation Solutions September 18 01 1. The population of a country is growing at a rate that is proportional to the population of the country. The population in 1990 was 0 million and in

More information

Chapter 5 Review. 1. [No Calculator] Evaluate using the FTOC (the evaluation part) 2. [No Calculator] Evaluate using geometry

Chapter 5 Review. 1. [No Calculator] Evaluate using the FTOC (the evaluation part) 2. [No Calculator] Evaluate using geometry AP Calculus Chapter Review Name: Block:. [No Calculator] Evaluate using the FTOC (the evaluation part) a) 7 8 4 7 d b) 9 4 7 d. [No Calculator] Evaluate using geometry a) d c) 6 8 d. [No Calculator] Evaluate

More information

Slope as a Rate of Change

Slope as a Rate of Change Find the slope of a line using two of its points. Interpret slope as a rate of change in real-life situations. FINDING THE SLOPE OF A LINE The slope m of the nonvertical line passing through the points

More information

Chapter 7: Practice/review problems The collection of problems listed below contains questions taken from previous MA123 exams.

Chapter 7: Practice/review problems The collection of problems listed below contains questions taken from previous MA123 exams. Word problems Chapter 7: Practice/review problems The collection of problems listed below contains questions taken from previous MA3 exams. Max-min problems []. A field has the shape of a rectangle with

More information

Math 1000 Final Exam Review Solutions. (x + 3)(x 2) = lim. = lim x 2 = 3 2 = 5. (x + 1) 1 x( x ) = lim. = lim. f f(1 + h) f(1) (1) = lim

Math 1000 Final Exam Review Solutions. (x + 3)(x 2) = lim. = lim x 2 = 3 2 = 5. (x + 1) 1 x( x ) = lim. = lim. f f(1 + h) f(1) (1) = lim Math Final Eam Review Solutions { + 3 if < Consider f() Find the following limits: (a) lim f() + + (b) lim f() + 3 3 (c) lim f() does not eist Find each of the following limits: + 6 (a) lim 3 + 3 (b) lim

More information

AP Calculus AB Free-Response Scoring Guidelines

AP Calculus AB Free-Response Scoring Guidelines Question pt The rate at which raw sewage enters a treatment tank is given by Et 85 75cos 9 gallons per hour for t 4 hours. Treated sewage is removed from the tank at the constant rate of 645 gallons per

More information

Chapter 2 Section 2: Acceleration

Chapter 2 Section 2: Acceleration Chapter 2 Section 2: Acceleration Motion Review Speed is the rate that an object s distance changes Distance is how far an object has travelled Speed = distance/time Velocity is rate that an object s displacement

More information

CALCULUS AB SECTION II, Part A

CALCULUS AB SECTION II, Part A CALCULUS AB SECTION II, Part A Time 45 minutes Number of problems 3 A graphing calculator is required for some problems or parts of problems. pt 1. The rate at which raw sewage enters a treatment tank

More information

PARTICLE MOTION. Section 3.7A Calculus BC AP/Dual, Revised /30/2018 1:20 AM 3.7A: Particle Motion 1

PARTICLE MOTION. Section 3.7A Calculus BC AP/Dual, Revised /30/2018 1:20 AM 3.7A: Particle Motion 1 PARTICLE MOTION Section 3.7A Calculus BC AP/Dual, Revised 2017 viet.dang@humbleisd.net 7/30/2018 1:20 AM 3.7A: Particle Motion 1 WHEN YOU SEE THINK When you see Think Initially t = 0 At rest v t = 0 At

More information

Virginia Tech Math 1226 : Past CTE problems

Virginia Tech Math 1226 : Past CTE problems Virginia Tech Math 16 : Past CTE problems 1. It requires 1 in-pounds of work to stretch a spring from its natural length of 1 in to a length of 1 in. How much additional work (in inch-pounds) is done in

More information

Math 111, Spring 2009 Final Exam

Math 111, Spring 2009 Final Exam Math 111, Spring 009 Final Exam Name (print) Instructor s name Directions 1. Time limit: 1 hour 50 minutes. Each test should have 8 pages. Points for each problem are to the right of the blank.. To receive

More information

The Princeton Review AP Calculus BC Practice Test 2

The Princeton Review AP Calculus BC Practice Test 2 0 The Princeton Review AP Calculus BC Practice Test CALCULUS BC SECTION I, Part A Time 55 Minutes Number of questions 8 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION Directions: Solve each

More information

MATH CALCULUS I 4.1: Area and Distance

MATH CALCULUS I 4.1: Area and Distance MATH 12002 - CALCULUS I 4.1: Area and Distance Professor Donald L. White Department of Mathematical Sciences Kent State University D.L. White (Kent State University) 1 / 8 The Area and Distance Problems

More information

AP Calculus AB. Integration. Table of Contents

AP Calculus AB. Integration.  Table of Contents AP Calculus AB Integration 2015 11 24 www.njctl.org Table of Contents click on the topic to go to that section Riemann Sums Trapezoid Approximation Area Under a Curve (The Definite Integral) Antiderivatives

More information

AP Calculus BC Fall Final Part IIa

AP Calculus BC Fall Final Part IIa AP Calculus BC 18-19 Fall Final Part IIa Calculator Required Name: 1. At time t = 0, there are 120 gallons of oil in a tank. During the time interval 0 t 10 hours, oil flows into the tank at a rate of

More information

Ch 3 Exam Review. Plot the ordered pairs on the rectangular coordinate system provided. 3) A(1, 3), B(-5, 3)

Ch 3 Exam Review. Plot the ordered pairs on the rectangular coordinate system provided. 3) A(1, 3), B(-5, 3) Ch 3 Exam Review Note: These are only a sample of the type of problems that may appear on the exam. Keep in mind, anything covered in class can be covered on the exam. Solve the problem. 1) This bar graph

More information

Ex. Find the derivative. Do not leave negative exponents or complex fractions in your answers.

Ex. Find the derivative. Do not leave negative exponents or complex fractions in your answers. CALCULUS AB THE SECOND FUNDAMENTAL THEOREM OF CALCULUS AND REVIEW E. Find the derivative. Do not leave negative eponents or comple fractions in your answers. 4 (a) y 4 e 5 f sin (b) sec (c) g 5 (d) y 4

More information

Problem Set Four Integration AP Calculus AB

Problem Set Four Integration AP Calculus AB Multiple Choice: No Calculator unless otherwise indicated. ) sec 2 x 2dx tan x + C tan x 2x +C tan x x + C d) 2tanxsec 2 x x + C x 2 2) If F(x)= t + dt, what is F (x) x 2 + 2 x 2 + 2x x 2 + d) 2(x2 +)

More information

AP Calculus Exam Format and Calculator Tips:

AP Calculus Exam Format and Calculator Tips: AP Calculus Exam Format and Calculator Tips: Exam Format: The exam is 3 hours and 15 minutes long and has two sections multiple choice and free response. A graphing calculator is required for parts of

More information

Math 115 Practice for Exam 3

Math 115 Practice for Exam 3 Math Practice for Exam Generated December, Name: SOLUTIONS Instructor: Section Number:. This exam has 6 questions. Note that the problems are not of equal difficulty, so you may want to skip over and return

More information

AP Calculus AB. Slide 1 / 175. Slide 2 / 175. Slide 3 / 175. Integration. Table of Contents

AP Calculus AB. Slide 1 / 175. Slide 2 / 175. Slide 3 / 175. Integration. Table of Contents Slide 1 / 175 Slide 2 / 175 AP Calculus AB Integration 2015-11-24 www.njctl.org Table of Contents click on the topic to go to that section Slide 3 / 175 Riemann Sums Trapezoid Approximation Area Under

More information

MAC Find the x-value that maximizes the area of the shaded rectangle inscribed in a right triangle below.

MAC Find the x-value that maximizes the area of the shaded rectangle inscribed in a right triangle below. MAC 23. Find the x-value that maximizes the area of the shaded rectangle inscribed in a right triangle below. (x, y) y = 3 x + 4 a. x = 6 b. x = 4 c. x = 2 d. x = 5 e. x = 3 2. Consider the area of the

More information

( ) = 3x 2 " 2x " 2 and g!( x) = x "1

( ) = 3x 2  2x  2 and g!( x) = x 1 37. AB Calculus Step-by-Step Name Let f and g be functions whose derivatives are given by ( ) = 3x 2 " 2x " 2 and g!( x) = x "1 f! x a. If it is known that f ( 1) = 5, find f ( x). x b. Using the answer

More information

Goal: Approximate the area under a curve using the Rectangular Approximation Method (RAM) RECTANGULAR APPROXIMATION METHODS

Goal: Approximate the area under a curve using the Rectangular Approximation Method (RAM) RECTANGULAR APPROXIMATION METHODS AP Calculus 5. Areas and Distances Goal: Approximate the area under a curve using the Rectangular Approximation Method (RAM) Exercise : Calculate the area between the x-axis and the graph of y = 3 2x.

More information

7.2 Trapezoidal Approximation

7.2 Trapezoidal Approximation 7. Trapezoidal Approximation NOTES Write your questions here! Riemann Sum f(x) = x + 1 [1,3] f(x) = x + 1 The Definite Integral b f(x)dx a Trapezoidal Approximation for interval [1,3] with n subintervals

More information

To conduct the experiment, each person in your group should be given a role:

To conduct the experiment, each person in your group should be given a role: Varying Motion NAME In this activity, your group of 3 will collect data based on one person s motion. From this data, you will create graphs comparing displacement, velocity, and acceleration to time.

More information

Kansas City Area Teachers of Mathematics 2011 KCATM Math Competition ALGEBRA GRADES 7-8

Kansas City Area Teachers of Mathematics 2011 KCATM Math Competition ALGEBRA GRADES 7-8 Kansas City Area Teachers of Mathematics 2011 KCATM Math Competition ALGEBRA GRADES 7-8 INSTRUCTIONS Do not open this booklet until instructed to do so. Time limit: 20 minutes You may NOT use calculators.

More information

MATH 150/GRACEY PRACTICE FINAL. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MATH 150/GRACEY PRACTICE FINAL. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MATH 0/GRACEY PRACTICE FINAL Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Choose the graph that represents the given function without using

More information

Part 1: Integration problems from exams

Part 1: Integration problems from exams . Find each of the following. ( (a) 4t 4 t + t + (a ) (b ) Part : Integration problems from 4-5 eams ) ( sec tan sin + + e e ). (a) Let f() = e. On the graph of f pictured below, draw the approimating

More information

dy dx dx dx as a BC Calculus 1 The Chain Rule is notation for a which says that we have the

dy dx dx dx as a BC Calculus 1 The Chain Rule is notation for a which says that we have the 2.4 2.6 BC Calculus 1 The Chain Rule dy is notation for a which says that we have the for an expression set equal to (the dependent variable), where the variable is x. This is read dee why, dee or the

More information

Applications of Integration

Applications of Integration Math 112 Spring 2019 Lab 3 Name: Section: Score: Applications of Integration In Lab 2 we explored one application of integration, that of finding the volume of a solid. Here, we explore a few more of the

More information

Study guide for the Math 115 final Fall 2012

Study guide for the Math 115 final Fall 2012 Study guide for the Math 115 final Fall 2012 This study guide is designed to help you learn the material covered on the Math 115 final. Problems on the final may differ significantly from these problems

More information

( 10, ). Which of the following are possible, and which are not possible? Hint: draw a

( 10, ). Which of the following are possible, and which are not possible? Hint: draw a Recitation Worksheet 6C f x = x 1 x 4 x 9 = x 14x + 49x 36. Find the intervals on which 1. Suppose ( ) ( )( )( ) 3 f ( x ) is increasing and the intervals on which f ( ). Suppose ( ) ( )( )( ) 3 x is decreasing.

More information

Answer Key for AP Calculus AB Practice Exam, Section I

Answer Key for AP Calculus AB Practice Exam, Section I Answer Key for AP Calculus AB Practice Exam, Section I Multiple-Choice Questions Question # Key B B 3 A 4 E C 6 D 7 E 8 C 9 E A A C 3 D 4 A A 6 B 7 A 8 B 9 C D E B 3 A 4 A E 6 A 7 A 8 A 76 E 77 A 78 D

More information

1 y = Recitation Worksheet 1A. 1. Simplify the following: b. ( ) a. ( x ) Solve for y : 3. Plot these points in the xy plane:

1 y = Recitation Worksheet 1A. 1. Simplify the following: b. ( ) a. ( x ) Solve for y : 3. Plot these points in the xy plane: Math 13 Recitation Worksheet 1A 1 Simplify the following: a ( ) 7 b ( ) 3 4 9 3 5 3 c 15 3 d 3 15 Solve for y : 8 y y 5= 6 3 3 Plot these points in the y plane: A ( 0,0 ) B ( 5,0 ) C ( 0, 4) D ( 3,5) 4

More information

Chapter 4 Integration

Chapter 4 Integration Chapter 4 Integration SECTION 4.1 Antiderivatives and Indefinite Integration Calculus: Chapter 4 Section 4.1 Antiderivative A function F is an antiderivative of f on an interval I if F '( x) f ( x) for

More information

Lecture The Definite Integral (1 of 2) MTH 124

Lecture The Definite Integral (1 of 2) MTH 124 We now begin our study of the integral or anti-derivative. Up to this point we have explored how to calculate the rate of change of a quantity. We now consider a related problem. That is, given the rate

More information

Practice Problem List II

Practice Problem List II Math 46 Practice Problem List II -------------------------------------------------------------------------------------------------------------------- Section 4.: 3, 3, 5, 9, 3, 9, 34, 39, 43, 53, 6-7 odd

More information