Estimating Causal Effects of Organ Transplantation Treatment Regimes

Size: px
Start display at page:

Download "Estimating Causal Effects of Organ Transplantation Treatment Regimes"

Transcription

1 Estimating Causal Effects of Organ Transplantation Treatment Regimes David M. Vock, Jeffrey A. Verdoliva Boatman Division of Biostatistics University of Minnesota July 31, / 27

2 Hot off the Press Biometrics DOI: /biom Estimating the Causal Effect of Treatment Regimes for Organ Transplantation Jeffrey A. Boatman and David M. Vock * Division of Biostatistics, School of Public Health, University of Minnesota, A460 Mayo Building, MMC 303, 420 Delaware St. SE, Minneapolis, Minnesota 55455, U.S.A. vock@umn.edu Summary. Patients awaiting cadaveric organ transplantation face a difficult decision if offered a low-quality organ: accept the organ or remain on the waiting list and hope a better organ is offered in the future. A dynamic treatment regime (DTR) for transplantation is a rule that determines whether a patient should decline an offered organ. Existing methods can estimate the effect of DTRs on survival outcomes, but these were developed for applications where treatment is abundantly available. For transplantation, organ availability is limited, and existing methods can only estimate the effect of a DTR assuming a single patient follows the DTR. We show for transplantation that the effect of a DTR depends on whether other patients follow the DTR. To estimate the anticipated survival if the entire population awaiting transplantation were to adopt a DTR, we develop a novel inverse probability weighted estimator (IPCW) which re-weights patients based on the probability of following their transplant history in the counterfactual world in which all patients follow the DTR of interest. We estimate this counterfactual probability using hot deck imputation to fill in data that is not observed for patients who are artificially censored by IPCW once they no longer follow the DTR of interest. We show via simulation that our proposed method has good finite-sample properties, and we apply our method to a lung transplantation observational registry. Key words: Causal inference; Dynamic treatment regimes; Inverse probability weighting; Lung transplantation. 1. Introduction Determining an optimal rule or regime that dictates when a patient should start treatment is an important step in personalizing medicine (Cain et al., 2010). However, determining Although accepting low-quality lungs may lead to poor posttransplant prognosis, declining offered lungs and remaining on the waiting list is not without risk: the LAS system effectively allocates lungs to patients most in need, but it does 2 / 27

3 Deceased Donor Organ Offers in the United States More patients in need organ transplant than organs available In 2015, 122,071 waiting at year end, 30,975 transplants performed, and 15,068 donors recovered United Network for Organ Sharing (UNOS) responsible for orderly offering deceased donor organs Order in which deceased donor organs offered to recipients a deterministic function (urgency, benefit, geography, organ quality, fairness) 3 / 27

4 Donor Lung Offers in the United States Lung Allocation in the United States. Left figure from Colvin-Adams (2012) 4 / 27

5 Organ Acceptance Each time an organ is offered to a recipient it may be turned down Many competing factors go into organ acceptance 1. Patient 2. Surgeon 3. Transplant Center 4. Organ Procurement Organization 5. Other Patients on Waiting List 5 / 27

6 Treatment Regimes for Organ Transplantation Patients awaiting organ transplantation face a difficult decision if offered a low-quality organ: Accept the organ Decline the organ, hope to be offered a higher quality one in the future Testing the effect of personalized decision rules (dynamic transplant regimes) would be helpful here. 6 / 27

7 Transplant Regimes Treatment regimes of interest: Rules which dictate when an offered organ should be declined Treatment regimes for transplantation tend to be poorly-defined : There is not a 1-to-1 correspondence between patient covariate history and treatment Transplants are not available at any time We cannot easily specify treatment regimes such as Get a transplant as soon as LAS > 50 because these regimes are not clinically meaningful Avoid regimes which dictate if an organ should be accepted 7 / 27

8 Time-varying Treatment and Time-varying Confounding No randomized trials of different transplant regimes Necessitates the use observational datasets and appropriate methods Inverse probability of compliance estimators 1. Patient s follow-up time is considered only while she is compliant with a regime of interest 2. Once non-compliant, her follow-up time is artificially censored 3. Observations are weighted according to the inverse of probability of compliance to correct for the potential selection bias introduced by the artificial censoring 8 / 27

9 Limitations of Existing Methods Problem: Anticipated survival for a given DTR depends on the quality and availability of organs, and these depend on the strategies that other patients follow to accept or decline an organ Here the probability of initiating treatment depends on the treatment regime other patients follow Conceptually similar, although not identical, to the spillover effect described in other contexts Refer to this as transplant regime spillover Existing methods have a major limitation here: They estimate the causal effect of a treatment regime for a single random participant who adopts the treatment regime But the causal effect if all patients were to adopt the treatment regime may have more public health relevance 9 / 27

10 Goal and Outline Develop weighted causal estimators for both cases: One follows All follow Develop estimators: Assuming we have data from an observational registry Avoid modeling the many random processes: patient arrival, organ arrival, etc / 27

11 Notation Notation: L i : listing time for ith patient N ij, Y ij : failure and at-risk indicators for ith patient on jth study day X ij : patient characteristics including confounders A ijk : indicator for accepting kth organ on the jth study day A ij : treatment history through the jth day O ijk : indicator for offered kth organ on jth study E jk to be the collection of information on all subjects prior to assigning the kth organ on the jth study day day Causal estimand: λ t (g, g ): hazard of death t days after entering the waiting list, and the associated survival S t (g, g ) 11 / 27

12 Components of the weights π (, ) ij ( Aij, E jsj ) = j j =1 S j k=1 π(, ) ijk ( ) Aij k, E j k : The probability of the observed treatment history assuming all patients follow regime (no changes in propensity to accept or decline organs) π (g,g ) ij ( Aij, E jsj ) = j j =1 S j k=1 π(g,g ) ijk ( ) Aij k, E j k :The probability of the observed treatment history in the counterfactual world where ith patient follows regime g and all others follow g 12 / 27

13 Estimating λ t (g, g ) We can estimate λ t (g, g ) by solving the estimating equation m n j=1 i=1 π (g,g ) ij π (, ) ij ( Aij, E jsj ) ( Aij, E jsj ) { N ij Y ij λ t (g, g ) } I (j L i = t) = 0 Intuition for the weights π(g,g ij Similar to IPCW π (, ) ij ) ) (A ij,e jsj ) : (A ij,e jsj Standardize to the target population where probability of A ij is different Mean zero estimating function estimator for λ t (g, g ) is CAN 13 / 27

14 Estimating π (, ) ( ) ij Aij, E jsj with the Observed Data π (, ) ij ( Aij, E jsj ) is a function of the probability of being offered, and the probability of accepting if offered: Pr(A ij = 1) = Pr(O ij = 1) Pr(A ij = 1 O ij = 1) Pr(A ij = 0) = 1 Pr(O ij = 1) Pr(A ij = 1 O ij = 1) Estimating Pr(O = 1) is straightforward provided I have a model for Pr(A = 1 O = 1) 14 / 27

15 Estimating π (g,g ) ( ) ij Aij, E jsj with the Observed Data This is more challenging. The numerator is the expectation of the probability of being offered and accepting organs in the hypothetical world where all patients follow regime g given the observed data. π (g,g ) ijk (1, E jk ) = E(π (g,g ) ijk (1, E (g,g ) jk ) E jk ) If all patients follow regime g : We don t know which patients would be on the waiting list We don t know what their characteristics would be The probability of being offered an organ can t be directly computed from the observed data Sample E (g,g ) jk from E jk use Monte Carlo integration to evaluare expectation 15 / 27

16 Estimating π (g,g ) ( ) ij Aij, E jsj ID LAS A Pr(A = 1 O = 1) Pr(O = 1) Pr(A) ??? 0.437? ?? 491????? ?? ?? ?? 16 / 27

17 Estimating π (g,g ) ( ) ij Aij, E jsj Hot Deck Imputation: For all transplant recipients, impute missing data assuming never transplanted by borrowing data from their nearest neighbor, the lender Simulate the organ allocation when everyone follows g, assuming model for accepting organs holds Assume low quality organs are accepted with probability 0 We ve created a hypothetical data set where all patients follow g. 17 / 27

18 After Imputation Assume the organ is defined as high quality under g ID LAS A Pr(A = 1 O = 1) Pr(O = 1) Pr(A) / 27

19 After Assigning Organ Under g, g Assume the organ is defined as high quality under g ID LAS A A (g,g ) Pr(A = 1 O = 1) Pr(O = 1) Pr(A) / 27

20 Simulation Study Estimation: Estimated survival for regime g: decline all low- quality organs Estimated survival assuming one follows and all follow Hot deck ( imputation: lender i for patient i selected as arg min Xij X i j : j L i = j ) L i i Nonparametric bootstrap to estimate standard errors (SEs) and form 95% confidence intervals (CI) 20 / 27

21 Simulation Results Bias Target t Truth Ŝ t (g, ) Ŝ t (g, g) Ŝ t (g, ) Ŝ t (g, g) S t (g, ) S t (g, g) CP 21 / 27

22 Application Data are from an observational registry maintained by the United Network for Organ Sharing May 4, 2005-Sept 30, ,091 transplants 13,039 patients total Treatment regimes: Decline organs below pth percentile of donor quality while LAS < M; if LAS M, any organ is acceptable p and M can both vary Estimated anticipated survival assuming one follows the regime, or all follow the regime. 22 / 27

23 Application Results Cumulative Probability of Death (a) Decline All Organs Until LAS Exceeds 50 Kaplan Meier Survival One Participant Follows Regime All Participants Follow Regime Years From Entering Waitlist 23 / 27

24 Application Results Cumulative Probability of Death (b) All Follow Regime 'Decline All Organs Until LAS Exceeds Cutoff' Kaplan Meier Survival LAS Cutoff = 35 LAS Cutoff = 40 LAS Cutoff = 45 LAS Cutoff = Years From Entering Waitlist 24 / 27

25 Application Results Cumulative Probability of Death (d) One Follows Regime 'Decline Worst p% of Organs Until LAS Exceeds 50' Kaplan Meier Survival p = 25 p = 50 p = 75 p = Years From Entering Waitlist 25 / 27

26 Summary Simulation shows: Estimators have little bias for their target Causal estimand must be specified with care Application One follows and all follows are different Patients may gain a modest increase in survival probability by declining transplantation while LAS is low Effect may be greater if the entire population adopts the strategy 26 / 27

27 Summary Thank you! 27 / 27

Estimating the Mean Response of Treatment Duration Regimes in an Observational Study. Anastasios A. Tsiatis.

Estimating the Mean Response of Treatment Duration Regimes in an Observational Study. Anastasios A. Tsiatis. Estimating the Mean Response of Treatment Duration Regimes in an Observational Study Anastasios A. Tsiatis http://www.stat.ncsu.edu/ tsiatis/ Introduction to Dynamic Treatment Regimes 1 Outline Description

More information

SEQUENTIAL MULTIPLE ASSIGNMENT RANDOMIZATION TRIALS WITH ENRICHMENT (SMARTER) DESIGN

SEQUENTIAL MULTIPLE ASSIGNMENT RANDOMIZATION TRIALS WITH ENRICHMENT (SMARTER) DESIGN SEQUENTIAL MULTIPLE ASSIGNMENT RANDOMIZATION TRIALS WITH ENRICHMENT (SMARTER) DESIGN Ying Liu Division of Biostatistics, Medical College of Wisconsin Yuanjia Wang Department of Biostatistics & Psychiatry,

More information

SAMPLE SIZE ESTIMATION FOR SURVIVAL OUTCOMES IN CLUSTER-RANDOMIZED STUDIES WITH SMALL CLUSTER SIZES BIOMETRICS (JUNE 2000)

SAMPLE SIZE ESTIMATION FOR SURVIVAL OUTCOMES IN CLUSTER-RANDOMIZED STUDIES WITH SMALL CLUSTER SIZES BIOMETRICS (JUNE 2000) SAMPLE SIZE ESTIMATION FOR SURVIVAL OUTCOMES IN CLUSTER-RANDOMIZED STUDIES WITH SMALL CLUSTER SIZES BIOMETRICS (JUNE 2000) AMITA K. MANATUNGA THE ROLLINS SCHOOL OF PUBLIC HEALTH OF EMORY UNIVERSITY SHANDE

More information

Comparative effectiveness of dynamic treatment regimes

Comparative effectiveness of dynamic treatment regimes Comparative effectiveness of dynamic treatment regimes An application of the parametric g- formula Miguel Hernán Departments of Epidemiology and Biostatistics Harvard School of Public Health www.hsph.harvard.edu/causal

More information

Robust estimates of state occupancy and transition probabilities for Non-Markov multi-state models

Robust estimates of state occupancy and transition probabilities for Non-Markov multi-state models Robust estimates of state occupancy and transition probabilities for Non-Markov multi-state models 26 March 2014 Overview Continuously observed data Three-state illness-death General robust estimator Interval

More information

Causal Hazard Ratio Estimation By Instrumental Variables or Principal Stratification. Todd MacKenzie, PhD

Causal Hazard Ratio Estimation By Instrumental Variables or Principal Stratification. Todd MacKenzie, PhD Causal Hazard Ratio Estimation By Instrumental Variables or Principal Stratification Todd MacKenzie, PhD Collaborators A. James O Malley Tor Tosteson Therese Stukel 2 Overview 1. Instrumental variable

More information

Prerequisite: STATS 7 or STATS 8 or AP90 or (STATS 120A and STATS 120B and STATS 120C). AP90 with a minimum score of 3

Prerequisite: STATS 7 or STATS 8 or AP90 or (STATS 120A and STATS 120B and STATS 120C). AP90 with a minimum score of 3 University of California, Irvine 2017-2018 1 Statistics (STATS) Courses STATS 5. Seminar in Data Science. 1 Unit. An introduction to the field of Data Science; intended for entering freshman and transfers.

More information

Estimation of Conditional Kendall s Tau for Bivariate Interval Censored Data

Estimation of Conditional Kendall s Tau for Bivariate Interval Censored Data Communications for Statistical Applications and Methods 2015, Vol. 22, No. 6, 599 604 DOI: http://dx.doi.org/10.5351/csam.2015.22.6.599 Print ISSN 2287-7843 / Online ISSN 2383-4757 Estimation of Conditional

More information

A multi-state model for the prognosis of non-mild acute pancreatitis

A multi-state model for the prognosis of non-mild acute pancreatitis A multi-state model for the prognosis of non-mild acute pancreatitis Lore Zumeta Olaskoaga 1, Felix Zubia Olaskoaga 2, Guadalupe Gómez Melis 1 1 Universitat Politècnica de Catalunya 2 Intensive Care Unit,

More information

Lecture 9. Statistics Survival Analysis. Presented February 23, Dan Gillen Department of Statistics University of California, Irvine

Lecture 9. Statistics Survival Analysis. Presented February 23, Dan Gillen Department of Statistics University of California, Irvine Statistics 255 - Survival Analysis Presented February 23, 2016 Dan Gillen Department of Statistics University of California, Irvine 9.1 Survival analysis involves subjects moving through time Hazard may

More information

Instrumental variables estimation in the Cox Proportional Hazard regression model

Instrumental variables estimation in the Cox Proportional Hazard regression model Instrumental variables estimation in the Cox Proportional Hazard regression model James O Malley, Ph.D. Department of Biomedical Data Science The Dartmouth Institute for Health Policy and Clinical Practice

More information

Estimation of Optimal Treatment Regimes Via Machine Learning. Marie Davidian

Estimation of Optimal Treatment Regimes Via Machine Learning. Marie Davidian Estimation of Optimal Treatment Regimes Via Machine Learning Marie Davidian Department of Statistics North Carolina State University Triangle Machine Learning Day April 3, 2018 1/28 Optimal DTRs Via ML

More information

Estimating Optimal Dynamic Treatment Regimes from Clustered Data

Estimating Optimal Dynamic Treatment Regimes from Clustered Data Estimating Optimal Dynamic Treatment Regimes from Clustered Data Bibhas Chakraborty Department of Biostatistics, Columbia University bc2425@columbia.edu Society for Clinical Trials Annual Meetings Boston,

More information

Extending causal inferences from a randomized trial to a target population

Extending causal inferences from a randomized trial to a target population Extending causal inferences from a randomized trial to a target population Issa Dahabreh Center for Evidence Synthesis in Health, Brown University issa dahabreh@brown.edu January 16, 2019 Issa Dahabreh

More information

You know I m not goin diss you on the internet Cause my mama taught me better than that I m a survivor (What?) I m not goin give up (What?

You know I m not goin diss you on the internet Cause my mama taught me better than that I m a survivor (What?) I m not goin give up (What? You know I m not goin diss you on the internet Cause my mama taught me better than that I m a survivor (What?) I m not goin give up (What?) I m not goin stop (What?) I m goin work harder (What?) Sir David

More information

Robustifying Trial-Derived Treatment Rules to a Target Population

Robustifying Trial-Derived Treatment Rules to a Target Population 1/ 39 Robustifying Trial-Derived Treatment Rules to a Target Population Yingqi Zhao Public Health Sciences Division Fred Hutchinson Cancer Research Center Workshop on Perspectives and Analysis for Personalized

More information

Constrained estimation for binary and survival data

Constrained estimation for binary and survival data Constrained estimation for binary and survival data Jeremy M. G. Taylor Yong Seok Park John D. Kalbfleisch Biostatistics, University of Michigan May, 2010 () Constrained estimation May, 2010 1 / 43 Outline

More information

Optimal Treatment Regimes for Survival Endpoints from a Classification Perspective. Anastasios (Butch) Tsiatis and Xiaofei Bai

Optimal Treatment Regimes for Survival Endpoints from a Classification Perspective. Anastasios (Butch) Tsiatis and Xiaofei Bai Optimal Treatment Regimes for Survival Endpoints from a Classification Perspective Anastasios (Butch) Tsiatis and Xiaofei Bai Department of Statistics North Carolina State University 1/35 Optimal Treatment

More information

Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Mela. P.

Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Mela. P. Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Melanie M. Wall, Bradley P. Carlin November 24, 2014 Outlines of the talk

More information

Lecture 7 Time-dependent Covariates in Cox Regression

Lecture 7 Time-dependent Covariates in Cox Regression Lecture 7 Time-dependent Covariates in Cox Regression So far, we ve been considering the following Cox PH model: λ(t Z) = λ 0 (t) exp(β Z) = λ 0 (t) exp( β j Z j ) where β j is the parameter for the the

More information

Application of Time-to-Event Methods in the Assessment of Safety in Clinical Trials

Application of Time-to-Event Methods in the Assessment of Safety in Clinical Trials Application of Time-to-Event Methods in the Assessment of Safety in Clinical Trials Progress, Updates, Problems William Jen Hoe Koh May 9, 2013 Overview Marginal vs Conditional What is TMLE? Key Estimation

More information

Incentivized Kidney Exchange

Incentivized Kidney Exchange Incentivized Kidney Exchange Tayfun Sönmez M. Utku Ünver M. Bumin Yenmez Boston College Boston College Boston College Kidney Exchange Kidney Exchange became a wide-spread modality of transplantation within

More information

ADVANCED STATISTICAL ANALYSIS OF EPIDEMIOLOGICAL STUDIES. Cox s regression analysis Time dependent explanatory variables

ADVANCED STATISTICAL ANALYSIS OF EPIDEMIOLOGICAL STUDIES. Cox s regression analysis Time dependent explanatory variables ADVANCED STATISTICAL ANALYSIS OF EPIDEMIOLOGICAL STUDIES Cox s regression analysis Time dependent explanatory variables Henrik Ravn Bandim Health Project, Statens Serum Institut 4 November 2011 1 / 53

More information

Gov 2002: 5. Matching

Gov 2002: 5. Matching Gov 2002: 5. Matching Matthew Blackwell October 1, 2015 Where are we? Where are we going? Discussed randomized experiments, started talking about observational data. Last week: no unmeasured confounders

More information

Targeted Maximum Likelihood Estimation in Safety Analysis

Targeted Maximum Likelihood Estimation in Safety Analysis Targeted Maximum Likelihood Estimation in Safety Analysis Sam Lendle 1 Bruce Fireman 2 Mark van der Laan 1 1 UC Berkeley 2 Kaiser Permanente ISPE Advanced Topics Session, Barcelona, August 2012 1 / 35

More information

Variable selection and machine learning methods in causal inference

Variable selection and machine learning methods in causal inference Variable selection and machine learning methods in causal inference Debashis Ghosh Department of Biostatistics and Informatics Colorado School of Public Health Joint work with Yeying Zhu, University of

More information

Estimation for Modified Data

Estimation for Modified Data Definition. Estimation for Modified Data 1. Empirical distribution for complete individual data (section 11.) An observation X is truncated from below ( left truncated) at d if when it is at or below d

More information

Introduction to Statistical Analysis

Introduction to Statistical Analysis Introduction to Statistical Analysis Changyu Shen Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology Beth Israel Deaconess Medical Center Harvard Medical School Objectives Descriptive

More information

Extensions of Cox Model for Non-Proportional Hazards Purpose

Extensions of Cox Model for Non-Proportional Hazards Purpose PhUSE Annual Conference 2013 Paper SP07 Extensions of Cox Model for Non-Proportional Hazards Purpose Author: Jadwiga Borucka PAREXEL, Warsaw, Poland Brussels 13 th - 16 th October 2013 Presentation Plan

More information

Quantile Regression for Residual Life and Empirical Likelihood

Quantile Regression for Residual Life and Empirical Likelihood Quantile Regression for Residual Life and Empirical Likelihood Mai Zhou email: mai@ms.uky.edu Department of Statistics, University of Kentucky, Lexington, KY 40506-0027, USA Jong-Hyeon Jeong email: jeong@nsabp.pitt.edu

More information

Introduction to Empirical Processes and Semiparametric Inference Lecture 01: Introduction and Overview

Introduction to Empirical Processes and Semiparametric Inference Lecture 01: Introduction and Overview Introduction to Empirical Processes and Semiparametric Inference Lecture 01: Introduction and Overview Michael R. Kosorok, Ph.D. Professor and Chair of Biostatistics Professor of Statistics and Operations

More information

Causal Sensitivity Analysis for Decision Trees

Causal Sensitivity Analysis for Decision Trees Causal Sensitivity Analysis for Decision Trees by Chengbo Li A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Mathematics in Computer

More information

Statistical Methods for Alzheimer s Disease Studies

Statistical Methods for Alzheimer s Disease Studies Statistical Methods for Alzheimer s Disease Studies Rebecca A. Betensky, Ph.D. Department of Biostatistics, Harvard T.H. Chan School of Public Health July 19, 2016 1/37 OUTLINE 1 Statistical collaborations

More information

Chapter 4 Fall Notations: t 1 < t 2 < < t D, D unique death times. d j = # deaths at t j = n. Y j = # at risk /alive at t j = n

Chapter 4 Fall Notations: t 1 < t 2 < < t D, D unique death times. d j = # deaths at t j = n. Y j = # at risk /alive at t j = n Bios 323: Applied Survival Analysis Qingxia (Cindy) Chen Chapter 4 Fall 2012 4.2 Estimators of the survival and cumulative hazard functions for RC data Suppose X is a continuous random failure time with

More information

Group Sequential Tests for Delayed Responses

Group Sequential Tests for Delayed Responses Group Sequential Tests for Delayed Responses Lisa Hampson Department of Mathematics and Statistics, Lancaster University, UK Chris Jennison Department of Mathematical Sciences, University of Bath, UK Read

More information

Part III Measures of Classification Accuracy for the Prediction of Survival Times

Part III Measures of Classification Accuracy for the Prediction of Survival Times Part III Measures of Classification Accuracy for the Prediction of Survival Times Patrick J Heagerty PhD Department of Biostatistics University of Washington 102 ISCB 2010 Session Three Outline Examples

More information

Supporting Information for Estimating restricted mean. treatment effects with stacked survival models

Supporting Information for Estimating restricted mean. treatment effects with stacked survival models Supporting Information for Estimating restricted mean treatment effects with stacked survival models Andrew Wey, David Vock, John Connett, and Kyle Rudser Section 1 presents several extensions to the simulation

More information

Nonparametric Model Construction

Nonparametric Model Construction Nonparametric Model Construction Chapters 4 and 12 Stat 477 - Loss Models Chapters 4 and 12 (Stat 477) Nonparametric Model Construction Brian Hartman - BYU 1 / 28 Types of data Types of data For non-life

More information

Rerandomization to Balance Covariates

Rerandomization to Balance Covariates Rerandomization to Balance Covariates Kari Lock Morgan Department of Statistics Penn State University Joint work with Don Rubin University of Minnesota Biostatistics 4/27/16 The Gold Standard Randomized

More information

Marginal versus conditional effects: does it make a difference? Mireille Schnitzer, PhD Université de Montréal

Marginal versus conditional effects: does it make a difference? Mireille Schnitzer, PhD Université de Montréal Marginal versus conditional effects: does it make a difference? Mireille Schnitzer, PhD Université de Montréal Overview In observational and experimental studies, the goal may be to estimate the effect

More information

Survival Prediction Under Dependent Censoring: A Copula-based Approach

Survival Prediction Under Dependent Censoring: A Copula-based Approach Survival Prediction Under Dependent Censoring: A Copula-based Approach Yi-Hau Chen Institute of Statistical Science, Academia Sinica 2013 AMMS, National Sun Yat-Sen University December 7 2013 Joint work

More information

ANALYSIS OF ORDINAL SURVEY RESPONSES WITH DON T KNOW

ANALYSIS OF ORDINAL SURVEY RESPONSES WITH DON T KNOW SSC Annual Meeting, June 2015 Proceedings of the Survey Methods Section ANALYSIS OF ORDINAL SURVEY RESPONSES WITH DON T KNOW Xichen She and Changbao Wu 1 ABSTRACT Ordinal responses are frequently involved

More information

Multi-state Models: An Overview

Multi-state Models: An Overview Multi-state Models: An Overview Andrew Titman Lancaster University 14 April 2016 Overview Introduction to multi-state modelling Examples of applications Continuously observed processes Intermittently observed

More information

Two-stage Adaptive Randomization for Delayed Response in Clinical Trials

Two-stage Adaptive Randomization for Delayed Response in Clinical Trials Two-stage Adaptive Randomization for Delayed Response in Clinical Trials Guosheng Yin Department of Statistics and Actuarial Science The University of Hong Kong Joint work with J. Xu PSI and RSS Journal

More information

A multi-state model for the prognosis of non-mild acute pancreatitis

A multi-state model for the prognosis of non-mild acute pancreatitis A multi-state model for the prognosis of non-mild acute pancreatitis Lore Zumeta Olaskoaga 1, Felix Zubia Olaskoaga 2, Marta Bofill Roig 1, Guadalupe Gómez Melis 1 1 Universitat Politècnica de Catalunya

More information

Lecture 6 PREDICTING SURVIVAL UNDER THE PH MODEL

Lecture 6 PREDICTING SURVIVAL UNDER THE PH MODEL Lecture 6 PREDICTING SURVIVAL UNDER THE PH MODEL The Cox PH model: λ(t Z) = λ 0 (t) exp(β Z). How do we estimate the survival probability, S z (t) = S(t Z) = P (T > t Z), for an individual with covariates

More information

STAT Section 2.1: Basic Inference. Basic Definitions

STAT Section 2.1: Basic Inference. Basic Definitions STAT 518 --- Section 2.1: Basic Inference Basic Definitions Population: The collection of all the individuals of interest. This collection may be or even. Sample: A collection of elements of the population.

More information

Part [1.0] Measures of Classification Accuracy for the Prediction of Survival Times

Part [1.0] Measures of Classification Accuracy for the Prediction of Survival Times Part [1.0] Measures of Classification Accuracy for the Prediction of Survival Times Patrick J. Heagerty PhD Department of Biostatistics University of Washington 1 Biomarkers Review: Cox Regression Model

More information

Ph.D. course: Regression models. Introduction. 19 April 2012

Ph.D. course: Regression models. Introduction. 19 April 2012 Ph.D. course: Regression models Introduction PKA & LTS Sect. 1.1, 1.2, 1.4 19 April 2012 www.biostat.ku.dk/~pka/regrmodels12 Per Kragh Andersen 1 Regression models The distribution of one outcome variable

More information

Causal Inference. Prediction and causation are very different. Typical questions are:

Causal Inference. Prediction and causation are very different. Typical questions are: Causal Inference Prediction and causation are very different. Typical questions are: Prediction: Predict Y after observing X = x Causation: Predict Y after setting X = x. Causation involves predicting

More information

Multi-state models: prediction

Multi-state models: prediction Department of Medical Statistics and Bioinformatics Leiden University Medical Center Course on advanced survival analysis, Copenhagen Outline Prediction Theory Aalen-Johansen Computational aspects Applications

More information

Kidney Exchange with Immunosuppressants

Kidney Exchange with Immunosuppressants Kidney Exchange with Immunosuppressants Youngsub Chun Eun Jeong Heo Sunghoon Hong February 29, 2016 Abstract We investigate the implications of using immunosuppressants as a part of a kidney exchange program.

More information

Some methods for handling missing values in outcome variables. Roderick J. Little

Some methods for handling missing values in outcome variables. Roderick J. Little Some methods for handling missing values in outcome variables Roderick J. Little Missing data principles Likelihood methods Outline ML, Bayes, Multiple Imputation (MI) Robust MAR methods Predictive mean

More information

Statistics 262: Intermediate Biostatistics Non-parametric Survival Analysis

Statistics 262: Intermediate Biostatistics Non-parametric Survival Analysis Statistics 262: Intermediate Biostatistics Non-parametric Survival Analysis Jonathan Taylor & Kristin Cobb Statistics 262: Intermediate Biostatistics p.1/?? Overview of today s class Kaplan-Meier Curve

More information

Ph.D. course: Regression models. Regression models. Explanatory variables. Example 1.1: Body mass index and vitamin D status

Ph.D. course: Regression models. Regression models. Explanatory variables. Example 1.1: Body mass index and vitamin D status Ph.D. course: Regression models Introduction PKA & LTS Sect. 1.1, 1.2, 1.4 25 April 2013 www.biostat.ku.dk/~pka/regrmodels13 Per Kragh Andersen Regression models The distribution of one outcome variable

More information

Mixture modelling of recurrent event times with long-term survivors: Analysis of Hutterite birth intervals. John W. Mac McDonald & Alessandro Rosina

Mixture modelling of recurrent event times with long-term survivors: Analysis of Hutterite birth intervals. John W. Mac McDonald & Alessandro Rosina Mixture modelling of recurrent event times with long-term survivors: Analysis of Hutterite birth intervals John W. Mac McDonald & Alessandro Rosina Quantitative Methods in the Social Sciences Seminar -

More information

Part III. Hypothesis Testing. III.1. Log-rank Test for Right-censored Failure Time Data

Part III. Hypothesis Testing. III.1. Log-rank Test for Right-censored Failure Time Data 1 Part III. Hypothesis Testing III.1. Log-rank Test for Right-censored Failure Time Data Consider a survival study consisting of n independent subjects from p different populations with survival functions

More information

Simulation-based robust IV inference for lifetime data

Simulation-based robust IV inference for lifetime data Simulation-based robust IV inference for lifetime data Anand Acharya 1 Lynda Khalaf 1 Marcel Voia 1 Myra Yazbeck 2 David Wensley 3 1 Department of Economics Carleton University 2 Department of Economics

More information

Kidney Exchange with Immunosuppressants

Kidney Exchange with Immunosuppressants Kidney Exchange with Immunosuppressants Youngsub Chun Eun Jeong Heo Sunghoon Hong October 2, 2015 Abstract This paper investigates implications of introducing immunosuppressants (or suppressants) in kidney

More information

Analytical Bootstrap Methods for Censored Data

Analytical Bootstrap Methods for Censored Data JOURNAL OF APPLIED MATHEMATICS AND DECISION SCIENCES, 6(2, 129 141 Copyright c 2002, Lawrence Erlbaum Associates, Inc. Analytical Bootstrap Methods for Censored Data ALAN D. HUTSON Division of Biostatistics,

More information

Randomization-Based Inference With Complex Data Need Not Be Complex!

Randomization-Based Inference With Complex Data Need Not Be Complex! Randomization-Based Inference With Complex Data Need Not Be Complex! JITAIs JITAIs Susan Murphy 07.18.17 HeartSteps JITAI JITAIs Sequential Decision Making Use data to inform science and construct decision

More information

Analysing Survival Endpoints in Randomized Clinical Trials using Generalized Pairwise Comparisons

Analysing Survival Endpoints in Randomized Clinical Trials using Generalized Pairwise Comparisons Analysing Survival Endpoints in Randomized Clinical Trials using Generalized Pairwise Comparisons Dr Julien PERON October 2016 Department of Biostatistics HCL LBBE UCBL Department of Medical oncology HCL

More information

Group Sequential Tests for Delayed Responses. Christopher Jennison. Lisa Hampson. Workshop on Special Topics on Sequential Methodology

Group Sequential Tests for Delayed Responses. Christopher Jennison. Lisa Hampson. Workshop on Special Topics on Sequential Methodology Group Sequential Tests for Delayed Responses Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj Lisa Hampson Department of Mathematics and Statistics,

More information

Harvard University. Harvard University Biostatistics Working Paper Series

Harvard University. Harvard University Biostatistics Working Paper Series Harvard University Harvard University Biostatistics Working Paper Series Year 2008 Paper 94 The Highest Confidence Density Region and Its Usage for Inferences about the Survival Function with Censored

More information

Determining Sufficient Number of Imputations Using Variance of Imputation Variances: Data from 2012 NAMCS Physician Workflow Mail Survey *

Determining Sufficient Number of Imputations Using Variance of Imputation Variances: Data from 2012 NAMCS Physician Workflow Mail Survey * Applied Mathematics, 2014,, 3421-3430 Published Online December 2014 in SciRes. http://www.scirp.org/journal/am http://dx.doi.org/10.4236/am.2014.21319 Determining Sufficient Number of Imputations Using

More information

Package crrsc. R topics documented: February 19, 2015

Package crrsc. R topics documented: February 19, 2015 Package crrsc February 19, 2015 Title Competing risks regression for Stratified and Clustered data Version 1.1 Author Bingqing Zhou and Aurelien Latouche Extension of cmprsk to Stratified and Clustered

More information

Sensitivity analysis and distributional assumptions

Sensitivity analysis and distributional assumptions Sensitivity analysis and distributional assumptions Tyler J. VanderWeele Department of Health Studies, University of Chicago 5841 South Maryland Avenue, MC 2007, Chicago, IL 60637, USA vanderweele@uchicago.edu

More information

Pairwise rank based likelihood for estimating the relationship between two homogeneous populations and their mixture proportion

Pairwise rank based likelihood for estimating the relationship between two homogeneous populations and their mixture proportion Pairwise rank based likelihood for estimating the relationship between two homogeneous populations and their mixture proportion Glenn Heller and Jing Qin Department of Epidemiology and Biostatistics Memorial

More information

Optimizing the Efficiency of the Liver Allocation System through Region Selection

Optimizing the Efficiency of the Liver Allocation System through Region Selection Optimizing the Efficiency of the Liver Allocation System through Region Selection Nan Kong Department of Industrial and Management Systems Engineering, University of South Florida Andrew J. Schaefer, Brady

More information

Monitoring clinical trial outcomes with delayed response: incorporating pipeline data in group sequential designs. Christopher Jennison

Monitoring clinical trial outcomes with delayed response: incorporating pipeline data in group sequential designs. Christopher Jennison Monitoring clinical trial outcomes with delayed response: incorporating pipeline data in group sequential designs Christopher Jennison Department of Mathematical Sciences, University of Bath http://people.bath.ac.uk/mascj

More information

SIMULATION-BASED SENSITIVITY ANALYSIS FOR MATCHING ESTIMATORS

SIMULATION-BASED SENSITIVITY ANALYSIS FOR MATCHING ESTIMATORS SIMULATION-BASED SENSITIVITY ANALYSIS FOR MATCHING ESTIMATORS TOMMASO NANNICINI universidad carlos iii de madrid UK Stata Users Group Meeting London, September 10, 2007 CONTENT Presentation of a Stata

More information

An Introduction to Causal Analysis on Observational Data using Propensity Scores

An Introduction to Causal Analysis on Observational Data using Propensity Scores An Introduction to Causal Analysis on Observational Data using Propensity Scores Margie Rosenberg*, PhD, FSA Brian Hartman**, PhD, ASA Shannon Lane* *University of Wisconsin Madison **University of Connecticut

More information

SEMIPARAMETRIC METHODS FOR ESTIMATING CUMULATIVE TREATMENT EFFECTS IN THE PRESENCE OF NON-PROPORTIONAL HAZARDS AND DEPENDENT CENSORING

SEMIPARAMETRIC METHODS FOR ESTIMATING CUMULATIVE TREATMENT EFFECTS IN THE PRESENCE OF NON-PROPORTIONAL HAZARDS AND DEPENDENT CENSORING SEMIPARAMETRIC METHODS FOR ESTIMATING CUMULATIVE TREATMENT EFFECTS IN THE PRESENCE OF NON-PROPORTIONAL HAZARDS AND DEPENDENT CENSORING by Guanghui Wei A dissertation submitted in partial fulfillment of

More information

ST745: Survival Analysis: Nonparametric methods

ST745: Survival Analysis: Nonparametric methods ST745: Survival Analysis: Nonparametric methods Eric B. Laber Department of Statistics, North Carolina State University February 5, 2015 The KM estimator is used ubiquitously in medical studies to estimate

More information

Semiparametric Regression

Semiparametric Regression Semiparametric Regression Patrick Breheny October 22 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/23 Introduction Over the past few weeks, we ve introduced a variety of regression models under

More information

Practical considerations for survival models

Practical considerations for survival models Including historical data in the analysis of clinical trials using the modified power prior Practical considerations for survival models David Dejardin 1 2, Joost van Rosmalen 3 and Emmanuel Lesaffre 1

More information

Joint Modeling of Longitudinal Item Response Data and Survival

Joint Modeling of Longitudinal Item Response Data and Survival Joint Modeling of Longitudinal Item Response Data and Survival Jean-Paul Fox University of Twente Department of Research Methodology, Measurement and Data Analysis Faculty of Behavioural Sciences Enschede,

More information

Statistics in medicine

Statistics in medicine Statistics in medicine Lecture 4: and multivariable regression Fatma Shebl, MD, MS, MPH, PhD Assistant Professor Chronic Disease Epidemiology Department Yale School of Public Health Fatma.shebl@yale.edu

More information

Approximation of Survival Function by Taylor Series for General Partly Interval Censored Data

Approximation of Survival Function by Taylor Series for General Partly Interval Censored Data Malaysian Journal of Mathematical Sciences 11(3): 33 315 (217) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Journal homepage: http://einspem.upm.edu.my/journal Approximation of Survival Function by Taylor

More information

Bounds on Causal Effects in Three-Arm Trials with Non-compliance. Jing Cheng Dylan Small

Bounds on Causal Effects in Three-Arm Trials with Non-compliance. Jing Cheng Dylan Small Bounds on Causal Effects in Three-Arm Trials with Non-compliance Jing Cheng Dylan Small Department of Biostatistics and Department of Statistics University of Pennsylvania June 20, 2005 A Three-Arm Randomized

More information

NONPARAMETRIC ADJUSTMENT FOR MEASUREMENT ERROR IN TIME TO EVENT DATA: APPLICATION TO RISK PREDICTION MODELS

NONPARAMETRIC ADJUSTMENT FOR MEASUREMENT ERROR IN TIME TO EVENT DATA: APPLICATION TO RISK PREDICTION MODELS BIRS 2016 1 NONPARAMETRIC ADJUSTMENT FOR MEASUREMENT ERROR IN TIME TO EVENT DATA: APPLICATION TO RISK PREDICTION MODELS Malka Gorfine Tel Aviv University, Israel Joint work with Danielle Braun and Giovanni

More information

Estimating the cumulative incidence function of dynamic treatment regimes

Estimating the cumulative incidence function of dynamic treatment regimes J. R. Statist. Soc. A (218) 181, Part 1, pp. 85 16 Estimating the cumulative incidence function of dynamic treatment regimes Idil Yavuz Dokuz Eylul University, Izmir, Turkey and Yu Cheng and Abdus S. Wahed

More information

Analysis of Longitudinal Data. Patrick J. Heagerty PhD Department of Biostatistics University of Washington

Analysis of Longitudinal Data. Patrick J. Heagerty PhD Department of Biostatistics University of Washington Analysis of Longitudinal Data Patrick J Heagerty PhD Department of Biostatistics University of Washington Auckland 8 Session One Outline Examples of longitudinal data Scientific motivation Opportunities

More information

Pattern Structures for Risk Group Identification

Pattern Structures for Risk Group Identification Pattern Structures for Risk Group Identification Natalia V. Korepanova and Sergei O. Kuznetsov National Research University Higher School of Economics, Moscow, Russia, nkorepanova@hse.ru, skuznetsov@hse.ru

More information

Multistate models and recurrent event models

Multistate models and recurrent event models Multistate models Multistate models and recurrent event models Patrick Breheny December 10 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/22 Introduction Multistate models In this final lecture,

More information

Global Sensitivity Analysis for Repeated Measures Studies with Informative Drop-out: A Semi-Parametric Approach

Global Sensitivity Analysis for Repeated Measures Studies with Informative Drop-out: A Semi-Parametric Approach Global for Repeated Measures Studies with Informative Drop-out: A Semi-Parametric Approach Daniel Aidan McDermott Ivan Diaz Johns Hopkins University Ibrahim Turkoz Janssen Research and Development September

More information

Selection on Observables: Propensity Score Matching.

Selection on Observables: Propensity Score Matching. Selection on Observables: Propensity Score Matching. Department of Economics and Management Irene Brunetti ireneb@ec.unipi.it 24/10/2017 I. Brunetti Labour Economics in an European Perspective 24/10/2017

More information

Modern Statistical Learning Methods for Observational Biomedical Data. Chapter 2: Basic identification and estimation of an average treatment effect

Modern Statistical Learning Methods for Observational Biomedical Data. Chapter 2: Basic identification and estimation of an average treatment effect Modern Statistical Learning Methods for Observational Biomedical Data Chapter 2: Basic identification and estimation of an average treatment effect David Benkeser Emory Univ. Marco Carone Univ. of Washington

More information

Censoring and Truncation - Highlighting the Differences

Censoring and Truncation - Highlighting the Differences Censoring and Truncation - Highlighting the Differences Micha Mandel The Hebrew University of Jerusalem, Jerusalem, Israel, 91905 July 9, 2007 Micha Mandel is a Lecturer, Department of Statistics, The

More information

Extensions of Cox Model for Non-Proportional Hazards Purpose

Extensions of Cox Model for Non-Proportional Hazards Purpose PhUSE 2013 Paper SP07 Extensions of Cox Model for Non-Proportional Hazards Purpose Jadwiga Borucka, PAREXEL, Warsaw, Poland ABSTRACT Cox proportional hazard model is one of the most common methods used

More information

PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH

PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH The First Step: SAMPLE SIZE DETERMINATION THE ULTIMATE GOAL The most important, ultimate step of any of clinical research is to do draw inferences;

More information

Dynamic Prediction of Disease Progression Using Longitudinal Biomarker Data

Dynamic Prediction of Disease Progression Using Longitudinal Biomarker Data Dynamic Prediction of Disease Progression Using Longitudinal Biomarker Data Xuelin Huang Department of Biostatistics M. D. Anderson Cancer Center The University of Texas Joint Work with Jing Ning, Sangbum

More information

Bounding the Probability of Causation in Mediation Analysis

Bounding the Probability of Causation in Mediation Analysis arxiv:1411.2636v1 [math.st] 10 Nov 2014 Bounding the Probability of Causation in Mediation Analysis A. P. Dawid R. Murtas M. Musio February 16, 2018 Abstract Given empirical evidence for the dependence

More information

Faculty of Health Sciences. Regression models. Counts, Poisson regression, Lene Theil Skovgaard. Dept. of Biostatistics

Faculty of Health Sciences. Regression models. Counts, Poisson regression, Lene Theil Skovgaard. Dept. of Biostatistics Faculty of Health Sciences Regression models Counts, Poisson regression, 27-5-2013 Lene Theil Skovgaard Dept. of Biostatistics 1 / 36 Count outcome PKA & LTS, Sect. 7.2 Poisson regression The Binomial

More information

ANALYTIC COMPARISON. Pearl and Rubin CAUSAL FRAMEWORKS

ANALYTIC COMPARISON. Pearl and Rubin CAUSAL FRAMEWORKS ANALYTIC COMPARISON of Pearl and Rubin CAUSAL FRAMEWORKS Content Page Part I. General Considerations Chapter 1. What is the question? 16 Introduction 16 1. Randomization 17 1.1 An Example of Randomization

More information

Definitions and examples Simple estimation and testing Regression models Goodness of fit for the Cox model. Recap of Part 1. Per Kragh Andersen

Definitions and examples Simple estimation and testing Regression models Goodness of fit for the Cox model. Recap of Part 1. Per Kragh Andersen Recap of Part 1 Per Kragh Andersen Section of Biostatistics, University of Copenhagen DSBS Course Survival Analysis in Clinical Trials January 2018 1 / 65 Overview Definitions and examples Simple estimation

More information

Causal Inference Basics

Causal Inference Basics Causal Inference Basics Sam Lendle October 09, 2013 Observed data, question, counterfactuals Observed data: n i.i.d copies of baseline covariates W, treatment A {0, 1}, and outcome Y. O i = (W i, A i,

More information

PSC 504: Dynamic Causal Inference

PSC 504: Dynamic Causal Inference PSC 504: Dynamic Causal Inference Matthew Blackwell 4/8/203 e problem Let s go back to a problem that we faced earlier, which is how to estimate causal effects with treatments that vary over time. We could

More information

Causality II: How does causal inference fit into public health and what it is the role of statistics?

Causality II: How does causal inference fit into public health and what it is the role of statistics? Causality II: How does causal inference fit into public health and what it is the role of statistics? Statistics for Psychosocial Research II November 13, 2006 1 Outline Potential Outcomes / Counterfactual

More information

Causal Inference with Big Data Sets

Causal Inference with Big Data Sets Causal Inference with Big Data Sets Marcelo Coca Perraillon University of Colorado AMC November 2016 1 / 1 Outlone Outline Big data Causal inference in economics and statistics Regression discontinuity

More information