Application of Time-to-Event Methods in the Assessment of Safety in Clinical Trials

Size: px
Start display at page:

Download "Application of Time-to-Event Methods in the Assessment of Safety in Clinical Trials"

Transcription

1 Application of Time-to-Event Methods in the Assessment of Safety in Clinical Trials Progress, Updates, Problems William Jen Hoe Koh May 9, 2013

2 Overview Marginal vs Conditional What is TMLE? Key Estimation procedure Some test simulations Hidden assumptions Hidden Statistical Properties

3 Brief Review: Time-to-event outcomes S(t) = Pr(T > t) = 1 F (t) Pr[t T < t + t T t] λ(t) = lim t 0 t Event of Interest: Infection/AE at clinic visit Right censored data: Non-ignorable missing data.

4 Discrete Failure Time (Zhang and Gilbert, 2010) T T 0 Start T 10 End 12.5 T λ(t j ) = Pr(T = t j T > t j 1 ) T : True failure time (Unobserved due to discrete follow-up) T = t j if T [t j 1, t j ) with t j for j = 1,, 10. T = min(t, C): where C is our censoring time. = I (T C) : Indicator of subject not being censored

5 Objectives (Moore and van der Laan, 2009b) Estimate marginal treatment specific survival at a fixed end point Use covariates to gain efficiency Provide a consistent estimator in the presence of informative censoring

6 Question we want to address Approximate Scientific question: Pr(T 1 > t k ) Pr(T 0 > t k ) Event of Interest: First record of adverse event reported Simplest analysis: Kaplan Meier Survival curves Assumptions: Random censoring Adjusted analysis: Cox-PH or Logistic regression (More assumptions)

7 RCT: Marginal or Conditional Scientific question: Pr(T > t k A = 1) Pr(T > t k A = 0) Marginal P(T > t A = a) = S 0 (t A = a) Estimated probability of survival past time t for treatment a for the entire population. Conditional P(T > t A = a, W ) = S 0 (t A = a, W ) Estimated probability of survival past time t for treatment a while holding W fixed.

8 What does TMLE estimate Let Ψ : M R is pathwise differentiable at any density p 0 M Marginal Conditional {}}{{}}{ Ψ 1 (p 0 )(t k ) = Pr(T 1 > t k ) = E W [ S 0 (t k A = 1, W)] Ψ 0 (p 0 )(t k ) = Pr(T 0 > t k ) = E W [S 0 (t k A = 0, W]) Ψ AD (p 0 )(t k ) = Ψ 1 (p 0 )(t k ) Ψ 0 (p 0 )(t k ) Consider the treatment group A = 1, Pr(T 1 > t k W) = S 0 (t k A = 1, W): Probability of surviving beyond t k when treatment is 1 given the covariates W. Pr(T 1 > t k ) = E[S 0 (t k A = 1, W)]: Probability of surviving beyond t k when treatment is 1 averaging over the covariates W.

9 Example: Random treatment assignment of 0.5 W U(0.2, 1.2) λ(t A, W ) = expit( 3 A + W 2 )I (t < 10) + I (t = 10)

10 Idea behind TMLE (Van Der Laan, 2011) -.)%#/%'('"&"( #"0',+( /"#*".1%)!"#$%&(2"#"+%&%#( +"2 O1,...,On Ψ()!"#$%& 50*&*"1(%)&*+"&,#(,6( &7%(2#,.".*1*&4( '*)&#*.3&*,0(,6(&7%( '"&" P 0 n!"#$%&%'(%)&*+"&,#(,6(&7%(2#,.".*1*&4( '*)&#*.3&*,0(,6(&7%( '"&"!#3%(2#,.".*1*&4( '*)&#*.3&*,0 P0 P n &%'%!&%!(')* +,-.) :%&(,6(2,))*.1%( 2#,.".*1*&4( '*)&#*.3&*,0)(,6( &7%('"&" 50*&*"1(%)&*+"&,# Ψ(P 0 n) Ψ(P0) Ψ(P n)!"#$%&%'(%)&*+"&,#!#3%(/"13%( 8%)&*+"0'9(,6( &"#$%&( 2"#"+%&%# /')$.&*,0* %'12.%* #'1'+.%.1 ;"13%)(+"22%'( &,(&7%(#%"1(1*0%( <*&7(.%&&%#( %)&*+"&%)(=1,)%#( &,(&7%(&#3&7 Fig. 5.1 TMLE flow chart.

11 Likelihood representation for 1 observation W: Covariates A: Treatment ( T, ): Time and event indicator Ḡ(t A, W) = Pr(C t A, W)(Moore and van der Laan, 2009a) S(t k A, W ) = t t k [1 λ(t A, W )] P 0 (O) = Pr(W, A, T, ) = Pr( T, W, A)Pr(W)Pr(A W) Q 20 {}}{ [ ] t k 1 δ [ tk ] 1 δ = λ(t k A, W) (1 λ(t k A, W)) (1 λ(t k A, W)) t=1 t=1 Ḡ(t A, W) δ Pr(C = t k A, W) 1 δ Pr(W) Pr(A W) }{{}}{{}}{{} g 20 Q 10 g 10

12 Key Results for TMLE: Doubly robust Q 0 Q 10 : Distribution of the baseline covariates Q 20 : Conditional distribution of the hazard given treatment and baseline covariates g 0 g 10 : Treatment mechanism g 20 : Conditional distribution of the censoring distribution given treatment and baseline covariates Either Q 0 or g 0 is correct, then TMLE is consistent

13 TMLE as Plug-in estimators 1. Estimate the ĝ 0 (A = 1 W ) = 1 n n i=1 A i 2. Estimate the conditional probability of censoring Ḡ 0 (t A, W ) 3. Estimate the ˆλ 0 (t A, W ) via logistic regression logit[ˆλ 0 (t A, W )] = K α i I (t = i) + β A A + β W W i=1 4. Update the above model using ˆλ 0 (t A, W ) by including the penalty ɛ = {ɛ 0, ɛ 1 } and the clever covariate ĥ 0 (t, A, W ) = {ĥ 0, ĥ 1 } logit[ˆλ 1 (t A, W )] = logit[ˆλ 0 (t A, W )] + ɛ T ĥ 0 (t, A, W ) I (A = i)i (t t k ) Ŝ(t k A, W ) ĥ i (t, A, W ) = ĝ 0 (A = i W )Ḡ 0 (t A, W ) Ŝ(t A, W )

14 TMLE as Plug-in estimators continued 5. Use current estimate of λ 1 (t A, W ) to update ĥ 1 (t, A, W ) Ŝ(t k A, W ) = [1 λ 1 (t A, W )] t t k 6. Iterate 4 & 5 until ɛ 0 7. Plug-in final estimate of Ŝ i (t k A = i, W ) for i = 0, 1 Ψ 1 (p 0 )(t k ) = 1 n Ψ 0 (p 0 )(t k ) = 1 n n Ŝ (t k A = 1, W i ) i=1 n Ŝ (t k A = 0, W i ) i=1

15 Test simulations with no covariates Ta Da!!! Ta Da!!! Probability of Survival Group 0 Group 1 Probability of Survival Group 0 Group 1 Est 0 Est Time of record of Adverse Event Time of record of Adverse Event

16 Test Simulations for weak covariates Elixir of life Probability of Survival Group 0 Group 1 Est 0 Est Time of record of Adverse Event Simulations W U(0.2, 1.2); A Bin(0, 1 2 ) λ(t A, W ) = expit( 3 A + W 2 )I (t < 10) + I (t = 10)

17 Problem Survival function never increases over time. Acknowledgements: Taken from bartsblackboard.com

18 Next steps Compute the variance/bootstrap Rerun simulations Fill in the gaps in the paper Extensions

19 References Moore, K. and van der Laan, M. (2009a). Increasing power in randomized trials with right censored outcomes through covariate adjustment. Journal of biopharmaceutical statistics, 19(6): Moore, K. L. and van der Laan, M. J. (2009b). Application of time-to-event methods in the assessment of safety in clinical trials (chapter 20). In Peace, K. E., editor, Design and Analysis of Clinical Trials with Time-to-Event Endpoints, pages Chapman and Hall/CRC; Biostatistics Series. Stitelman, O. and van der Laan, M. (2010). Collaborative targeted maximum likelihood for time to event data. The international journal of biostatistics, 6(1):Article 21. Van Der Laan, M. (2011). Targeted Learning: Causal Inference for Observational and Experimental Data. Springer. Zhang, M. and Gilbert, P. B. (2010). Increasing the efficiency of prevention trials by incorporating baseline covariates. Statistical communications in infectious diseases, 2(1).

20 Thinking in counterfactuals You take the red pill - you stay in Wonderland and I show you how deep the rabbit hole goes. You take the blue pill - the story ends, you wake up in your bed and believe whatever you want to believe. Morpheus, The Matrix

21 Hidden Assumptions: Thinking in counterfactuals For an individual in the placebo arm... IC 0t k (p O ) = t t k [I ( T = t, = 1) I ( T t)λ(t A = 0, W )]h 0 (t, A, W ) + S 0 (t k A = 0, W ) Ψ 0 (p O )(t k ) I (A = i) h i (t, A, W ) = g(1)ḡ(t A, W ) S(t k A, W ) S(t A, W ) I (t t k)

22 Key assumptions 1: Coarsening at random Definition of CAR (Stitelman and van der Laan, 2010) Coarsened data structures are data structures where the full data is not observed. Coarsening mechanism is only a function of the full data, i.e. the data in which you would have seen all counterfactuals, through the observed data Implications dp 0 (O) = Q 0 (O)g 0 (O X ) Q 0 is the density associated with full data g 0 contains the censoring and treatment mechanism.

23 Statistical definitions M is the set of possible probability distribution of O with probability distribution P 0 M where M is dominated by common measure µ. Hence, density p = dp 0 dµ O 1,, O n are n i.i.d realizations of O. O 1,, O n can be represented by the empirical probability distribution P n placing mass 1/n on each of the n observations.

24 Statistical properties TMLE uses solves the efficient Influence curve. IDEA: If we can linearize our estimator Linearity of estimator An estimator ψ n is an asymptotically linear estimator of a parameter ψ if ψ n ψ = 1 n n i=1 IC P (O i ) + o P ( 1 n ) where the influence curve IC P (O) has expectation 0 and finite variance i.e. IC P (O) L 2 0 (P) and moreover this should hold for all P M.

25 Efficient Influence curve Asymptotic Distribution The asymptotic distribution (via linearity of the influence curve) n ( ˆψ (t k ) Ψ(p 0 )(t k )) N(0, σ 2 ) Estimate σ 2 by empirical variance ˆσ 2 = 1 n n IC P (O i ) 2 i=1 Implications Compute Wald-like confidence intervals ˆψ (t k ) ± 1.96 ˆσ2 n

University of California, Berkeley

University of California, Berkeley University of California, Berkeley U.C. Berkeley Division of Biostatistics Working Paper Series Year 2010 Paper 260 Collaborative Targeted Maximum Likelihood For Time To Event Data Ori M. Stitelman Mark

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley U.C. Berkeley Division of Biostatistics Working Paper Series Year 2009 Paper 248 Application of Time-to-Event Methods in the Assessment of Safety in Clinical Trials Kelly

More information

Targeted Maximum Likelihood Estimation for Adaptive Designs: Adaptive Randomization in Community Randomized Trial

Targeted Maximum Likelihood Estimation for Adaptive Designs: Adaptive Randomization in Community Randomized Trial Targeted Maximum Likelihood Estimation for Adaptive Designs: Adaptive Randomization in Community Randomized Trial Mark J. van der Laan 1 University of California, Berkeley School of Public Health laan@berkeley.edu

More information

Targeted Maximum Likelihood Estimation in Safety Analysis

Targeted Maximum Likelihood Estimation in Safety Analysis Targeted Maximum Likelihood Estimation in Safety Analysis Sam Lendle 1 Bruce Fireman 2 Mark van der Laan 1 1 UC Berkeley 2 Kaiser Permanente ISPE Advanced Topics Session, Barcelona, August 2012 1 / 35

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley U.C. Berkeley Division of Biostatistics Working Paper Series Year 2011 Paper 290 Targeted Minimum Loss Based Estimation of an Intervention Specific Mean Outcome Mark

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley U.C. Berkeley Division of Biostatistics Working Paper Series Year 2014 Paper 327 Entering the Era of Data Science: Targeted Learning and the Integration of Statistics

More information

SIMPLE EXAMPLES OF ESTIMATING CAUSAL EFFECTS USING TARGETED MAXIMUM LIKELIHOOD ESTIMATION

SIMPLE EXAMPLES OF ESTIMATING CAUSAL EFFECTS USING TARGETED MAXIMUM LIKELIHOOD ESTIMATION Johns Hopkins University, Dept. of Biostatistics Working Papers 3-3-2011 SIMPLE EXAMPLES OF ESTIMATING CAUSAL EFFECTS USING TARGETED MAXIMUM LIKELIHOOD ESTIMATION Michael Rosenblum Johns Hopkins Bloomberg

More information

Other Survival Models. (1) Non-PH models. We briefly discussed the non-proportional hazards (non-ph) model

Other Survival Models. (1) Non-PH models. We briefly discussed the non-proportional hazards (non-ph) model Other Survival Models (1) Non-PH models We briefly discussed the non-proportional hazards (non-ph) model λ(t Z) = λ 0 (t) exp{β(t) Z}, where β(t) can be estimated by: piecewise constants (recall how);

More information

Causal Inference Basics

Causal Inference Basics Causal Inference Basics Sam Lendle October 09, 2013 Observed data, question, counterfactuals Observed data: n i.i.d copies of baseline covariates W, treatment A {0, 1}, and outcome Y. O i = (W i, A i,

More information

Part III. Hypothesis Testing. III.1. Log-rank Test for Right-censored Failure Time Data

Part III. Hypothesis Testing. III.1. Log-rank Test for Right-censored Failure Time Data 1 Part III. Hypothesis Testing III.1. Log-rank Test for Right-censored Failure Time Data Consider a survival study consisting of n independent subjects from p different populations with survival functions

More information

e author and the promoter give permission to consult this master dissertation and to copy it or parts of it for personal use. Each other use falls

e author and the promoter give permission to consult this master dissertation and to copy it or parts of it for personal use. Each other use falls e author and the promoter give permission to consult this master dissertation and to copy it or parts of it for personal use. Each other use falls under the restrictions of the copyright, in particular

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley U.C. Berkeley Division of Biostatistics Working Paper Series Year 2011 Paper 288 Targeted Maximum Likelihood Estimation of Natural Direct Effect Wenjing Zheng Mark J.

More information

Improving Efficiency of Inferences in Randomized Clinical Trials Using Auxiliary Covariates

Improving Efficiency of Inferences in Randomized Clinical Trials Using Auxiliary Covariates Improving Efficiency of Inferences in Randomized Clinical Trials Using Auxiliary Covariates Anastasios (Butch) Tsiatis Department of Statistics North Carolina State University http://www.stat.ncsu.edu/

More information

Statistical Inference for Data Adaptive Target Parameters

Statistical Inference for Data Adaptive Target Parameters Statistical Inference for Data Adaptive Target Parameters Mark van der Laan, Alan Hubbard Division of Biostatistics, UC Berkeley December 13, 2013 Mark van der Laan, Alan Hubbard ( Division of Biostatistics,

More information

AFT Models and Empirical Likelihood

AFT Models and Empirical Likelihood AFT Models and Empirical Likelihood Mai Zhou Department of Statistics, University of Kentucky Collaborators: Gang Li (UCLA); A. Bathke; M. Kim (Kentucky) Accelerated Failure Time (AFT) models: Y = log(t

More information

Modern Statistical Learning Methods for Observational Data and Applications to Comparative Effectiveness Research

Modern Statistical Learning Methods for Observational Data and Applications to Comparative Effectiveness Research Modern Statistical Learning Methods for Observational Data and Applications to Comparative Effectiveness Research Chapter 4: Efficient, doubly-robust estimation of an average treatment effect David Benkeser

More information

Introduction to Empirical Processes and Semiparametric Inference Lecture 01: Introduction and Overview

Introduction to Empirical Processes and Semiparametric Inference Lecture 01: Introduction and Overview Introduction to Empirical Processes and Semiparametric Inference Lecture 01: Introduction and Overview Michael R. Kosorok, Ph.D. Professor and Chair of Biostatistics Professor of Statistics and Operations

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley U.C. Berkeley Division of Biostatistics Working Paper Series Year 2015 Paper 334 Targeted Estimation and Inference for the Sample Average Treatment Effect Laura B. Balzer

More information

Session 9: Introduction to Sieve Analysis of Pathogen Sequences, for Assessing How VE Depends on Pathogen Genomics Part I

Session 9: Introduction to Sieve Analysis of Pathogen Sequences, for Assessing How VE Depends on Pathogen Genomics Part I Session 9: Introduction to Sieve Analysis of Pathogen Sequences, for Assessing How VE Depends on Pathogen Genomics Part I Peter B Gilbert Vaccine and Infectious Disease Division, Fred Hutchinson Cancer

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley U.C. Berkeley Division of Biostatistics Working Paper Series Year 24 Paper 153 A Note on Empirical Likelihood Inference of Residual Life Regression Ying Qing Chen Yichuan

More information

Construction and statistical analysis of adaptive group sequential designs for randomized clinical trials

Construction and statistical analysis of adaptive group sequential designs for randomized clinical trials Construction and statistical analysis of adaptive group sequential designs for randomized clinical trials Antoine Chambaz (MAP5, Université Paris Descartes) joint work with Mark van der Laan Atelier INSERM

More information

Collaborative Targeted Maximum Likelihood Estimation. Susan Gruber

Collaborative Targeted Maximum Likelihood Estimation. Susan Gruber Collaborative Targeted Maximum Likelihood Estimation by Susan Gruber A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Biostatistics in the

More information

Fair Inference Through Semiparametric-Efficient Estimation Over Constraint-Specific Paths

Fair Inference Through Semiparametric-Efficient Estimation Over Constraint-Specific Paths Fair Inference Through Semiparametric-Efficient Estimation Over Constraint-Specific Paths for New Developments in Nonparametric and Semiparametric Statistics, Joint Statistical Meetings; Vancouver, BC,

More information

Extending causal inferences from a randomized trial to a target population

Extending causal inferences from a randomized trial to a target population Extending causal inferences from a randomized trial to a target population Issa Dahabreh Center for Evidence Synthesis in Health, Brown University issa dahabreh@brown.edu January 16, 2019 Issa Dahabreh

More information

Survival Analysis for Case-Cohort Studies

Survival Analysis for Case-Cohort Studies Survival Analysis for ase-ohort Studies Petr Klášterecký Dept. of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, harles University, Prague, zech Republic e-mail: petr.klasterecky@matfyz.cz

More information

Targeted Group Sequential Adaptive Designs

Targeted Group Sequential Adaptive Designs Targeted Group Sequential Adaptive Designs Mark van der Laan Department of Biostatistics, University of California, Berkeley School of Public Health Liver Forum, May 10, 2017 Targeted Group Sequential

More information

Targeted Maximum Likelihood Estimation of the Parameter of a Marginal Structural Model

Targeted Maximum Likelihood Estimation of the Parameter of a Marginal Structural Model Johns Hopkins Bloomberg School of Public Health From the SelectedWorks of Michael Rosenblum 2010 Targeted Maximum Likelihood Estimation of the Parameter of a Marginal Structural Model Michael Rosenblum,

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley U.C. Berkeley Division of Biostatistics Working Paper Series Year 2010 Paper 259 Targeted Maximum Likelihood Based Causal Inference Mark J. van der Laan University of

More information

A Sampling of IMPACT Research:

A Sampling of IMPACT Research: A Sampling of IMPACT Research: Methods for Analysis with Dropout and Identifying Optimal Treatment Regimes Marie Davidian Department of Statistics North Carolina State University http://www.stat.ncsu.edu/

More information

Survival Analysis: Weeks 2-3. Lu Tian and Richard Olshen Stanford University

Survival Analysis: Weeks 2-3. Lu Tian and Richard Olshen Stanford University Survival Analysis: Weeks 2-3 Lu Tian and Richard Olshen Stanford University 2 Kaplan-Meier(KM) Estimator Nonparametric estimation of the survival function S(t) = pr(t > t) The nonparametric estimation

More information

Marginal versus conditional effects: does it make a difference? Mireille Schnitzer, PhD Université de Montréal

Marginal versus conditional effects: does it make a difference? Mireille Schnitzer, PhD Université de Montréal Marginal versus conditional effects: does it make a difference? Mireille Schnitzer, PhD Université de Montréal Overview In observational and experimental studies, the goal may be to estimate the effect

More information

Multivariate Survival Analysis

Multivariate Survival Analysis Multivariate Survival Analysis Previously we have assumed that either (X i, δ i ) or (X i, δ i, Z i ), i = 1,..., n, are i.i.d.. This may not always be the case. Multivariate survival data can arise in

More information

STAT Sample Problem: General Asymptotic Results

STAT Sample Problem: General Asymptotic Results STAT331 1-Sample Problem: General Asymptotic Results In this unit we will consider the 1-sample problem and prove the consistency and asymptotic normality of the Nelson-Aalen estimator of the cumulative

More information

Survival Analysis. Lu Tian and Richard Olshen Stanford University

Survival Analysis. Lu Tian and Richard Olshen Stanford University 1 Survival Analysis Lu Tian and Richard Olshen Stanford University 2 Survival Time/ Failure Time/Event Time We will introduce various statistical methods for analyzing survival outcomes What is the survival

More information

Two-stage Adaptive Randomization for Delayed Response in Clinical Trials

Two-stage Adaptive Randomization for Delayed Response in Clinical Trials Two-stage Adaptive Randomization for Delayed Response in Clinical Trials Guosheng Yin Department of Statistics and Actuarial Science The University of Hong Kong Joint work with J. Xu PSI and RSS Journal

More information

CTDL-Positive Stable Frailty Model

CTDL-Positive Stable Frailty Model CTDL-Positive Stable Frailty Model M. Blagojevic 1, G. MacKenzie 2 1 Department of Mathematics, Keele University, Staffordshire ST5 5BG,UK and 2 Centre of Biostatistics, University of Limerick, Ireland

More information

Targeted Maximum Likelihood Estimation for Dynamic Treatment Regimes in Sequential Randomized Controlled Trials

Targeted Maximum Likelihood Estimation for Dynamic Treatment Regimes in Sequential Randomized Controlled Trials From the SelectedWorks of Paul H. Chaffee June 22, 2012 Targeted Maximum Likelihood Estimation for Dynamic Treatment Regimes in Sequential Randomized Controlled Trials Paul Chaffee Mark J. van der Laan

More information

Statistics 262: Intermediate Biostatistics Non-parametric Survival Analysis

Statistics 262: Intermediate Biostatistics Non-parametric Survival Analysis Statistics 262: Intermediate Biostatistics Non-parametric Survival Analysis Jonathan Taylor & Kristin Cobb Statistics 262: Intermediate Biostatistics p.1/?? Overview of today s class Kaplan-Meier Curve

More information

Statistical Methods for Alzheimer s Disease Studies

Statistical Methods for Alzheimer s Disease Studies Statistical Methods for Alzheimer s Disease Studies Rebecca A. Betensky, Ph.D. Department of Biostatistics, Harvard T.H. Chan School of Public Health July 19, 2016 1/37 OUTLINE 1 Statistical collaborations

More information

Dynamic Prediction of Disease Progression Using Longitudinal Biomarker Data

Dynamic Prediction of Disease Progression Using Longitudinal Biomarker Data Dynamic Prediction of Disease Progression Using Longitudinal Biomarker Data Xuelin Huang Department of Biostatistics M. D. Anderson Cancer Center The University of Texas Joint Work with Jing Ning, Sangbum

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley U.C. Berkeley Division of Biostatistics Working Paper Series Year 2011 Paper 282 Super Learner Based Conditional Density Estimation with Application to Marginal Structural

More information

Approximation of Survival Function by Taylor Series for General Partly Interval Censored Data

Approximation of Survival Function by Taylor Series for General Partly Interval Censored Data Malaysian Journal of Mathematical Sciences 11(3): 33 315 (217) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Journal homepage: http://einspem.upm.edu.my/journal Approximation of Survival Function by Taylor

More information

Optimal Treatment Regimes for Survival Endpoints from a Classification Perspective. Anastasios (Butch) Tsiatis and Xiaofei Bai

Optimal Treatment Regimes for Survival Endpoints from a Classification Perspective. Anastasios (Butch) Tsiatis and Xiaofei Bai Optimal Treatment Regimes for Survival Endpoints from a Classification Perspective Anastasios (Butch) Tsiatis and Xiaofei Bai Department of Statistics North Carolina State University 1/35 Optimal Treatment

More information

Multistate Modeling and Applications

Multistate Modeling and Applications Multistate Modeling and Applications Yang Yang Department of Statistics University of Michigan, Ann Arbor IBM Research Graduate Student Workshop: Statistics for a Smarter Planet Yang Yang (UM, Ann Arbor)

More information

Empirical Bayes Moderation of Asymptotically Linear Parameters

Empirical Bayes Moderation of Asymptotically Linear Parameters Empirical Bayes Moderation of Asymptotically Linear Parameters Nima Hejazi Division of Biostatistics University of California, Berkeley stat.berkeley.edu/~nhejazi nimahejazi.org twitter/@nshejazi github/nhejazi

More information

Lecture 22 Survival Analysis: An Introduction

Lecture 22 Survival Analysis: An Introduction University of Illinois Department of Economics Spring 2017 Econ 574 Roger Koenker Lecture 22 Survival Analysis: An Introduction There is considerable interest among economists in models of durations, which

More information

Introduction to Statistical Analysis

Introduction to Statistical Analysis Introduction to Statistical Analysis Changyu Shen Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology Beth Israel Deaconess Medical Center Harvard Medical School Objectives Descriptive

More information

Package Rsurrogate. October 20, 2016

Package Rsurrogate. October 20, 2016 Type Package Package Rsurrogate October 20, 2016 Title Robust Estimation of the Proportion of Treatment Effect Explained by Surrogate Marker Information Version 2.0 Date 2016-10-19 Author Layla Parast

More information

Introduction to Empirical Processes and Semiparametric Inference Lecture 25: Semiparametric Models

Introduction to Empirical Processes and Semiparametric Inference Lecture 25: Semiparametric Models Introduction to Empirical Processes and Semiparametric Inference Lecture 25: Semiparametric Models Michael R. Kosorok, Ph.D. Professor and Chair of Biostatistics Professor of Statistics and Operations

More information

Targeted Learning for High-Dimensional Variable Importance

Targeted Learning for High-Dimensional Variable Importance Targeted Learning for High-Dimensional Variable Importance Alan Hubbard, Nima Hejazi, Wilson Cai, Anna Decker Division of Biostatistics University of California, Berkeley July 27, 2016 for Centre de Recherches

More information

Multistate models and recurrent event models

Multistate models and recurrent event models and recurrent event models Patrick Breheny December 6 Patrick Breheny University of Iowa Survival Data Analysis (BIOS:7210) 1 / 22 Introduction In this final lecture, we will briefly look at two other

More information

A new approach to hierarchical data analysis: Targeted maximum likelihood estimation for the causal effect of a cluster-level exposure

A new approach to hierarchical data analysis: Targeted maximum likelihood estimation for the causal effect of a cluster-level exposure A new approach to hierarchical data analysis: Targeted maximum likelihood estimation for the causal effect of a cluster-level exposure arxiv:1706.02675v2 [stat.me] 2 Apr 2018 Laura B. Balzer, Wenjing Zheng,

More information

Logistic regression model for survival time analysis using time-varying coefficients

Logistic regression model for survival time analysis using time-varying coefficients Logistic regression model for survival time analysis using time-varying coefficients Accepted in American Journal of Mathematical and Management Sciences, 2016 Kenichi SATOH ksatoh@hiroshima-u.ac.jp Research

More information

Estimating the Mean Response of Treatment Duration Regimes in an Observational Study. Anastasios A. Tsiatis.

Estimating the Mean Response of Treatment Duration Regimes in an Observational Study. Anastasios A. Tsiatis. Estimating the Mean Response of Treatment Duration Regimes in an Observational Study Anastasios A. Tsiatis http://www.stat.ncsu.edu/ tsiatis/ Introduction to Dynamic Treatment Regimes 1 Outline Description

More information

On the Analysis of Tuberculosis Studies with Intermittent Missing Sputum Data

On the Analysis of Tuberculosis Studies with Intermittent Missing Sputum Data On the Analysis of Tuberculosis Studies with Intermittent Missing Sputum Data Daniel Scharfstein Johns Hopkins University dscharf@jhsph.edu July 12, 2013 Happy Birthday! Collaborators Andrea Rotnitzky

More information

A Bayesian Nonparametric Approach to Causal Inference for Semi-competing risks

A Bayesian Nonparametric Approach to Causal Inference for Semi-competing risks A Bayesian Nonparametric Approach to Causal Inference for Semi-competing risks Y. Xu, D. Scharfstein, P. Mueller, M. Daniels Johns Hopkins, Johns Hopkins, UT-Austin, UF JSM 2018, Vancouver 1 What are semi-competing

More information

ENHANCED PRECISION IN THE ANALYSIS OF RANDOMIZED TRIALS WITH ORDINAL OUTCOMES

ENHANCED PRECISION IN THE ANALYSIS OF RANDOMIZED TRIALS WITH ORDINAL OUTCOMES Johns Hopkins University, Dept. of Biostatistics Working Papers 10-22-2014 ENHANCED PRECISION IN THE ANALYSIS OF RANDOMIZED TRIALS WITH ORDINAL OUTCOMES Iván Díaz Johns Hopkins University, Johns Hopkins

More information

Frailty Modeling for clustered survival data: a simulation study

Frailty Modeling for clustered survival data: a simulation study Frailty Modeling for clustered survival data: a simulation study IAA Oslo 2015 Souad ROMDHANE LaREMFiQ - IHEC University of Sousse (Tunisia) souad_romdhane@yahoo.fr Lotfi BELKACEM LaREMFiQ - IHEC University

More information

Integrated likelihoods in survival models for highlystratified

Integrated likelihoods in survival models for highlystratified Working Paper Series, N. 1, January 2014 Integrated likelihoods in survival models for highlystratified censored data Giuliana Cortese Department of Statistical Sciences University of Padua Italy Nicola

More information

On the covariate-adjusted estimation for an overall treatment difference with data from a randomized comparative clinical trial

On the covariate-adjusted estimation for an overall treatment difference with data from a randomized comparative clinical trial Biostatistics Advance Access published January 30, 2012 Biostatistics (2012), xx, xx, pp. 1 18 doi:10.1093/biostatistics/kxr050 On the covariate-adjusted estimation for an overall treatment difference

More information

Multistate models and recurrent event models

Multistate models and recurrent event models Multistate models Multistate models and recurrent event models Patrick Breheny December 10 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/22 Introduction Multistate models In this final lecture,

More information

TMA 4275 Lifetime Analysis June 2004 Solution

TMA 4275 Lifetime Analysis June 2004 Solution TMA 4275 Lifetime Analysis June 2004 Solution Problem 1 a) Observation of the outcome is censored, if the time of the outcome is not known exactly and only the last time when it was observed being intact,

More information

Prerequisite: STATS 7 or STATS 8 or AP90 or (STATS 120A and STATS 120B and STATS 120C). AP90 with a minimum score of 3

Prerequisite: STATS 7 or STATS 8 or AP90 or (STATS 120A and STATS 120B and STATS 120C). AP90 with a minimum score of 3 University of California, Irvine 2017-2018 1 Statistics (STATS) Courses STATS 5. Seminar in Data Science. 1 Unit. An introduction to the field of Data Science; intended for entering freshman and transfers.

More information

FULL LIKELIHOOD INFERENCES IN THE COX MODEL

FULL LIKELIHOOD INFERENCES IN THE COX MODEL October 20, 2007 FULL LIKELIHOOD INFERENCES IN THE COX MODEL BY JIAN-JIAN REN 1 AND MAI ZHOU 2 University of Central Florida and University of Kentucky Abstract We use the empirical likelihood approach

More information

Empirical Bayes Moderation of Asymptotically Linear Parameters

Empirical Bayes Moderation of Asymptotically Linear Parameters Empirical Bayes Moderation of Asymptotically Linear Parameters Nima Hejazi Division of Biostatistics University of California, Berkeley stat.berkeley.edu/~nhejazi nimahejazi.org twitter/@nshejazi github/nhejazi

More information

Part III Measures of Classification Accuracy for the Prediction of Survival Times

Part III Measures of Classification Accuracy for the Prediction of Survival Times Part III Measures of Classification Accuracy for the Prediction of Survival Times Patrick J Heagerty PhD Department of Biostatistics University of Washington 102 ISCB 2010 Session Three Outline Examples

More information

Exercises. (a) Prove that m(t) =

Exercises. (a) Prove that m(t) = Exercises 1. Lack of memory. Verify that the exponential distribution has the lack of memory property, that is, if T is exponentially distributed with parameter λ > then so is T t given that T > t for

More information

A Regression Model For Recurrent Events With Distribution Free Correlation Structure

A Regression Model For Recurrent Events With Distribution Free Correlation Structure A Regression Model For Recurrent Events With Distribution Free Correlation Structure J. Pénichoux(1), A. Latouche(2), T. Moreau(1) (1) INSERM U780 (2) Université de Versailles, EA2506 ISCB - 2009 - Prague

More information

G-ESTIMATION OF STRUCTURAL NESTED MODELS (CHAPTER 14) BIOS G-Estimation

G-ESTIMATION OF STRUCTURAL NESTED MODELS (CHAPTER 14) BIOS G-Estimation G-ESTIMATION OF STRUCTURAL NESTED MODELS (CHAPTER 14) BIOS 776 1 14 G-Estimation ( G-Estimation of Structural Nested Models 14) Outline 14.1 The causal question revisited 14.2 Exchangeability revisited

More information

Estimation of Optimal Treatment Regimes Via Machine Learning. Marie Davidian

Estimation of Optimal Treatment Regimes Via Machine Learning. Marie Davidian Estimation of Optimal Treatment Regimes Via Machine Learning Marie Davidian Department of Statistics North Carolina State University Triangle Machine Learning Day April 3, 2018 1/28 Optimal DTRs Via ML

More information

Models for Multivariate Panel Count Data

Models for Multivariate Panel Count Data Semiparametric Models for Multivariate Panel Count Data KyungMann Kim University of Wisconsin-Madison kmkim@biostat.wisc.edu 2 April 2015 Outline 1 Introduction 2 3 4 Panel Count Data Motivation Previous

More information

Longitudinal + Reliability = Joint Modeling

Longitudinal + Reliability = Joint Modeling Longitudinal + Reliability = Joint Modeling Carles Serrat Institute of Statistics and Mathematics Applied to Building CYTED-HAROSA International Workshop November 21-22, 2013 Barcelona Mainly from Rizopoulos,

More information

Survival Analysis I (CHL5209H)

Survival Analysis I (CHL5209H) Survival Analysis Dalla Lana School of Public Health University of Toronto olli.saarela@utoronto.ca January 7, 2015 31-1 Literature Clayton D & Hills M (1993): Statistical Models in Epidemiology. Not really

More information

Time-varying proportional odds model for mega-analysis of clustered event times

Time-varying proportional odds model for mega-analysis of clustered event times Biostatistics (2017) 00, 00, pp. 1 18 doi:10.1093/biostatistics/kxx065 Time-varying proportional odds model for mega-analysis of clustered event times TANYA P. GARCIA Texas A&M University, Department of

More information

Causal Hazard Ratio Estimation By Instrumental Variables or Principal Stratification. Todd MacKenzie, PhD

Causal Hazard Ratio Estimation By Instrumental Variables or Principal Stratification. Todd MacKenzie, PhD Causal Hazard Ratio Estimation By Instrumental Variables or Principal Stratification Todd MacKenzie, PhD Collaborators A. James O Malley Tor Tosteson Therese Stukel 2 Overview 1. Instrumental variable

More information

Individualized Treatment Effects with Censored Data via Nonparametric Accelerated Failure Time Models

Individualized Treatment Effects with Censored Data via Nonparametric Accelerated Failure Time Models Individualized Treatment Effects with Censored Data via Nonparametric Accelerated Failure Time Models Nicholas C. Henderson Thomas A. Louis Gary Rosner Ravi Varadhan Johns Hopkins University July 31, 2018

More information

Likelihood Construction, Inference for Parametric Survival Distributions

Likelihood Construction, Inference for Parametric Survival Distributions Week 1 Likelihood Construction, Inference for Parametric Survival Distributions In this section we obtain the likelihood function for noninformatively rightcensored survival data and indicate how to make

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley U.C. Berkeley Division of Biostatistics Working Paper Series Year 2009 Paper 251 Nonparametric population average models: deriving the form of approximate population

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley U.C. Berkeley Division of Biostatistics Working Paper Series Year 24 Paper 332 Statistical Inference for the Mean Outcome Under a Possibly Non-Unique Optimal Treatment

More information

PENALIZED LIKELIHOOD PARAMETER ESTIMATION FOR ADDITIVE HAZARD MODELS WITH INTERVAL CENSORED DATA

PENALIZED LIKELIHOOD PARAMETER ESTIMATION FOR ADDITIVE HAZARD MODELS WITH INTERVAL CENSORED DATA PENALIZED LIKELIHOOD PARAMETER ESTIMATION FOR ADDITIVE HAZARD MODELS WITH INTERVAL CENSORED DATA Kasun Rathnayake ; A/Prof Jun Ma Department of Statistics Faculty of Science and Engineering Macquarie University

More information

[Part 2] Model Development for the Prediction of Survival Times using Longitudinal Measurements

[Part 2] Model Development for the Prediction of Survival Times using Longitudinal Measurements [Part 2] Model Development for the Prediction of Survival Times using Longitudinal Measurements Aasthaa Bansal PhD Pharmaceutical Outcomes Research & Policy Program University of Washington 69 Biomarkers

More information

POWER AND SAMPLE SIZE DETERMINATIONS IN DYNAMIC RISK PREDICTION. by Zhaowen Sun M.S., University of Pittsburgh, 2012

POWER AND SAMPLE SIZE DETERMINATIONS IN DYNAMIC RISK PREDICTION. by Zhaowen Sun M.S., University of Pittsburgh, 2012 POWER AND SAMPLE SIZE DETERMINATIONS IN DYNAMIC RISK PREDICTION by Zhaowen Sun M.S., University of Pittsburgh, 2012 B.S.N., Wuhan University, China, 2010 Submitted to the Graduate Faculty of the Graduate

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley U.C. Berkeley Division of Biostatistics Working Paper Series Year 2015 Paper 339 Drawing Valid Targeted Inference When Covariate-adjusted Response-adaptive RCT Meets

More information

Lecture 7 Time-dependent Covariates in Cox Regression

Lecture 7 Time-dependent Covariates in Cox Regression Lecture 7 Time-dependent Covariates in Cox Regression So far, we ve been considering the following Cox PH model: λ(t Z) = λ 0 (t) exp(β Z) = λ 0 (t) exp( β j Z j ) where β j is the parameter for the the

More information

SAMPLE SIZE ESTIMATION FOR SURVIVAL OUTCOMES IN CLUSTER-RANDOMIZED STUDIES WITH SMALL CLUSTER SIZES BIOMETRICS (JUNE 2000)

SAMPLE SIZE ESTIMATION FOR SURVIVAL OUTCOMES IN CLUSTER-RANDOMIZED STUDIES WITH SMALL CLUSTER SIZES BIOMETRICS (JUNE 2000) SAMPLE SIZE ESTIMATION FOR SURVIVAL OUTCOMES IN CLUSTER-RANDOMIZED STUDIES WITH SMALL CLUSTER SIZES BIOMETRICS (JUNE 2000) AMITA K. MANATUNGA THE ROLLINS SCHOOL OF PUBLIC HEALTH OF EMORY UNIVERSITY SHANDE

More information

STAT331. Cox s Proportional Hazards Model

STAT331. Cox s Proportional Hazards Model STAT331 Cox s Proportional Hazards Model In this unit we introduce Cox s proportional hazards (Cox s PH) model, give a heuristic development of the partial likelihood function, and discuss adaptations

More information

Multi-state Models: An Overview

Multi-state Models: An Overview Multi-state Models: An Overview Andrew Titman Lancaster University 14 April 2016 Overview Introduction to multi-state modelling Examples of applications Continuously observed processes Intermittently observed

More information

Definitions and examples Simple estimation and testing Regression models Goodness of fit for the Cox model. Recap of Part 1. Per Kragh Andersen

Definitions and examples Simple estimation and testing Regression models Goodness of fit for the Cox model. Recap of Part 1. Per Kragh Andersen Recap of Part 1 Per Kragh Andersen Section of Biostatistics, University of Copenhagen DSBS Course Survival Analysis in Clinical Trials January 2018 1 / 65 Overview Definitions and examples Simple estimation

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley U.C. Berkeley Division of Biostatistics Working Paper Series Year 2003 Paper 130 Unified Cross-Validation Methodology For Selection Among Estimators and a General Cross-Validated

More information

Instrumental variables estimation in the Cox Proportional Hazard regression model

Instrumental variables estimation in the Cox Proportional Hazard regression model Instrumental variables estimation in the Cox Proportional Hazard regression model James O Malley, Ph.D. Department of Biomedical Data Science The Dartmouth Institute for Health Policy and Clinical Practice

More information

Adaptive Trial Designs

Adaptive Trial Designs Adaptive Trial Designs Wenjing Zheng, Ph.D. Methods Core Seminar Center for AIDS Prevention Studies University of California, San Francisco Nov. 17 th, 2015 Trial Design! Ethical:!eg.! Safety!! Efficacy!

More information

Statistical Analysis of Randomized Experiments with Nonignorable Missing Binary Outcomes

Statistical Analysis of Randomized Experiments with Nonignorable Missing Binary Outcomes Statistical Analysis of Randomized Experiments with Nonignorable Missing Binary Outcomes Kosuke Imai Department of Politics Princeton University July 31 2007 Kosuke Imai (Princeton University) Nonignorable

More information

7 Sensitivity Analysis

7 Sensitivity Analysis 7 Sensitivity Analysis A recurrent theme underlying methodology for analysis in the presence of missing data is the need to make assumptions that cannot be verified based on the observed data. If the assumption

More information

A COMPARISON OF POISSON AND BINOMIAL EMPIRICAL LIKELIHOOD Mai Zhou and Hui Fang University of Kentucky

A COMPARISON OF POISSON AND BINOMIAL EMPIRICAL LIKELIHOOD Mai Zhou and Hui Fang University of Kentucky A COMPARISON OF POISSON AND BINOMIAL EMPIRICAL LIKELIHOOD Mai Zhou and Hui Fang University of Kentucky Empirical likelihood with right censored data were studied by Thomas and Grunkmier (1975), Li (1995),

More information

Nonparametric two-sample tests of longitudinal data in the presence of a terminal event

Nonparametric two-sample tests of longitudinal data in the presence of a terminal event Nonparametric two-sample tests of longitudinal data in the presence of a terminal event Jinheum Kim 1, Yang-Jin Kim, 2 & Chung Mo Nam 3 1 Department of Applied Statistics, University of Suwon, 2 Department

More information

Harvard University. Robust alternatives to ANCOVA for estimating the treatment effect via a randomized comparative study

Harvard University. Robust alternatives to ANCOVA for estimating the treatment effect via a randomized comparative study Harvard University Harvard University Biostatistics Working Paper Series Year 2016 Paper 209 Robust alternatives to ANCOVA for estimating the treatment effect via a randomized comparative study Fei Jiang

More information

Typical Survival Data Arising From a Clinical Trial. Censoring. The Survivor Function. Mathematical Definitions Introduction

Typical Survival Data Arising From a Clinical Trial. Censoring. The Survivor Function. Mathematical Definitions Introduction Outline CHL 5225H Advanced Statistical Methods for Clinical Trials: Survival Analysis Prof. Kevin E. Thorpe Defining Survival Data Mathematical Definitions Non-parametric Estimates of Survival Comparing

More information

UNIVERSITY OF CALIFORNIA, SAN DIEGO

UNIVERSITY OF CALIFORNIA, SAN DIEGO UNIVERSITY OF CALIFORNIA, SAN DIEGO Estimation of the primary hazard ratio in the presence of a secondary covariate with non-proportional hazards An undergraduate honors thesis submitted to the Department

More information

Cox s proportional hazards model and Cox s partial likelihood

Cox s proportional hazards model and Cox s partial likelihood Cox s proportional hazards model and Cox s partial likelihood Rasmus Waagepetersen October 12, 2018 1 / 27 Non-parametric vs. parametric Suppose we want to estimate unknown function, e.g. survival function.

More information

Pairwise rank based likelihood for estimating the relationship between two homogeneous populations and their mixture proportion

Pairwise rank based likelihood for estimating the relationship between two homogeneous populations and their mixture proportion Pairwise rank based likelihood for estimating the relationship between two homogeneous populations and their mixture proportion Glenn Heller and Jing Qin Department of Epidemiology and Biostatistics Memorial

More information