Answer: A. Answer: C. 3. If (G,.) is a group such that a2 = e, a G, then G is A. abelian group B. non-abelian group C. semi group D.

Size: px
Start display at page:

Download "Answer: A. Answer: C. 3. If (G,.) is a group such that a2 = e, a G, then G is A. abelian group B. non-abelian group C. semi group D."

Transcription

1 1. The set of all real numbers under the usual multiplication operation is not a group since A. zero has no inverse B. identity element does not exist C. multiplication is not associative D. multiplication is not a binary operation 2. If (G,.) is a group such that (ab)- 1 = a-1b-1, a, b G, then G is a/an A. commutative semi group B. non-abelian group C. abelian group D. None of these 3. If (G,.) is a group such that a2 = e, a G, then G is A. abelian group B. non-abelian group C. semi group D. none of these 4. The inverse of - i in the multiplicative group, {1, - 1, i, - i} is A. -1 B. 1 C. -i D. i 5. The set of integers Z with the binary operation "*" defined as a*b =a +b+ 1 for a, b Z, is a group. The identity element of this group is A. -1 B. 0 C. 1 D If R = {(1, 2),(2, 3),(3, 3)} be a relation defined on A= {1, 2, 3} then R. R (= R2) is A. {(1, 2),(1, 3),(3, 3)} B. {(1, 3),(2, 3),(3, 3)} C. {(2, 1),(1, 3),(2, 3)} D. R itself

2 7. Which of the following statements is false? A. If R is relexive, then R R-1 φ B. R R-1 φ =>R is anti-symmetric. C. If R, R' are relexive relations in A, then R - R' is reflexive D. If R, R' are equivalence relations in a set A, then R R' is also an equivalence relation in A 8. If (G,.) is a group, such that (ab)2 = a2 b2 a, b G, then G is a/an A. abelian group B. non-abelian group C. commutative semi group D. none of these 9. (Z,*) is a group with a*b = a+b+1 a, b Z. The inverse of a is A. 0 B. -2 C. a-2 D. -a Let G denoted the set of all n x n non-singular matrices with rational numbers as entries. Then under multiplication G is a/an A. subgroup B. ininite, abelian C. finite abelian group D. infinite, non abelian group 11. Let A be the set of all non-singular matrices over real numbers and let * be the matrix multiplication operator. Then A. < A, * > is a monoid but not a group B. < A, * > is a group but not an abelian group C. < A, * > is a semi group but not a monoid D. A is closed under * but < A, * > is not a semi group

3 12. Let (Z, *) be an algebraic structure, where Z is the set of integers and the operation * is defined by n * m = maximum (n, m). Which of the following statements is TRUE for (Z, *)? A. (Z, *) is a group B. (Z, *) is a monoid C. (Z, *) is an abelian group D. None of these 13. Some group (G, 0) is known to be abelian. Then which one of the following is TRUE for G? A. G is of finite order B. g = g² for every g G C. g = g-1 for every g G D. (g o h)² = g²o h² for every g,h G 14. If the binary operation * is deined on a set of ordered pairs of real numbers as (a,b)*(c,d)=(ad+bc,bd) and is associative, then (1, 2)*(3, 5)*(3, 4) equals A. (7,11) B. (23,11) C. (32,40) D. (74,40) 15. If A = (1, 2, 3, 4). Let ~= {(1, 2), (1, 3), (4, 2)}. Then ~ is A. reflexive B. transitive C. symmetric D. not anti-symmetric 16. If a, b are positive integers, define a * b = a where ab = a (modulo 7), with this * operation, then inverse of 3 in group G (1, 2, 3, 4, 5, 6) is A. 1 B. 3 C. 5 D. 7

4 17. Which of the following is TRUE? A. Set of all matrices forms a group under multipication C. Set of all rational negative numbers forms a group under multiplication B. Set of all non-singular matrices forms a group under multiplication D. None of these 18. The set of all nth roots of unity under multiplication of complex numbers form a/an A. group B. abelian group C. semi group with identity D. commutative semigroups with identity 19. Which of the following statements is FALSE? A. The set of rational numbers form an abelian group under multiplication C. The set of rational integers is an abelian group under addition B. The set of rational numbers is an abelian group under addition D. None of these 20. In the group G = {2, 4, 6, 8) under multiplication modulo 10, the identity element is A. 2 B. 4 C. 6 D Let D30 = {1, 2, 3, 4, 5, 6, 10, 15, 30} and relation I be partial ordering on D30. The all lower bounds of 10 and 15 respectively are A. 1,5 B. 1,7 C. 1,3,5 D. None of these 22. Hasse diagrams are drawn for A. lattices B. boolean Algebra

5 C. partially ordered sets D. none of these 23. A self-complemented, distributive lattice is called A. Self dual lattice B. Complete lattice C. Modular lattice D. Boolean algebra 24. Let D30 = {1, 2, 3, 5, 6, 10, 15, 30} and relation I be a partial ordering on D30. The lub of 10 and 15 respectively is A. 1 B. 5 C. 15 D Let X = {2, 3, 6, 12, 24}, and be the partial order defined by X Y if X divides Y. Number of edges in the Hasse diagram of (X, ) is A. 1 B. 3 C. 4 D If lattice (C, ) is a complemented chain, then A. C 2 B. C 1 C. C >1 D. C doesn't exist 27. A self-complemented, distributive lattice is called A. Self dual lattice B. Modular lattice C. Complete lattice D. Boolean algebra

6 28. The less than relation, <, on reals is A. not a partial ordering because it is not antisymmetric and not reflexive. C. a partial ordering since it is anti-symmetric and reflexive. B. not a partial ordering because it is not asymmetric and not reflexive D. a partial ordering since it is asymmetric and reflexive. 29. Principle of duality is defined as A. all properties are unaltered when is replaced by other than 0 and 1 element. B. all properties are unaltered when is replaced by C. LUB becomes GLB D. is replaced by 30. Different partially ordered sets may be represented by the same Hasse diagram if they are A. same B. isomorphic C. order-isomorphic D. lattices with same order 31. The absorption law is defined as A. a * ( a b ) = a B. a * ( a * b ) = b C. a * ( a b ) = b D. a * ( a * b ) = a b 32. A partial order is deined on the set S = {x, a1, a2, a3,... an, y} as x a i for all i and ai y for all i, where n 1. Number of total orders on the set S which contain partial order A. n! B. 1 C. n D. n + 2

7 33. Let L be a set with a relation R which is transitive, antisymmetric and reflexive and for any two elements a, b L. Let least upper bound lub (a, b) and the greatest lower bound glb (a, b) exist. A. L is a Poset B. L is a lattice C. L is a boolean algebra D. none of these 34. On solving 2p - 3q - 4r + 6r - 2q + p, answer will be A. 8q -5r B. 7p + 5r C. 3p - 5q + 2r D. 10p + 3q - 5r 35. Is the equation 3(2 x 4) = 18 equivalent to 6x 12 = 18? A. Yes, the equations are equivalent by the Distributive Property of Multiplication over B. Yes, the equations are equivalent by the Commutative Property of Multiplication Addition. C. Yes, the equations are equivalent by the Associative Property of Multiplication. D. No, the equations are not equivalent = A. 2 B. 4 C. 6 D Which number does not have a reciprocal? A. -1 B. 0 C. 1 D. 1/1000

8 38. What is the multiplicative inverse of 1/2? A. -2 B. 2 C. -1/2 D. 1/2 39. What is the solution for this equation? 2x 3 = 5 A. x = 1 or x = 4 B. x = 1 or x = 3 C. x = 4 or x = 4 D. x = 4 or x = What is the solution set of the inequality 5 x + 4 3? A. 2 x 6 B. 12 x 4 C. x 2 or x 6 D. x 12 or x Which equation is equivalent to 5x 2 (7 x + = 1) 14 x? A. 9x + 2=14 x B. 9x + 1=14 x C. 9x 2 =14 x D. 12x 1 =14 x 42. Answer of factorization of expression 4z(3a + 2b - 4c) + (3a + 2b - 4c) is A. (4z - 1)(3a - 2b -4c) B. (4z + 1)(3a + 2b -4c) C. (4z + 1) - (3a + 2b -4c) D. (4z + 1) + (3a + 2b -4c)

9 43. By factorizing expression 2bx + 4by - 3ax -6ay, answer must be A. (2b - 3a)(x + 2y) B. (2b + 3a)(x - 2y) C. (2a- 3b)(3x - 2y) D. (2a + 3b)(2x - 4y) 44. If -4x + 5y is subtracted from 3x + 2y then answer will be A. x - 3y B. x + 3y C. 2x + 5y D. 3x + 6y 45. On solving algebraic expression -38b 2, answer will be A. 19b B. 19b C. 56b D. 56b 46. Simplify 15ax² 5x A. 3ax B. 3ax² C. 5ax D. 5ax² 47. Simplify x A. 2x 5 B. 5x 2 C. 5 2x D. 2 5x 48. Simplify a(c - b) - b(a - c) A. ac + bc B. ac - 2ab - bc C. ac - 2ab + bc D. ac + 2ab + bc

10 49. Expand and simplfy (x - 5)(x + 4) A. x² - x - 1 B. x² - x - 9 C. x² - x - 20 D. x² + 9x Expand and simplfy (x - y)(x + y) A. x² - y² B. x² + y² C. x²- 2xy + y² D. x² + 2xy + y² 51. (a - b)² = A. a² + b² B. a² - b² C. a² + 2ab + b² D. a² - 2ab + b² 52. Factorise x² + x - 72 A. (x + 8)(x - 9) B. (x - 8)(x + 9) C. (x -?72)² D. (x -?72)(x +?72) 53. Factorise -20x² - 9x + 20 A. (5-4x)(4-5x) B. (5-4x)(4 + 5x) C. (5 + 4x)(4-5x) D. (5 + 4x)(4 + 5x)

11 54. Expand and simplify (x + y)³ A. x³ - y³ B. x³ + y³ C. x³ + 3xy(x - y) + y³ D. x³ + 3xy(x + y) + y³ 55. Simplify (x - 9)(x + 10) (x² - 81) A. (x + 10) (x - 9) B. (x + 10) (x + 9) C. (x² + x - 90) (x² - 81) D. None of above 56. Simplify (3x 2y)(x 3y) A. x 2y B. x² (6y²) C. x² (2y²) D. (3x²) (2y²) 57. Simplify (1 (x² - 1)) (1 (x + 1)) A. 1 (x + 1) B. 1 (x - 1) C. 1 (x² - 1) D. None of above 58. Simplify (1 s) - (1 t) A. (t - s) st B. (s - t) st C. 1 (s - t) D Simplify (2 tana) + (4 tanb) A. 6 (tana + tanb) B. (2tanA + 4tanB) tanatanb C. (2tanB + 4tanA) tanatanb D. None of above

12 60. 1 (x² - 1) can be expressed as (A (x+1)) + (B (x-1)), which of following pairs of values of A and B is correct? A. A = 1, B = 0 B. A = 1, B = -1 C. A = -1 2, B = 1 2 D. A = 1 2, B = Simplify (a^(-1 3) a^(1 3)) a^(-1 2) A. a^(1 2) B. a^(-1 2) C. a^(-7 18) D. None of above 62. Evaluate (1 64)^(-1 3) A. 2 B. 4 C. 2^-1 D. 4^ What is value of M in (p/q)2m+2 = (q/p)9-m A. 6 B. 5 C. -7/2 D. -11

Sets and Motivation for Boolean algebra

Sets and Motivation for Boolean algebra SET THEORY Basic concepts Notations Subset Algebra of sets The power set Ordered pairs and Cartesian product Relations on sets Types of relations and their properties Relational matrix and the graph of

More information

MA Discrete Mathematics

MA Discrete Mathematics MA2265 - Discrete Mathematics UNIT I 1. Check the validity of the following argument. If the band could not play rock music or the refreshments were not delivered on time, then the New year s party would

More information

Anna University, Chennai, November/December 2012

Anna University, Chennai, November/December 2012 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2012 Fifth Semester Computer Science and Engineering MA2265 DISCRETE MATHEMATICS (Regulation 2008) Part - A 1. Define Tautology with an example. A Statement

More information

Simplification by Truth Table and without Truth Table

Simplification by Truth Table and without Truth Table Engineering Mathematics 2013 SUBJECT NAME SUBJECT CODE MATERIAL NAME MATERIAL CODE REGULATION UPDATED ON : Discrete Mathematics : MA2265 : University Questions : SKMA1006 : R2008 : August 2013 Name of

More information

LATTICE AND BOOLEAN ALGEBRA

LATTICE AND BOOLEAN ALGEBRA 2 LATTICE AND BOOLEAN ALGEBRA This chapter presents, lattice and Boolean algebra, which are basis of switching theory. Also presented are some algebraic systems such as groups, rings, and fields. 2.1 ALGEBRA

More information

Tutorial Obtain the principal disjunctive normal form and principal conjunction form of the statement

Tutorial Obtain the principal disjunctive normal form and principal conjunction form of the statement Tutorial - 1 1. Obtain the principal disjunctive normal form and principal conjunction form of the statement Let S P P Q Q R P P Q Q R A: P Q Q R P Q R P Q Q R Q Q R A S Minterm Maxterm T T T F F T T T

More information

bc7f2306 Page 1 Name:

bc7f2306 Page 1 Name: Name: Questions 1 through 4 refer to the following: Solve the given inequality and represent the solution set using set notation: 1) 3x 1 < 2(x + 4) or 7x 3 2(x + 1) Questions 5 and 6 refer to the following:

More information

Simplification by Truth Table and without Truth Table

Simplification by Truth Table and without Truth Table SUBJECT NAME SUBJECT CODE : MA 6566 MATERIAL NAME REGULATION : Discrete Mathematics : University Questions : R2013 UPDATED ON : June 2017 (Scan the above Q.R code for the direct download of this material)

More information

Simplification by Truth Table and without Truth Table

Simplification by Truth Table and without Truth Table SUBJECT NAME SUBJECT CODE : MA 6566 MATERIAL NAME REGULATION : Discrete Mathematics : University Questions : R2013 UPDATED ON : April-May 2018 BOOK FOR REFERENCE To buy the book visit : Sri Hariganesh

More information

INTRODUCTION TO THE GROUP THEORY

INTRODUCTION TO THE GROUP THEORY Lecture Notes on Structure of Algebra INTRODUCTION TO THE GROUP THEORY By : Drs. Antonius Cahya Prihandoko, M.App.Sc e-mail: antoniuscp.fkip@unej.ac.id Mathematics Education Study Program Faculty of Teacher

More information

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY MA DISCRETE MATHEMATICS

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY MA DISCRETE MATHEMATICS 1 MA6566 - DISCRETE MATHEMATICS UNIT I - LOGIC AND PROOFS Propositional Logic Propositional equivalences-predicates and quantifiers-nested Quantifiers- Rules of inference-introduction to Proofs-Proof Methods

More information

GROUPS. Chapter-1 EXAMPLES 1.1. INTRODUCTION 1.2. BINARY OPERATION

GROUPS. Chapter-1 EXAMPLES 1.1. INTRODUCTION 1.2. BINARY OPERATION Chapter-1 GROUPS 1.1. INTRODUCTION The theory of groups arose from the theory of equations, during the nineteenth century. Originally, groups consisted only of transformations. The group of transformations

More information

1.A Sets, Relations, Graphs, and Functions 1.A.1 Set a collection of objects(element) Let A be a set and a be an elements in A, then we write a A.

1.A Sets, Relations, Graphs, and Functions 1.A.1 Set a collection of objects(element) Let A be a set and a be an elements in A, then we write a A. 1.A Sets, Relations, Graphs, and Functions 1.A.1 Set a collection of objects(element) Let A be a set and a be an elements in A, then we write a A. How to specify sets 1. to enumerate all of the elements

More information

Algebraic Structures Exam File Fall 2013 Exam #1

Algebraic Structures Exam File Fall 2013 Exam #1 Algebraic Structures Exam File Fall 2013 Exam #1 1.) Find all four solutions to the equation x 4 + 16 = 0. Give your answers as complex numbers in standard form, a + bi. 2.) Do the following. a.) Write

More information

B B3B037 Total Pages:3

B B3B037 Total Pages:3 B B3B037 Total Pages:3 Reg. No. Name: APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION, JANUARY 2017 Course Code: CS 201 Course Name: DISCRETE COMPUTATIONAL STRUCTURES

More information

DERIVATIONS. Introduction to non-associative algebra. Playing havoc with the product rule? BERNARD RUSSO University of California, Irvine

DERIVATIONS. Introduction to non-associative algebra. Playing havoc with the product rule? BERNARD RUSSO University of California, Irvine DERIVATIONS Introduction to non-associative algebra OR Playing havoc with the product rule? PART VI COHOMOLOGY OF LIE ALGEBRAS BERNARD RUSSO University of California, Irvine FULLERTON COLLEGE DEPARTMENT

More information

Classify, graph, and compare real numbers. Find and estimate square roots Identify and apply properties of real numbers.

Classify, graph, and compare real numbers. Find and estimate square roots Identify and apply properties of real numbers. Real Numbers and The Number Line Properties of Real Numbers Classify, graph, and compare real numbers. Find and estimate square roots Identify and apply properties of real numbers. Square root, radicand,

More information

Note that a unit is unique: 1 = 11 = 1. Examples: Nonnegative integers under addition; all integers under multiplication.

Note that a unit is unique: 1 = 11 = 1. Examples: Nonnegative integers under addition; all integers under multiplication. Algebra fact sheet An algebraic structure (such as group, ring, field, etc.) is a set with some operations and distinguished elements (such as 0, 1) satisfying some axioms. This is a fact sheet with definitions

More information

MATH 433 Applied Algebra Lecture 22: Semigroups. Rings.

MATH 433 Applied Algebra Lecture 22: Semigroups. Rings. MATH 433 Applied Algebra Lecture 22: Semigroups. Rings. Groups Definition. A group is a set G, together with a binary operation, that satisfies the following axioms: (G1: closure) for all elements g and

More information

Definition: A binary relation R from a set A to a set B is a subset R A B. Example:

Definition: A binary relation R from a set A to a set B is a subset R A B. Example: Chapter 9 1 Binary Relations Definition: A binary relation R from a set A to a set B is a subset R A B. Example: Let A = {0,1,2} and B = {a,b} {(0, a), (0, b), (1,a), (2, b)} is a relation from A to B.

More information

Monoids of languages, monoids of reflexive. relations and ordered monoids. Ganna Kudryavtseva. June 22, 2010

Monoids of languages, monoids of reflexive. relations and ordered monoids. Ganna Kudryavtseva. June 22, 2010 June 22, 2010 J -trivial A monoid S is called J -trivial if the Green s relation J on it is the trivial relation, that is aj b implies a = b for any a, b S, or, equivalently all J -classes of S are one-element.

More information

Partial, Total, and Lattice Orders in Group Theory

Partial, Total, and Lattice Orders in Group Theory Partial, Total, and Lattice Orders in Group Theory Hayden Harper Department of Mathematics and Computer Science University of Puget Sound April 23, 2016 Copyright c 2016 Hayden Harper. Permission is granted

More information

Section Summary. Relations and Functions Properties of Relations. Combining Relations

Section Summary. Relations and Functions Properties of Relations. Combining Relations Chapter 9 Chapter Summary Relations and Their Properties n-ary Relations and Their Applications (not currently included in overheads) Representing Relations Closures of Relations (not currently included

More information

MaanavaN.Com MA1256 DISCRETE MATHEMATICS. DEPARTMENT OF MATHEMATICS QUESTION BANK Subject & Code : MA1256 DISCRETE MATHEMATICS

MaanavaN.Com MA1256 DISCRETE MATHEMATICS. DEPARTMENT OF MATHEMATICS QUESTION BANK Subject & Code : MA1256 DISCRETE MATHEMATICS DEPARTMENT OF MATHEMATICS QUESTION BANK Subject & Code : UNIT I PROPOSITIONAL CALCULUS Part A ( Marks) Year / Sem : III / V. Write the negation of the following proposition. To enter into the country you

More information

(Pre-)Algebras for Linguistics

(Pre-)Algebras for Linguistics 1. Review of Preorders Linguistics 680: Formal Foundations Autumn 2010 (Pre-)Orders and Induced Equivalence A preorder on a set A is a binary relation ( less than or equivalent to ) on A which is reflexive

More information

B Sc MATHEMATICS ABSTRACT ALGEBRA

B Sc MATHEMATICS ABSTRACT ALGEBRA UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc MATHEMATICS (0 Admission Onwards) V Semester Core Course ABSTRACT ALGEBRA QUESTION BANK () Which of the following defines a binary operation on Z

More information

Many of the groups with which we are familiar are arithmetical in nature, and they tend to share key structures that combine more than one operation.

Many of the groups with which we are familiar are arithmetical in nature, and they tend to share key structures that combine more than one operation. 12. Rings 1 Rings Many of the groups with which we are familiar are arithmetical in nature, and they tend to share key structures that combine more than one operation. Example: Z, Q, R, and C are an Abelian

More information

Discrete Mathematics. 2. Relations

Discrete Mathematics. 2. Relations Discrete Mathematics 2. Relations Binary Relations Let A, B be any two sets. A binary relation R from A to B is a subset of A B. E.g., Let < : N N : {(n,m) n < m} The notation a R b or arb means (a,b)îr.

More information

2MA105 Algebraic Structures I

2MA105 Algebraic Structures I 2MA105 Algebraic Structures I Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/2ma105.html Lecture 12 Partially Ordered Sets Lattices Bounded Lattices Distributive Lattices Complemented Lattices

More information

Groups. 3.1 Definition of a Group. Introduction. Definition 3.1 Group

Groups. 3.1 Definition of a Group. Introduction. Definition 3.1 Group C H A P T E R t h r e E Groups Introduction Some of the standard topics in elementary group theory are treated in this chapter: subgroups, cyclic groups, isomorphisms, and homomorphisms. In the development

More information

Boolean Algebra. Sungho Kang. Yonsei University

Boolean Algebra. Sungho Kang. Yonsei University Boolean Algebra Sungho Kang Yonsei University Outline Set, Relations, and Functions Partial Orders Boolean Functions Don t Care Conditions Incomplete Specifications 2 Set Notation $09,3/#0,9 438 v V Element

More information

Solutions to odd-numbered exercises Peter J. Cameron, Introduction to Algebra, Chapter 3

Solutions to odd-numbered exercises Peter J. Cameron, Introduction to Algebra, Chapter 3 Solutions to odd-numbered exercises Peter J. Cameron, Introduction to Algebra, Chapter 3 3. (a) Yes; (b) No; (c) No; (d) No; (e) Yes; (f) Yes; (g) Yes; (h) No; (i) Yes. Comments: (a) is the additive group

More information

A field F is a set of numbers that includes the two numbers 0 and 1 and satisfies the properties:

A field F is a set of numbers that includes the two numbers 0 and 1 and satisfies the properties: Byte multiplication 1 Field arithmetic A field F is a set of numbers that includes the two numbers 0 and 1 and satisfies the properties: F is an abelian group under addition, meaning - F is closed under

More information

Exam 2. Is g one-to-one? Is g onto? Why? Solution: g is not one-to-one, since for c A, g(b) = g(c) = c. g is not onto, since a / g(a).

Exam 2. Is g one-to-one? Is g onto? Why? Solution: g is not one-to-one, since for c A, g(b) = g(c) = c. g is not onto, since a / g(a). Discrete Structures: Exam 2 Solutions to Sample Questions, 1. Let A = B = {a, b, c}. Consider the relation g = {(a, b), (b, c), (c, c)}. Is g one-to-one? Is g onto? Why? Solution: g is not one-to-one,

More information

ECE 238L Boolean Algebra - Part I

ECE 238L Boolean Algebra - Part I ECE 238L Boolean Algebra - Part I August 29, 2008 Typeset by FoilTEX Understand basic Boolean Algebra Boolean Algebra Objectives Relate Boolean Algebra to Logic Networks Prove Laws using Truth Tables Understand

More information

Algebra II First Semester Assignment #5 (Review of Sections 1.1 through 1.8)

Algebra II First Semester Assignment #5 (Review of Sections 1.1 through 1.8) Algebra II First Semester Assignment #5 (Review of Sections 1.1 through 1.8) Do not rely solely on this review to prepare for the test. These problems are meant only as a means to remind you of the types

More information

Rings, Integral Domains, and Fields

Rings, Integral Domains, and Fields Rings, Integral Domains, and Fields S. F. Ellermeyer September 26, 2006 Suppose that A is a set of objects endowed with two binary operations called addition (and denoted by + ) and multiplication (denoted

More information

Lattice-ordered Groups

Lattice-ordered Groups Chapter 2 Lattice-ordered Groups In this chapter we present the most basic parts of the theory of lattice-ordered groups. Though our main concern will eventually be with abelian groups it is not appreciably

More information

Is g one-to-one? Is g onto? Why? Solution: g is not one-to-one, since for c A, g(b) = g(c) = c. g is not onto, since a / g(a).

Is g one-to-one? Is g onto? Why? Solution: g is not one-to-one, since for c A, g(b) = g(c) = c. g is not onto, since a / g(a). Discrete Structures: Exam 2 Solutions to Sample Questions, 1. Let A = B = {a, b, c}. Consider the relation g = {(a, b), (b, c), (c, c)}. Is g one-to-one? Is g onto? Why? Solution: g is not one-to-one,

More information

Lecture 1: Lattice(I)

Lecture 1: Lattice(I) Discrete Mathematics (II) Spring 207 Lecture : Lattice(I) Lecturer: Yi Li Lattice is a special algebra structure. It is also a part of theoretic foundation of model theory, which formalizes the semantics

More information

NATIONAL BOARD FOR HIGHER MATHEMATICS. M. A. and M.Sc. Scholarship Test. September 25, Time Allowed: 150 Minutes Maximum Marks: 30

NATIONAL BOARD FOR HIGHER MATHEMATICS. M. A. and M.Sc. Scholarship Test. September 25, Time Allowed: 150 Minutes Maximum Marks: 30 NATIONAL BOARD FOR HIGHER MATHEMATICS M. A. and M.Sc. Scholarship Test September 25, 2010 Time Allowed: 150 Minutes Maximum Marks: 30 Please read, carefully, the instructions on the following page 1 INSTRUCTIONS

More information

CHAPTER 2 BOOLEAN ALGEBRA

CHAPTER 2 BOOLEAN ALGEBRA CHAPTER 2 BOOLEAN ALGEBRA This chapter in the book includes: Objectives Study Guide 2.1 Introduction 2.2 Basic Operations 2.3 Boolean Expressions and Truth Tables 2.4 Basic Theorems 2.5 Commutative, Associative,

More information

( ) 3 = ab 3 a!1. ( ) 3 = aba!1 a ( ) = 4 " 5 3 " 4 = ( )! 2 3 ( ) =! 5 4. Math 546 Problem Set 15

( ) 3 = ab 3 a!1. ( ) 3 = aba!1 a ( ) = 4  5 3  4 = ( )! 2 3 ( ) =! 5 4. Math 546 Problem Set 15 Math 546 Problem Set 15 1. Let G be a finite group. (a). Suppose that H is a subgroup of G and o(h) = 4. Suppose that K is a subgroup of G and o(k) = 5. What is H! K (and why)? Solution: H! K = {e} since

More information

Mathematics 222a Quiz 2 CODE 111 November 21, 2002

Mathematics 222a Quiz 2 CODE 111 November 21, 2002 Student s Name [print] Student Number Mathematics 222a Instructions: Print your name and student number at the top of this question sheet. Print your name and your instructor s name on the answer sheet.

More information

MAD 3105 PRACTICE TEST 2 SOLUTIONS

MAD 3105 PRACTICE TEST 2 SOLUTIONS MAD 3105 PRACTICE TEST 2 SOLUTIONS 1. Let R be the relation defined below. Determine which properties, reflexive, irreflexive, symmetric, antisymmetric, transitive, the relation satisfies. Prove each answer.

More information

Properties of Real Numbers

Properties of Real Numbers Pre-Algebra Properties of Real Numbers Identity Properties Addition: Multiplication: Commutative Properties Addition: Multiplication: Associative Properties Inverse Properties Distributive Properties Properties

More information

1. a. Give the converse and the contrapositive of the implication If it is raining then I get wet.

1. a. Give the converse and the contrapositive of the implication If it is raining then I get wet. VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF MATHEMATICS SUB CODE/ TITLE: MA6566 DISCRETE MATHEMATICS QUESTION BANK Academic Year : 015-016 UNIT I LOGIC AND PROOFS PART-A 1. Write the negation of the following

More information

COMPUTER ARITHMETIC. 13/05/2010 cryptography - math background pp. 1 / 162

COMPUTER ARITHMETIC. 13/05/2010 cryptography - math background pp. 1 / 162 COMPUTER ARITHMETIC 13/05/2010 cryptography - math background pp. 1 / 162 RECALL OF COMPUTER ARITHMETIC computers implement some types of arithmetic for instance, addition, subtratction, multiplication

More information

Algebraic structures I

Algebraic structures I MTH5100 Assignment 1-10 Algebraic structures I For handing in on various dates January March 2011 1 FUNCTIONS. Say which of the following rules successfully define functions, giving reasons. For each one

More information

NORTHERN INDIA ENGINEERING COLLEGE, LKO D E P A R T M E N T O F M A T H E M A T I C S. B.TECH IIIrd SEMESTER QUESTION BANK ACADEMIC SESSION

NORTHERN INDIA ENGINEERING COLLEGE, LKO D E P A R T M E N T O F M A T H E M A T I C S. B.TECH IIIrd SEMESTER QUESTION BANK ACADEMIC SESSION NORTHERN INDIA ENGINEERING COLLEGE, LKO D E P A R T M E N T O F M A T H E M A T I C S B.TECH IIIrd SEMESTER QUESTION BANK ACADEMIC SESSION 011-1 DISCRETE MATHEMATICS (EOE 038) 1. UNIT I (SET, RELATION,

More information

Handout #6 INTRODUCTION TO ALGEBRAIC STRUCTURES: Prof. Moseley AN ALGEBRAIC FIELD

Handout #6 INTRODUCTION TO ALGEBRAIC STRUCTURES: Prof. Moseley AN ALGEBRAIC FIELD Handout #6 INTRODUCTION TO ALGEBRAIC STRUCTURES: Prof. Moseley Chap. 2 AN ALGEBRAIC FIELD To introduce the notion of an abstract algebraic structure we consider (algebraic) fields. (These should not to

More information

5 Group theory. 5.1 Binary operations

5 Group theory. 5.1 Binary operations 5 Group theory This section is an introduction to abstract algebra. This is a very useful and important subject for those of you who will continue to study pure mathematics. 5.1 Binary operations 5.1.1

More information

Boolean Algebras. Chapter 2

Boolean Algebras. Chapter 2 Chapter 2 Boolean Algebras Let X be an arbitrary set and let P(X) be the class of all subsets of X (the power set of X). Three natural set-theoretic operations on P(X) are the binary operations of union

More information

On the Truth Values of Fuzzy Statements

On the Truth Values of Fuzzy Statements International Journal of Applied Computational Science and Mathematics. ISSN 2249-3042 Volume 3, Number 1 (2013), pp. 1-6 Research India Publications http://www.ripublication.com/ijacsm.htm On the Truth

More information

Real Numbers. Real numbers are divided into two types, rational numbers and irrational numbers

Real Numbers. Real numbers are divided into two types, rational numbers and irrational numbers Real Numbers Real numbers are divided into two types, rational numbers and irrational numbers I. Rational Numbers: Any number that can be expressed as the quotient of two integers. (fraction). Any number

More information

DEPARTMENT OF MATHEMATICS. MA1301 Discrete Mathematics

DEPARTMENT OF MATHEMATICS. MA1301 Discrete Mathematics SHRI ANGALAMMAN COLLEGE OF ENGINEERING AND TECHNOLOGY (An ISO 9001:2000 Certified Institution) SIRUGANOOR, TIRUCHIRAPPALLI 621 105 DEPARTMENT OF MATHEMATICS MA1301 Discrete Mathematics UNIT-I PART-A 1.Give

More information

Chapter 1. Sets and Numbers

Chapter 1. Sets and Numbers Chapter 1. Sets and Numbers 1. Sets A set is considered to be a collection of objects (elements). If A is a set and x is an element of the set A, we say x is a member of A or x belongs to A, and we write

More information

Number Axioms. P. Danziger. A Group is a set S together with a binary operation (*) on S, denoted a b such that for all a, b. a b S.

Number Axioms. P. Danziger. A Group is a set S together with a binary operation (*) on S, denoted a b such that for all a, b. a b S. Appendix A Number Axioms P. Danziger 1 Number Axioms 1.1 Groups Definition 1 A Group is a set S together with a binary operation (*) on S, denoted a b such that for all a, b and c S 0. (Closure) 1. (Associativity)

More information

Embedding theorems for normal divisible residuated lattices

Embedding theorems for normal divisible residuated lattices Embedding theorems for normal divisible residuated lattices Chapman University Department of Mathematics and Computer Science Orange, California University of Siena Department of Mathematics and Computer

More information

Outline. We will now investigate the structure of this important set.

Outline. We will now investigate the structure of this important set. The Reals Outline As we have seen, the set of real numbers, R, has cardinality c. This doesn't tell us very much about the reals, since there are many sets with this cardinality and cardinality doesn't

More information

Binary Logic and Gates

Binary Logic and Gates 1 COE 202- Digital Logic Binary Logic and Gates Dr. Abdulaziz Y. Barnawi COE Department KFUPM 2 Outline Introduction Boolean Algebra Elements of Boolean Algebra (Binary Logic) Logic Operations & Logic

More information

CONTENTS COLLEGE ALGEBRA: DR.YOU

CONTENTS COLLEGE ALGEBRA: DR.YOU 1 CONTENTS CONTENTS Textbook UNIT 1 LECTURE 1-1 REVIEW A. p. LECTURE 1- RADICALS A.10 p.9 LECTURE 1- COMPLEX NUMBERS A.7 p.17 LECTURE 1-4 BASIC FACTORS A. p.4 LECTURE 1-5. SOLVING THE EQUATIONS A.6 p.

More information

Unit I (Logic and Proofs)

Unit I (Logic and Proofs) SUBJECT NAME SUBJECT CODE : MA 6566 MATERIAL NAME REGULATION : Discrete Mathematics : Part A questions : R2013 UPDATED ON : April-May 2018 (Scan the above QR code for the direct download of this material)

More information

Discrete Structures: Solutions to Sample Questions, Exam 2

Discrete Structures: Solutions to Sample Questions, Exam 2 Discrete Structures: Solutions to Sample Questions, Exam 2 1. Let A = B = {a, b, c}. Consider the relation g = {(a, b), (b, c), (c, c)}. Is g one-to-one? Is g onto? Why? Solution: g is not one-to-one,

More information

Public-key Cryptography: Theory and Practice

Public-key Cryptography: Theory and Practice Public-key Cryptography Theory and Practice Department of Computer Science and Engineering Indian Institute of Technology Kharagpur Chapter 2: Mathematical Concepts Divisibility Congruence Quadratic Residues

More information

1. Let r, s, t, v be the homogeneous relations defined on the set M = {2, 3, 4, 5, 6} by

1. Let r, s, t, v be the homogeneous relations defined on the set M = {2, 3, 4, 5, 6} by Seminar 1 1. Which ones of the usual symbols of addition, subtraction, multiplication and division define an operation (composition law) on the numerical sets N, Z, Q, R, C? 2. Let A = {a 1, a 2, a 3 }.

More information

MATH 433 Applied Algebra Lecture 22: Review for Exam 2.

MATH 433 Applied Algebra Lecture 22: Review for Exam 2. MATH 433 Applied Algebra Lecture 22: Review for Exam 2. Topics for Exam 2 Permutations Cycles, transpositions Cycle decomposition of a permutation Order of a permutation Sign of a permutation Symmetric

More information

In Class Problem Set #15

In Class Problem Set #15 In Class Problem Set #15 CSE 1400 and MTH 2051 Fall 2012 Relations Definitions A relation is a set of ordered pairs (x, y) where x is related to y. Let denote a relational symbol. Write x y to express

More information

Discrete Mathematics. CS204: Spring, Jong C. Park Computer Science Department KAIST

Discrete Mathematics. CS204: Spring, Jong C. Park Computer Science Department KAIST Discrete Mathematics CS204: Spring, 2008 Jong C. Park Computer Science Department KAIST Today s Topics Combinatorial Circuits Properties of Combinatorial Circuits Boolean Algebras Boolean Functions and

More information

Order of Operations. Real numbers

Order of Operations. Real numbers Order of Operations When simplifying algebraic expressions we use the following order: 1. Perform operations within a parenthesis. 2. Evaluate exponents. 3. Multiply and divide from left to right. 4. Add

More information

MATH HL OPTION - REVISION SETS, RELATIONS AND GROUPS Compiled by: Christos Nikolaidis

MATH HL OPTION - REVISION SETS, RELATIONS AND GROUPS Compiled by: Christos Nikolaidis MATH HL OPTION - REVISION SETS, RELATIONS AND GROUPS Compiled by: Christos Nikolaidis PART B: GROUPS GROUPS 1. ab The binary operation a * b is defined by a * b = a+ b +. (a) Prove that * is associative.

More information

GENERALIZED DIFFERENCE POSETS AND ORTHOALGEBRAS. 0. Introduction

GENERALIZED DIFFERENCE POSETS AND ORTHOALGEBRAS. 0. Introduction Acta Math. Univ. Comenianae Vol. LXV, 2(1996), pp. 247 279 247 GENERALIZED DIFFERENCE POSETS AND ORTHOALGEBRAS J. HEDLÍKOVÁ and S. PULMANNOVÁ Abstract. A difference on a poset (P, ) is a partial binary

More information

Division of Marks TOTAL [3 +2] Part -A Part-B Part-C

Division of Marks TOTAL [3 +2] Part -A Part-B Part-C GROUPS Division of Marks 1 2 5 MARK MARKS MARKS [3 +2] TOTAL Part -A Part-B Part-C 1 1 1 8 Set of Integers I or Z= Set Of Non negative integers ={0,1,2,3,4,--------,,,, -- - -- - - - -} Set Of Rationals=

More information

HOMEWORK 3 LOUIS-PHILIPPE THIBAULT

HOMEWORK 3 LOUIS-PHILIPPE THIBAULT HOMEWORK 3 LOUIS-PHILIPPE THIBAULT Problem 1 Let G be a group of order 56. We have that 56 = 2 3 7. Then, using Sylow s theorem, we have that the only possibilities for the number of Sylow-p subgroups

More information

2. Associative Law: A binary operator * on a set S is said to be associated whenever (A*B)*C = A*(B*C) for all A,B,C S.

2. Associative Law: A binary operator * on a set S is said to be associated whenever (A*B)*C = A*(B*C) for all A,B,C S. BOOLEAN ALGEBRA 2.1 Introduction Binary logic deals with variables that have two discrete values: 1 for TRUE and 0 for FALSE. A simple switching circuit containing active elements such as a diode and transistor

More information

Solutions to Chapter Review Questions, Chapter 0

Solutions to Chapter Review Questions, Chapter 0 Instructor s Solutions Manual, Chapter 0 Review Question 1 Solutions to Chapter Review Questions, Chapter 0 1. Explain how the points on the real line correspond to the set of real numbers. solution Start

More information

MATH 3030, Abstract Algebra FALL 2012 Toby Kenney Midyear Examination Friday 7th December: 7:00-10:00 PM

MATH 3030, Abstract Algebra FALL 2012 Toby Kenney Midyear Examination Friday 7th December: 7:00-10:00 PM MATH 3030, Abstract Algebra FALL 2012 Toby Kenney Midyear Examination Friday 7th December: 7:00-10:00 PM Basic Questions 1. Compute the factor group Z 3 Z 9 / (1, 6). The subgroup generated by (1, 6) is

More information

Properties of Real Numbers. Unit 1 Lesson 4

Properties of Real Numbers. Unit 1 Lesson 4 Properties of Real Numbers Unit 1 Lesson 4 Students will be able to: Recognize and use the properties of real numbers. Key Vocabulary: Identity Property Inverse Property Equality Property Associative Property

More information

[STRAIGHT OBJECTIVE TYPE] Q.4 The expression cot 9 + cot 27 + cot 63 + cot 81 is equal to (A) 16 (B) 64 (C) 80 (D) none of these

[STRAIGHT OBJECTIVE TYPE] Q.4 The expression cot 9 + cot 27 + cot 63 + cot 81 is equal to (A) 16 (B) 64 (C) 80 (D) none of these Q. Given a + a + cosec [STRAIGHT OBJECTIVE TYPE] F HG ( a x) I K J = 0 then, which of the following holds good? (A) a = ; x I a = ; x I a R ; x a, x are finite but not possible to find Q. The minimum value

More information

Chapter 1: Systems of Linear Equations and Matrices

Chapter 1: Systems of Linear Equations and Matrices : Systems of Linear Equations and Matrices Multiple Choice Questions. Which of the following equations is linear? (A) x + 3x 3 + 4x 4 3 = 5 (B) 3x x + x 3 = 5 (C) 5x + 5 x x 3 = x + cos (x ) + 4x 3 = 7.

More information

Kleene Algebra and Arden s Theorem. Anshul Kumar Inzemamul Haque

Kleene Algebra and Arden s Theorem. Anshul Kumar Inzemamul Haque Kleene Algebra and Arden s Theorem Anshul Kumar Inzemamul Haque Motivation Regular Expression is a Kleene Algebra. We can use the properties and theorems of Kleene Algebra to simplify regular expressions

More information

D-MATH Algebra I HS 2013 Prof. Brent Doran. Solution 3. Modular arithmetic, quotients, product groups

D-MATH Algebra I HS 2013 Prof. Brent Doran. Solution 3. Modular arithmetic, quotients, product groups D-MATH Algebra I HS 2013 Prof. Brent Doran Solution 3 Modular arithmetic, quotients, product groups 1. Show that the functions f = 1/x, g = (x 1)/x generate a group of functions, the law of composition

More information

REVIEW QUESTIONS. Chapter 1: Foundations: Sets, Logic, and Algorithms

REVIEW QUESTIONS. Chapter 1: Foundations: Sets, Logic, and Algorithms REVIEW QUESTIONS Chapter 1: Foundations: Sets, Logic, and Algorithms 1. Why can t a Venn diagram be used to prove a statement about sets? 2. Suppose S is a set with n elements. Explain why the power set

More information

(3) Let Y be a totally bounded subset of a metric space X. Then the closure Y of Y

(3) Let Y be a totally bounded subset of a metric space X. Then the closure Y of Y () Consider A = { q Q : q 2 2} as a subset of the metric space (Q, d), where d(x, y) = x y. Then A is A) closed but not open in Q B) open but not closed in Q C) neither open nor closed in Q D) both open

More information

The least element is 0000, the greatest element is 1111.

The least element is 0000, the greatest element is 1111. Note: this worksheet has been modified to emphasize the Boolean algebra content. Some problems have been deleted.; this, for instance, is why the first problem is #5 rather than #1. 5. Let A be the set

More information

Logic Synthesis and Verification

Logic Synthesis and Verification Logic Synthesis and Verification Boolean Algebra Jie-Hong Roland Jiang 江介宏 Department of Electrical Engineering National Taiwan University Fall 2014 1 2 Boolean Algebra Reading F. M. Brown. Boolean Reasoning:

More information

Yale University Department of Mathematics Math 350 Introduction to Abstract Algebra Fall Midterm Exam Review Solutions

Yale University Department of Mathematics Math 350 Introduction to Abstract Algebra Fall Midterm Exam Review Solutions Yale University Department of Mathematics Math 350 Introduction to Abstract Algebra Fall 2015 Midterm Exam Review Solutions Practice exam questions: 1. Let V 1 R 2 be the subset of all vectors whose slope

More information

GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory.

GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory. GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory. Linear Algebra Standard matrix manipulation to compute the kernel, intersection of subspaces, column spaces,

More information

MATH Mathematics for Agriculture II

MATH Mathematics for Agriculture II MATH 10240 Mathematics for Agriculture II Academic year 2018 2019 UCD School of Mathematics and Statistics Contents Chapter 1. Linear Algebra 1 1. Introduction to Matrices 1 2. Matrix Multiplication 3

More information

Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Order of Operations Expression Variable Coefficient

More information

GROUPS AS GRAPHS. W. B. Vasantha Kandasamy Florentin Smarandache

GROUPS AS GRAPHS. W. B. Vasantha Kandasamy Florentin Smarandache GROUPS AS GRAPHS W. B. Vasantha Kandasamy Florentin Smarandache 009 GROUPS AS GRAPHS W. B. Vasantha Kandasamy e-mail: vasanthakandasamy@gmail.com web: http://mat.iitm.ac.in/~wbv www.vasantha.in Florentin

More information

118 PU Ph D Mathematics

118 PU Ph D Mathematics 118 PU Ph D Mathematics 1 of 100 146 PU_2016_118_E The function fz = z is:- not differentiable anywhere differentiable on real axis differentiable only at the origin differentiable everywhere 2 of 100

More information

121. y = Each solution is 32 units from = 2. > 3. < 4. > 5. > 6. > 1. x < q no 9. yes 10.

121. y = Each solution is 32 units from = 2. > 3. < 4. > 5. > 6. > 1. x < q no 9. yes 10. . y =,. y =. y = x. x =, Each solution is units from... y x =. x m x =. C = ; months; months x = w u + r. no solution. n =,. no solution Each solution is units from. Each solution is units from. Chapter.

More information

Kevin James. MTHSC 412 Section 3.1 Definition and Examples of Rings

Kevin James. MTHSC 412 Section 3.1 Definition and Examples of Rings MTHSC 412 Section 3.1 Definition and Examples of Rings A ring R is a nonempty set R together with two binary operations (usually written as addition and multiplication) that satisfy the following axioms.

More information

Studies on finite semigroups, semigroup semirings, group semirings on semirings as distributive lattices

Studies on finite semigroups, semigroup semirings, group semirings on semirings as distributive lattices Studies on finite semigroups, semigroup semirings, group semirings on semirings as distributive lattices Ph D Dissertation Mrs. Jayshree K. University of Madras India 06 ACKNOWLEDGEMENT With great pleasure

More information

Lecture 4. Algebra, continued Section 2: Lattices and Boolean algebras

Lecture 4. Algebra, continued Section 2: Lattices and Boolean algebras V. Borschev and B. Partee, September 21-26, 2006 p. 1 Lecture 4. Algebra, continued Section 2: Lattices and Boolean algebras CONTENTS 1. Lattices.... 1 1.0. Why lattices?... 1 1.1. Posets... 1 1.1.1. Upper

More information

Chapter 2 Notes, Linear Algebra 5e Lay

Chapter 2 Notes, Linear Algebra 5e Lay Contents.1 Operations with Matrices..................................1.1 Addition and Subtraction.............................1. Multiplication by a scalar............................ 3.1.3 Multiplication

More information

x 9 or x > 10 Name: Class: Date: 1 How many natural numbers are between 1.5 and 4.5 on the number line?

x 9 or x > 10 Name: Class: Date: 1 How many natural numbers are between 1.5 and 4.5 on the number line? 1 How many natural numbers are between 1.5 and 4.5 on the number line? 2 How many composite numbers are between 7 and 13 on the number line? 3 How many prime numbers are between 7 and 20 on the number

More information

MATH 3330 ABSTRACT ALGEBRA SPRING Definition. A statement is a declarative sentence that is either true or false.

MATH 3330 ABSTRACT ALGEBRA SPRING Definition. A statement is a declarative sentence that is either true or false. MATH 3330 ABSTRACT ALGEBRA SPRING 2014 TANYA CHEN Dr. Gordon Heier Tuesday January 14, 2014 The Basics of Logic (Appendix) Definition. A statement is a declarative sentence that is either true or false.

More information

Notes on Algebraic Structures. Peter J. Cameron

Notes on Algebraic Structures. Peter J. Cameron Notes on Algebraic Structures Peter J. Cameron ii Preface These are the notes of the second-year course Algebraic Structures I at Queen Mary, University of London, as I taught it in the second semester

More information