Investigation of the Thermal Transfer Behavior of Single Layer Woven Fabrics at Different Temperatures

Size: px
Start display at page:

Download "Investigation of the Thermal Transfer Behavior of Single Layer Woven Fabrics at Different Temperatures"

Transcription

1 Investigation of the Thermal Transfer Behavior of Single Layer Woven Fabrics at Different Temperatures Xiaoxia Liu, Tingting Wang, Mingyu Zhuang, Binjie Xin, Wei Liu Shanghai University of Engineering Science, Shanghai CHINA Correspondence to: Xiaoxia Liu ABSTRACT The thermal conductivity of several high performance woven fabrics at temperatures ranging from -50 to 200 was measured using the hot wire method to explore the relationship between the thermal conductivity and temperature. Data regression of the least squares was used to obtain curves of the thermal conductivity of various fabrics vs. temperature. Results show that the thermal transfer process in woven fabrics is mainly thermal conduction consisting of phonon and molecular conduction. Thermal conductivity as a function of temperature varies as temperature range changes, and is significantly affected by fiber type. Keywords: thermal conductivity, high temperature, high-performance fabrics, thermal transfer mechanism. INTRODUCTION High performance fibers are widely used in various industries including aerospace, metallurgy, petrochemical, transportation, firefighting and sports, due to their excellent mechanical properties, high temperature resistance and other characteristics. The main applications of high performance fibers are technical fields which demand excellent heat resistance and mechanical properties. In addition, good insulation properties are also required in some special cases, such as heat shield used in the spacecraft re-entry, fire protection apparel, high performance inorganic fiber lining used in the metallurgical industry, and insulating material used in the transportation and storage of liquid nitrogen and liquid oxygen. Consideration of fabrics for these applications requires investigation and characterization of the insulation properties at high and low temperatures. Thermal conductivity is the key factor influencing the insulation properties of materials. The thermal conductivity of fabric is not only related to its composition, structure, moisture and other factors, but is also a function of the ambient temperature. As the temperature increases, different types of fabric show different rates of thermal conductivity. Currently, the thermal conductivity tests are usually carried out at room temperature. Few studies concerning thermal conductivity testing of of fabrics at low and high temperature have been reported. Lin et al. [1] simulated the temperature-rise period of the ZrO2 fiber laminate and predicted its effective thermal conductivity by using finite difference numerical simulation methods. Gallego et al. [2] documented thermal conductivity changes as a function temperature for various types of carbon fibers. Hofmann [3] studied the thermal conductivity of insulation material at low temperature as well as the effect of the temperature on thermal conductivity. However, the mechanism of heat transfer has not been clearly explained. Moreover, the trend of thermal conductivity tested using the hot wire method at temperatures ranging from -50 to 200 has not been reported. In order develop a better understanding of the practical performance of a given fabric, it is necessary to understand how the fabric conducts heat over a wide range of temperatures. This study addresses that concept. EXPERIMENTAL Samples Plain woven fabrics consisting of aramid fiber, glass fiber (Figure 1), basalt fiber and carbon fiber were cut into 5 4 cm size. The fabrics were placed between two blocks of borosilicate glasses and a 500g weight for testing as shown in Figure 2. The experiments were conducted in a laboratory which remained at 20 temperature and65% humidity. Journal of Engineered Fibers and Fabrics 9

2 FIGURE 1. Sample of glass fabric. FIGURE 2. Photograph of the experimental setup. Hot Wire Method The thermal conductivity of the four types of fabric was measured using a transient hot wire instrument (TC3000, Xi an Xiatech Electronic Technology Co., Ltd, China). Thermal conductivity of the fabrics was measured at the following temperatures: -50,-25, 0, 50, 100, 150, and 200. Fabric samples were placed on each side of the sensor and stabilized between the two blocks of borosilicate glass. The 500g placed on top to insure close contact between the samples and sensor as shown in Figure 2. A software program was used to control the temperature. Thermal conductivity was measured when stable temperatures were the fabric samples were tested at five minute intervals and five tests were conducted at each temperature. Thermal conductivity values reported are the averages of the five data points. In recent years, the hot wire method has been used to measure the thermal conductivity and the thermal diffusivity of non-conductive in unsteady states. The hot wire method is the only international standard method used to measure the thermal conductivity at elevated temperatures [4]. This method can measure not only the thermal conductivity of fabric but also thermal diffusivity, heat capacity and other indices. In the hot wire testing method, it is assumed that there is an ideal infinitely thin and long linear heat source (hotline) in the solid medium. The temperature of the hotline itself as well as the ambient temperature will rise under the influence of the hotline. The heating rate of the hotline depends on the thermal conductivity of the surrounding medium. The higher the thermal conductivity the fabric being tested, the faster results the heat generated is removed and smaller the temperature rise of the hotline. Thus, the thermal conductivity of fabrics be obtained by measuring the heating rate of the hotline [5]. THERMAL TRANSFER MECHANISM OF WOVEN FABRICS At the microscopic level, the mechanism of the thermal conductivity of different materials is different. For metals, free electrons are the main mechanism of thermal transfer. The thermal transfer within crystals mainly depends on vibrations of phonons within the lattice. The thermal transfer mechanism for non-crystalline materials is the thermal vibration around a point for molecules and atoms disorderly arranged, and subsequent transfer of energy to adjacent molecules or atoms. Because non-crystalline materials can be considered as extremely fine crystals, the thermal transfer mechanism can be described through phonons. For some transparent and translucent solids, electromagnetic wave spectra with high frequency can be generated; this is known as photon transmission. In gases, thermal transfer occurs through the collision between gas molecules; this is known as molecular thermal conductivity [6]. The fabrics in this study are translucent materials consisting of air and fibers, so thermal transfer within woven fabrics will occur mainly through molecules, phonons and photons. Journal of Engineered Fibers and Fabrics 10

3 Fabric is porous material with lots of tiny voids. The thermal transfer process includes thermal conduction, thermal convection, thermal radiation and latent thermal transfer accompanied by water vapor transmission [7]. Data [8, 9] indicates that when the temperature of porous material is less than 300 the influence of radiation can be neglected. When external pressure is lower than 10 5 N/m 2 and temperature is less than 1000K, with the porosity of material below 0.95 and the thickness below 5cm, thermal convection inside porous material can be ignored [10,11]. With a stable heat source and a low heat flow rate, sample temperature increases slowly by the hotline method. Therefore, the influences of heat convection and heat radiation are reduced. This method excludes heat transfer as a result of non-heat conduction caused by other non-steady-state test methods which can send strong or transient pulses of thermal disturbance. Thus, it is a preferable pure process of heat conduction. In addition, the test time is very short. This can reduce errors caused by the evaporation of water or natural convection of air during testing. In this paper, only the influence of thermal conduction on the thermal conductivity is considered. This includes thermal conduction between fibers, air as well as fiber and air. Since the yarn twist is very low, it can be assumed that fibers arrange closely in a hexagonal area as cylinder in the yarn. The porosity of the yarn is considered to be uniform as shown in Figure 3. Based on the principle of the hot wire method, it is assumed that heating flow is transferred along the fabric thickness direction. Besides, the hotline stays parallel with warp yarns. The diameter of hotline is much lower than that of yarn and the length of hotline is larger than the length of a single cell of the fabric (Figure 4, Figure 5). FIGURE 3. Diagram of the yarn structure. FIGURE 4. Diagram of the hot wire method. FIGURE 5. Principle diagram of the hot wire method. When the hotline is placed in the yarn, it can be regarded as parallel with a proportion of air and fiber. The thermal conductivity k e of yarn is [12]: ( f ) k f k e f1k a = (1) When the hotline is laid in between two yarns, the contacting area is composed a combination of yarns air. It can be considered that the thermal channel is the interphase between air and fiber. According to the harmonic mean method, the thermal conductivity k e ' can be calculated as follows: k = e f k e f k a 2 (2) Where, ka and k f are the thermal conductivity of air and fiber respectively, f 1 is the ratio of air in the yarn, f 2 is the porosity of fabric. In this case, it is assumed that the fibers are arranged closely, thus f 1 =0. Therefore, Eq. (1) and (2) can be simplified as: k = k (3) e f Journal of Engineered Fibers and Fabrics 11

4 k = e f k k a f 2ka + ( 1 f 2 ) k f (4) From Eq. (3) and Eq. (4), the thermal conductivity of fabrics changes with thermal the conductivity of the fibers. The thermal conductivity is closely related to the thermal conductivity of fiber and air. EXPERIMEMTAL DATA AND PROCESSING The thermal conductivity of fabrics in the high and low temperatures was tested in separate test chambers, so the position of the hotline in the fabric changed during the two ranges of temperature testing. Experimental data shows that varying the position results in 5 to 10 percent variation in the data. In order to improve the accuracy of the analysis, results obtained from the high temperature testing and low temperature testing were handled separately. In an attempt to clarify the relationship between the thermal conductivity and the environmental temperature, the data from high temperature tests were processed by the least squares method. Fitting curves of thermal conductivity of various fabrics as a function of temperature were obtained. Considering that the thermal transfer process of fabric may include any combination of thermal conduction, thermal convection, the data was fitted to a one-dimensional linear regression equation, power function and exponential regression equation. The curve of one-dimensional linear regression equation is close to the curve of exponential regression equation. However, the correlation coefficient of one-dimensional linear regression equation is greater, which can reflect the variation of the data better. Therefore, the curves of one-dimensional linear regression equation (linear) and power function regression equation (dotted line) are shown in Figure 6. Figure 6(1) shows the relationship between the thermal conductivity of aramid fabric and the temperature. The regression equation and correlation coefficient r of two curves are given. (a)one-dimensional linear regression equation (linear):λ= t,r=0.9925;(b)power function regression equation (dotted line) λ= T ,r=0.9908;Figure 6(2) shows the relationship between the thermal conductivity of glass fabric and the temperature. The regression equation and correlation coefficient r of two curves are given. (a)one-dimensional linear regression equation(linear):λ= t,r=0.9665; (b) power function regression equation ( dotted line):λ= T 0.629,r=0.9948;Figure 6(3) shows the relationship between the thermal conductivity of basalt fabric and the temperature. The regression equation and correlation coefficient r of two curves are given. (a)one-dimensional linear regression equation(linear): λ= t,r=0.9723: (b) power function regression equation ( dotted line):λ= T 0.064,r=0.9965;Figure 6(4) shows the relationship between the thermal conductivity of carbon fabric and the temperature. The regression equation and correlation coefficient r of two curves are given. (a)one-dimensional linear regression equation(linear):λ= t,r=0.9511; (b) power function regression equation(dotted line): λ= T ,r=0.9897; The thermal conductivities of four fabrics as a function of elevated temperatures are compared in Figure 7. The thermal conductivities of fabrics at low temperatures are set forth in Table I. Journal of Engineered Fibers and Fabrics 12

5 (1) Thermal conductivity of aramid fabric vs. temperature. FIGURE 7. Comparison among four kinds of fabrics at high temperature. TABLE I. Thermal conductivity of fabrics at low temperature. Thermal conductivity (W/m K) Temperature( ) Aramid fabric Glass fabric Basalt fabric Carbon fabric (2) Thermal conductivity of glass fabric vs. temperature. (3) Thermal conductivity of basalt fabric vs. temperature. (4) Thermal conductivity of carbon fabric vs. temperature. FIGURE 6. Thermal conductivity of four kinds of fabrics vs. temperature. RESULTS AND DISCUSSION The thermal conductivities of four fabrics as a function of elevated temperatures are compared in Figure 7. The thermal conductivities of fabrics at low temperatures are set forth in Table I. From the experimental data, the error rates of five tests for each fabric at each temperature are within ±2% at the same position. Influence of Temperature on Thermal Conductivity The thermal conductivity of fabric varies with the temperature change (Figure 6). The thermal conductivities all four types of fabric increase as a function of temperature. From a micro perspective, most of fibers consist of both crystalline and non-crystalline regions. The mean free path of a phonon depends on the scattering caused by collisions among phonons and interactions between phonon and the boundary of crystal, lattice defects and impurities. It is also the main factor that affects the thermal transfer of phonon. Due to the phonon scattering, the mean free path of a phonon is much smaller than its theoretical value. As crystal defects increase in the fiber, the non-harmonic vibration grows drastically and phonon scattering grows powerful. In different fibers, phonons with different frequency or wavelength will scatter to varying degrees since they will have different phonon mean free paths. Therefore fabrics consisting of different fiber materials will vary in thermal conductivity. Journal of Engineered Fibers and Fabrics 13

6 Furthermore, temperature affects the integrity and non-harmonic vibration of crystals. Increasing temperature (T< Debye temperature) can accelerate the phonon vibration and enhance the interaction between phonons, leading to a decrease in the mean free path. Thus, the thermal conductivity of fiber increases [13]. According to the ideal gas molecule motion theory, when temperature rises, molecular energy grows and more heat is transferred between molecules. The change of the thermal conductivity in the gas phase is always less than the change in the solid phase. In summary, the thermal conductivity of most non-metallic fabric rises as the temperature increases. Influence of High Temperature (50 ~200 ) on Thermal Conductivity of Woven Fabrics As shown in Figure 6(1), one-dimensional linear regression equation can be used to describe the trend of the thermal conductivity of aramid fabric as a function of temperature as opposed to power function based equations. In other words, the thermal conductivity of aramid fabric rises linearly with increasing temperature. This is because the aramid fiber consists of high molecular polymer chains with high degree of orientation, crystallinity and molecular symmetry. With the higher crystallinity, less lattice defects and impurities are present in the crystal. So the scattering caused by collisions among phonons and interaction between phonon and the boundary of crystal, lattice defects and impurities can be ignored. Accordingly, scattering caused by collision between phonons is the major factor affecting thermal resistance. The literature [14] suggests that if the inelastic scattering of phonons is the only factor to generate thermal resistance, the thermal conductivity should be proportional to temperature. Separate from aramid fabric, the power function regression equation is more suitable for describing the thermal conductivity of the glass, basalt and carbon fabrics as a function of temperature. Thus, at temperatures between 50 and 200, the thermal conductivity of the three types of fabrics increase non-linearly as the temperature rises. This is because that basalt and glass are amorphous materials and carbon is polycrystalline graphite structure. The amorphous area inside these fibers is much larger than that in other polymeric fibers. In the thermal conduction process, scattering resulted from not only collision between phonons but also interaction between phonons and a large number of defects, impurities and crystal boundaries [15]. The mean free path in non-crystalline regions is much smaller than that in crystalline regions at most temperatures. As the temperature rises, molecular conduction plays an important role in thermal conduction. Meanwhile, with increasing temperature, the collision and vibration of phonons increased, leading to the lattice defects. Therefore, the scattering caused by interaction between phonons, crystal boundaries and lattice defects increases and the non-harmonic vibration of phonon increases. Tus, the thermal conductivity of the three fabrics from lower crystallinity fibers shows non-linear variation as a function of temperature. Influence of Low Temperature (0 ~-50 ) on Thermal Conductivity of Woven Fabrics From 0 to -50, the thermal conductivity of the glass, basalt and carbon fabrics decreases as temperature drops (Table I). Thermal conductivity of aramid fabric declines with decreasing temperature from 0 to -25, but increased by 2.4% between -25 and -50. The thermal conductivity of carbon fabric is still the highest of the four, and the thermal conductivity of aramid is smaller than basalt fabric, exhibiting excellent insulation properties at low temperature. In addition, the rate of change in thermal conductivity of the four fabrics is different (Table II). The thermal conductivity of aramid and glass fabrics changes slowly from 0 to -50 (2.61 and 2.45% respectively). The rate of change of the thermal conductivity of the basalt and carbon fabrics is much greater in this temperature range (12.73% and 25.97% respectively). TABLE II. Change rate of fabrics at different temperature ranges. Temperature( ) Change rate (%) Aramid fabric Glass fabric Basalt fabric Carbon fabric 200~ ~ ~ ~ Journal of Engineered Fibers and Fabrics 14

7 Thermal Conductivity of Four Kinds of Woven Fabrics As shown in Figure 7, carbon fabrics have the highest thermal conductivity among four types of fabrics while basalt fabric showed lowest thermal conductivity at temperatures ranging from 50 to 200. The thermal conductivity of aramid fabric is slightly below that of glass fabric in the range of 50 ~140. When the temperature is beyond 140, it becomes larger and the increase rate is also slightly larger. As the temperature increases, change rate of thermal conductivity of the 4 fabrics decreases in different temperature ranges and the thermal conductivity trends toward smooth. Carbon fabric is not suitable as an insulation material due to the high thermal conductivity. For aramid fabric, a lot of research on the factors affecting the thermal conductivity of polymer fiber has been reported. Because of viscoelasticity and differences in crystallinity, the mechanism of thermal conduction in polymeric materials is more complicated than that in metallic and ceramic material. Aramid is an excellent thermal insulator with low thermal conductivity at low temperature, especially below 0. It can be used for automobile brake pads and washers, friction sealing material and high performance thermal insulation paper. Glass fabric is also used as an insulation material at higher temperatures. It can take the place of aramid especially over 140. The structure and performance of basalt fiber are similar to those of similar to that of glass fiber. However, it is superior to glass fiber in heat resistance, insulation and other aspects. Because of its low thermal conductivity above 0, wide range of use temperatures, low moisture absorption and good anti-seismic performance, basalt fabric can be widely used as heat insulation material at high temperature. CONCLUSION As the hot wire method was selected to measure thermal conductivity of fabric, the heat inside the woven fabrics could be transferred mainly by phonon conduction and molecular conduction. In fiber, phonon conduction is the main factor influencing thermal conductivity. It is influenced by phonon mean free path, which is a function of temperature. As temperature increasing, the velocity of included air molecules may increase, thus improving the thermal conductivity of the air space in the fabric. From 50 to 200, the thermal conductivity of aramid fabric increases linearly as the temperature rises. In this temperature range, the thermal conductivities of glass, basalt and carbon fabrics increase in a non-linear fashion. The thermal conductivity of aramid decreases and then increases slightly with decreasing temperature, while that in other three kinds of fabrics declines as temperature decreases from 0 to -50 As the temperature increases, rate of change of the thermal conductivity decreases in different temperature ranges for the four fabric types. The thermal conductivity trends toward smooth as temperature increases from 50 to 200. At 50 ~100 the thermal conductivity of aramid fabric is significantly influenced by the temperature. The thermal conductivities of carbon and basalt fabrics are strongly affected by temperature. Thermal conductivities of aramid and glass fabrics is little changed affected in the temperature range between 0 and -50. Among the four types of woven fabrics considered in this study, carbon fabric always has the highest thermal conductivity. It would thus be the least suitable of the four for insulation purposes. Basalt fabric and glass fabric are better insulation materials with lower thermal conductivity. Organic aramid fabric is significantly affected by the temperature with the lowest thermal conductivity below 0, showing excellent insulation performance at low temperature. But its thermal conductivity rises rapidly with temperature increasing and is larger than that of basalt and glass fabric at about 140. According to the experimental results, basalt and glass fabric are considered to be the most suitable of the four for insulation at high temperatures, while aramid fabric is most suitable for insulation at low temperature. ACKNOWLEDGEMENT This study was supported by Shanghai Municipal Education Commission ( No.15cxy36 ) and Shanghai Science and Technology Committee (Grant No. 14YF ). Journal of Engineered Fibers and Fabrics 15

8 REFERENCES [1] Xiaoxuan Lin, et al, High-temperature thermal insulation performance of light mass composites, Acta Material Composite Sinica, Vol. 28 (1):8-14, [2] Gallego N.C., et al, The thermal conductivity of ribbon-shaped carbon fibers, Carbon-American Carbon Committee, Vol. 38(7): , [3] Hofmann A. The thermal conductivity of cryogenic insulation materials and its temperature dependence, Cryogenics, Vol. 46(11): , [4] Kai Ming, Bin Liu, Guang Wen, Application of measuring method of thermal conductivities, Storage Process, Vol. 5(6):35-38,2005 [5] Wenjing Zhou, Lei Zou, Sukang Zhu, Experimental Method of Textile Material Performance on Unsteady-State Thermal Transfer, Journal of Donghua University, Vol. 35(2): , [6] Yong Kang, Hong Luo, Xiaohui Hou, Performance Research Progress of Functional Thermal Conducting Polymers, Chemical Industry, Vol. 29(12), [7] Haijun Wu, Study on the Heat Transfer Properties of Woven Insulation Material s Pores and Structures, Jiangnan University, [8] Dehong Xia, Yong Chen, Shanshan Guo, Fractal model for thermal conductivity of fibrous insulation. Journal of Thermal Science and Technology, Vol. 7(2):97-103, [9] Weihua Xie et al., Fractal model for thermal conductivity of fibrous insulation, Chinese Journal of Materials Research, Vol. 20(6): , [10] Petrov, V.A., Combined radiation and conduction heat transfer in high temperature fiber thermal insulation, International Journal of Heat and Mass Transfer, Vol. 40(9), [11] Daryabeigi, K., Heat transfer in high-temperature fibrous insulation. Journal of Thermophysics and Heat Transfer, Vol. 17(1):10-20, [12] Jian Fan, Bo Ni, Numerical Simulation of Heat Conduction in Elemental Structure of Textile, Journal of Donghua University, Vol. 28(4):5-10, [13] Weidong Yu, Yuancai Chu, Textile Physical, [14] Liu Zhou, Preparation and Properties of Insulating Thermal Conductive Epoxy Resin Based Composites, Wuhan University of Technology, [15] Jie Chen, Microstructure and thermal conductivity of carbon/carbon composites made with different kinds of carbon fibers, Journal of Central South University, Vol. 19(7): , AUTHORS ADDRESSES Xiaoxia Liu Tingting Wang Mingyu Zhuang Binjie Xin Wei Liu Shanghai University of Engineering Science Road Longteng NO.333 Shanghai, Shanghai CHINA Journal of Engineered Fibers and Fabrics 16

NUMERICAL APPROACH TO INTER-FIBER FLOW IN NON-WOVENS WITH SUPER ABSORBENT FIBERS

NUMERICAL APPROACH TO INTER-FIBER FLOW IN NON-WOVENS WITH SUPER ABSORBENT FIBERS THERMAL SCIENCE, Year 2017, Vol. 21, No. 4, pp. 1639-1644 1639 Introduction NUMERICAL APPROACH TO INTER-FIBER FLOW IN NON-WOVENS WITH SUPER ABSORBENT FIBERS by Zhi-Rong DING a*, Ying GUO a b, and Shan-Yuan

More information

Thermal properties of Engineering Materials

Thermal properties of Engineering Materials Thermal properties of Engineering Materials Engineering materials are important in everyday life because of their versatile structural properties. Other than these properties, they do play an important

More information

HEAT TRANSFER ANALYSIS OF INSULATION MATERIALS WITH FLEXIBLE MULTILAYERS

HEAT TRANSFER ANALYSIS OF INSULATION MATERIALS WITH FLEXIBLE MULTILAYERS THERMAL SCIENCE, Year 013, Vol. 17, No. 5, pp. 1415-140 1415 HEAT TRANSFER ANALYSIS OF INSULATION MATERIALS WITH FLEXIBLE MULTILAYERS by Jin-Jing CHEN a,b*, Zheng GUO a,b, and Wei-Dong YU c a College of

More information

Chapter 1 INTRODUCTION AND BASIC CONCEPTS

Chapter 1 INTRODUCTION AND BASIC CONCEPTS Heat and Mass Transfer: Fundamentals & Applications 5th Edition in SI Units Yunus A. Çengel, Afshin J. Ghajar McGraw-Hill, 2015 Chapter 1 INTRODUCTION AND BASIC CONCEPTS Mehmet Kanoglu University of Gaziantep

More information

Curriculum Vitae. Education Background

Curriculum Vitae. Education Background Curriculum Vitae Hu ZHANG MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi an Jiaotong University, Xi an, 710049, China Mechanical Engineering, University

More information

A PREDICTIVE MODEL OF THERMAL CONDUCTIVITY OF PLAIN WOVEN FABRICS

A PREDICTIVE MODEL OF THERMAL CONDUCTIVITY OF PLAIN WOVEN FABRICS THERMAL SCIENCE, Year 2017, ol. 21, No. 4, pp. 1627-1632 1627 A PREDICTIE MODEL OF THERMAL CONDUCTIITY OF PLAIN WOEN FABRICS b Jia-Jia WU a,b, Hong TANG a* c, and Yu-Xuan WU a College of Textile and Clothing,

More information

Test Method of Specified Requirements of FTTS-FA-010. Far Infrared Textiles

Test Method of Specified Requirements of FTTS-FA-010. Far Infrared Textiles Test Method of Specified Requirements of FTTS-FA-010 Textiles FTTS-FA-010 Textiles Far-infrared is one band of the solar electromagnetic light-wave ranging in wavelength from 3μm to 1000 μm. Far-infrared

More information

General Synthesis of Graphene-Supported. Bicomponent Metal Monoxides as Alternative High- Performance Li-Ion Anodes to Binary Spinel Oxides

General Synthesis of Graphene-Supported. Bicomponent Metal Monoxides as Alternative High- Performance Li-Ion Anodes to Binary Spinel Oxides Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) General Synthesis of Graphene-Supported

More information

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons Gang Chen Massachusetts Institute of Technology OXFORD UNIVERSITY PRESS 2005 Contents Foreword,

More information

123MEAN thermal properties KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE

123MEAN thermal properties KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123MEAN thermal properties KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE Heat transport in substances: conduction transfer of kinetic energy on the bases of disorded movement of molecules. Own heat transfer

More information

1 One-Dimensional, Steady-State Conduction

1 One-Dimensional, Steady-State Conduction 1 One-Dimensional, Steady-State Conduction 1.1 Conduction Heat Transfer 1.1.1 Introduction Thermodynamics defines heat as a transfer of energy across the boundary of a system as a result of a temperature

More information

Lecture 11 - Phonons II - Thermal Prop. Continued

Lecture 11 - Phonons II - Thermal Prop. Continued Phonons II - hermal Properties - Continued (Kittel Ch. 5) Low High Outline Anharmonicity Crucial for hermal expansion other changes with pressure temperature Gruneisen Constant hermal Heat ransport Phonon

More information

Open Access Application of Shell Element in Temperature Field Predication of Wind Turbine Blade

Open Access Application of Shell Element in Temperature Field Predication of Wind Turbine Blade Send Orders for Reprints to reprints@benthamscience.ae The Open Automation and Control Systems Journal, 2015, 7, 1323-1328 1323 Open Access Application of Shell Element in Temperature Field Predication

More information

Chapter 11. Energy in Thermal Processes

Chapter 11. Energy in Thermal Processes Chapter 11 Energy in Thermal Processes Energy Transfer When two objects of different temperatures are placed in thermal contact, the temperature of the warmer decreases and the temperature of the cooler

More information

Prediction of Elastic Constants on 3D Four-directional Braided

Prediction of Elastic Constants on 3D Four-directional Braided Prediction of Elastic Constants on 3D Four-directional Braided Composites Prediction of Elastic Constants on 3D Four-directional Braided Composites Liang Dao Zhou 1,2,* and Zhuo Zhuang 1 1 School of Aerospace,

More information

TEMPERATURE DISTRIBUTION OF AN INFINITE SLAB UNDER POINT HEAT SOURCE

TEMPERATURE DISTRIBUTION OF AN INFINITE SLAB UNDER POINT HEAT SOURCE THERMAL SCIENCE, Year 14, Vol. 18, No. 5, pp. 1597-161 1597 TEMPERATURE DISTRIBUTION OF AN INFINITE SLAB UNDER POINT HEAT SOURCE by Zhao-Chun WU * and Dao-Lai CHENG School of Urban Construction and Safety

More information

Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides

Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides Progress In Electromagnetics Research Letters, Vol. 75, 47 52, 2018 Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides Haibin Chen 1, Zhongjiao He 2,andWeiWang

More information

Thermal conductivity measurement of two microencapsulated phase change slurries

Thermal conductivity measurement of two microencapsulated phase change slurries Thermal conductivity measurement of two microencapsulated phase change slurries Xiaoli Ma (corresponding author), Siddig Omer, Wei Zhang and S. B. Riffat Institute of Sustainable Energy Technology, School

More information

High-Performance Flexible Asymmetric Supercapacitors Based on 3D. Electrodes

High-Performance Flexible Asymmetric Supercapacitors Based on 3D. Electrodes Supporting Information for: High-Performance Flexible Asymmetric Supercapacitors Based on 3D Porous Graphene/MnO 2 Nanorod and Graphene/Ag Hybrid Thin-Film Electrodes Yuanlong Shao, a Hongzhi Wang,* a

More information

Sunlight loss for femtosecond microstructured silicon with two impurity bands

Sunlight loss for femtosecond microstructured silicon with two impurity bands Sunlight loss for femtosecond microstructured silicon with two impurity bands Fang Jian( ), Chen Chang-Shui( ), Wang Fang( ), and Liu Song-Hao( ) Institute of Biophotonics, South China Normal University,

More information

Unit B-4: List of Subjects

Unit B-4: List of Subjects ES312 Energy Transfer Fundamentals Unit B: First Law of Thermodynamics ROAD MAP... B-1: The Concept of Energy B-2: Work Interactions B-3: First Law of Thermodynamics B-4: Heat Transfer Fundamentals Unit

More information

SUPPLEMENTARY INFORMATION. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition

SUPPLEMENTARY INFORMATION. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition SUPPLEMENTARY INFORMATION Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition Jing-Bo Liu 1 *, Ping-Jian Li 1 *, Yuan-Fu Chen 1, Ze-Gao

More information

EXPERIMENTAL STUDY ON MOISTURE TRANSFER THROUGH FIREFIGHTERS' PROTECTIVE FABRICS IN RADIANT HEAT EXPOSURES

EXPERIMENTAL STUDY ON MOISTURE TRANSFER THROUGH FIREFIGHTERS' PROTECTIVE FABRICS IN RADIANT HEAT EXPOSURES THERMAL SCIENCE, Year 2017, Vol. 21, No. 4, pp. 1665-1671 1665 EXPERIMENTAL STUDY ON MOISTURE TRANSFER THROUGH FIREFIGHTERS' PROTECTIVE FABRICS IN RADIANT HEAT EXPOSURES by Meng CHEN, Fanglong ZHU *, Qianqian

More information

Unit 11: Temperature and heat

Unit 11: Temperature and heat Unit 11: Temperature and heat 1. Thermal energy 2. Temperature 3. Heat and thermal equlibrium 4. Effects of heat 5. Transference of heat 6. Conductors and insulators Think and answer a. Is it the same

More information

Thermal Conductivities of 2.5 Dimensional Woven Composites. analogy has been successfully applied for solving problems of thermal conductivity 8-15.

Thermal Conductivities of 2.5 Dimensional Woven Composites. analogy has been successfully applied for solving problems of thermal conductivity 8-15. Thermal Conductivities of 2.5 Dimensional Woven Composites Thermal Conductivities of 2.5 Dimensional Woven Composites Leilei Song, Wei Geng, Yufen Zhao, Xiaoming Chen, and Jialu Li * Composites Research

More information

Thermal and Mechanical Properties of EPR and XLPE Cable Compounds

Thermal and Mechanical Properties of EPR and XLPE Cable Compounds F E A T U R E A R T I C L E Thermal and Mechanical Properties of EPR and XLPE Cable Compounds Key Words: EPR, TRXLPE, thermal conductivity/resistivity, thermal diffusivity, heat capacity, thermal expansion,

More information

SIMULTANEOUS MEASUREMENT OF APPARENT THERMAL DIFFUSIVITY AND DISTORTION OF COMPOSITES AT HIGH TEMPERATURE

SIMULTANEOUS MEASUREMENT OF APPARENT THERMAL DIFFUSIVITY AND DISTORTION OF COMPOSITES AT HIGH TEMPERATURE SIMULTANEOUS MEASUREMENT OF APPARENT THERMAL DIFFUSIVITY AND DISTORTION OF COMPOSITES AT HIGH TEMPERATURE V. Urso Miano, G.A. Jones and A. G. Gibson School of Mechanical & Systems Engineering, Newcastle

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Si/SiO x Hollow Nanospheres/Nitrogen-Doped Carbon

More information

Temperature Field Analysis of Magnetorheological Fluid. Dynamometer

Temperature Field Analysis of Magnetorheological Fluid. Dynamometer International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 Volume 4 Issue 6 ǁ June. 2016 ǁ PP. 20-24 Temperature Field Analysis of Magnetorheological

More information

Stress-strain response and fracture behaviour of plain weave ceramic matrix composites under uni-axial tension, compression or shear

Stress-strain response and fracture behaviour of plain weave ceramic matrix composites under uni-axial tension, compression or shear Xi an 2-25 th August 217 Stress-strain response and fracture behaviour of plain weave ceramic matrix composites under uni-axial tension compression or shear Heyin Qi 1 Mingming Chen 2 Yonghong Duan 3 Daxu

More information

1618. Dynamic characteristics analysis and optimization for lateral plates of the vibration screen

1618. Dynamic characteristics analysis and optimization for lateral plates of the vibration screen 1618. Dynamic characteristics analysis and optimization for lateral plates of the vibration screen Ning Zhou Key Laboratory of Digital Medical Engineering of Hebei Province, College of Electronic and Information

More information

Thermal Systems. What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance

Thermal Systems. What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance Introduction to Heat Transfer What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance Thermal Resistance Thermal Capacitance Thermal

More information

BASICS OF HMT-1. This subject is always fun to teach/study in winters

BASICS OF HMT-1. This subject is always fun to teach/study in winters BASICS OF HMT-1 This subject is always fun to teach/study in winters #1 What is heat? Heat is a form of thermal energy which is defined ONLY when it moves from one place to other. Otherwise, the thermal

More information

05 - Scintillation detectors

05 - Scintillation detectors 05 - Scintillation detectors Jaroslav Adam Czech Technical University in Prague Version 2 Jaroslav Adam (CTU, Prague) DPD_05, Scintillation detectors Version 2 1 / 39 Scintillation detector principles

More information

Air Permeability and Acoustic Absorbing Behavior of Nonwovens

Air Permeability and Acoustic Absorbing Behavior of Nonwovens Journal of Fiber Bioengineering and Informatics Regular Article Air Permeability and Acoustic Absorbing Behavior of Nonwovens Shu Yang, Wei-Dong Yu * College of Textiles & Center of Soft Materials, Donghua

More information

Chapter 11. Energy in Thermal Processes

Chapter 11. Energy in Thermal Processes Chapter 11 Energy in Thermal Processes Energy Transfer When two objects of different temperatures are placed in thermal contact, the temperature of the warmer decreases and the temperature of the cooler

More information

P5 Heat and Particles Revision Kinetic Model of Matter: States of matter

P5 Heat and Particles Revision Kinetic Model of Matter: States of matter P5 Heat and Particles Revision Kinetic Model of Matter: States of matter State Size Shape Solid occupies a fixed volume has a fixed shape Liquid occupies a fixed volume takes the shape of its container

More information

Phase Shift Characteristics of Oscillating Flow in Pulse Tube Regenerators

Phase Shift Characteristics of Oscillating Flow in Pulse Tube Regenerators Phase Shift Characteristics of Oscillating Flow in Pulse Tube Regenerators H. L. Chen 1,2, L. W. Yang 1, J. H. Cai 1, and J. T. Liang 1 1 Technical Institute of Physics and Chemistry of CAS Beijing, 100080,

More information

For more information, please contact: or +1 (302)

For more information, please contact: or +1 (302) Introduction Graphene Raman Analyzer: Carbon Nanomaterials Characterization Dawn Yang and Kristen Frano B&W Tek Carbon nanomaterials constitute a variety of carbon allotropes including graphene, graphene

More information

Chapter 10 States of Matter

Chapter 10 States of Matter Chapter 10 States of Matter 1 Section 10.1 The Nature of Gases Objectives: Describe the assumptions of the kinetic theory as it applies to gases. Interpret gas pressure in terms of kinetic theory. Define

More information

SIB 52 - THERMO Stakeholder meeting May 16

SIB 52 - THERMO Stakeholder meeting May 16 SIB 52 - THERMO Stakeholder meeting May 16 Metrology for thermal protection materials Challenges in thermal conductivity measurements of thin (multi-layered) thermal insulation materials Laboratoire national

More information

An Advanced Anode Material for Sodium Ion. Batteries

An Advanced Anode Material for Sodium Ion. Batteries Layered-Structure SbPO 4 /Reduced Graphene Oxide: An Advanced Anode Material for Sodium Ion Batteries Jun Pan, Shulin Chen, # Qiang Fu, Yuanwei Sun, # Yuchen Zhang, Na Lin, Peng Gao,* # Jian Yang,* and

More information

Simulation Analysis of Microchannel Deformation during LTCC Warm Water Isostatic Pressing Process Lang Ping, Zhaohua Wu*

Simulation Analysis of Microchannel Deformation during LTCC Warm Water Isostatic Pressing Process Lang Ping, Zhaohua Wu* International Conference on Information Sciences, Machinery, Materials and Energy (ICISMME 2015) Simulation Analysis of Microchannel Deformation during LTCC Warm Water Isostatic Pressing Process Lang Ping,

More information

Chapter 11. Important to distinguish between them. They are not interchangeable. They mean very different things when used in physics Internal Energy

Chapter 11. Important to distinguish between them. They are not interchangeable. They mean very different things when used in physics Internal Energy Chapter 11 Energy in Thermal Processes Energy Transfer When two objects of different temperatures are placed in thermal contact, the temperature of the warmer decreases and the temperature of the cooler

More information

The Effect of Well Patterns on Surfactant/Polymer Flooding

The Effect of Well Patterns on Surfactant/Polymer Flooding International Journal of Energy and Power Engineering 2016; 5(6): 189-195 http://www.sciencepublishinggroup.com/j/ijepe doi: 10.11648/j.ijepe.20160506.13 ISSN: 2326-957X (Print); ISSN: 2326-960X (Online)

More information

DESIGN OF MICRO-PERFORATED ABSORBERS (MPA)

DESIGN OF MICRO-PERFORATED ABSORBERS (MPA) DESIGN OF MICRO-PERFORATED ABSORBERS (MPA) Paresh Shravage, Dr. K.V. Desa Electro-acoustic Research Lab, N. Wadia College, Pune-4111 Email: pareshshravage@gmail.com ABSTRACT MPA s are becoming popular

More information

Chapter 14 Temperature and Heat

Chapter 14 Temperature and Heat Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 14 Temperature and Heat Thermodynamics Starting a different area of physics called thermodynamics Thermodynamics focuses on energy rather than

More information

POLYURETHANE SURFACE TREATMENT ON TWO KINDS OF BASALT FIBER COMPOSITE AND MECHANICAL PROPERTIES COMPARISON

POLYURETHANE SURFACE TREATMENT ON TWO KINDS OF BASALT FIBER COMPOSITE AND MECHANICAL PROPERTIES COMPARISON POLYURETHANE SURFACE TREATMENT ON TWO KINDS OF BASALT FIBER COMPOSITE AND MECHANICAL PROPERTIES COMPARISON Ting YANG 1, Zhenjin CUI 1,Jiahui YANG 2, Yuqiu YANG 2, Hiroyuki HAMADA 1 1 Kyoto Institute of

More information

2. THERMAL DIFFUSIVITY SYSTEM (TDS)

2. THERMAL DIFFUSIVITY SYSTEM (TDS) 2. THERMAL DIFFUSIVITY SYSTEM (TDS) a. Basic Method Apparent thermal diffusivity α app is measured by flow method (monotonic two-side heating of the plate) described in ASTM STP 1320 and ASTM STP 1426

More information

Introduction to Thermoelectric Materials and Devices

Introduction to Thermoelectric Materials and Devices Introduction to Thermoelectric Materials and Devices 4th Semester of 2012 2012.03.29, Thursday Department of Energy Science Sungkyunkwan University Radioisotope Thermoelectric Generator (PbTe) Space probe

More information

6th International Conference on Information Engineering for Mechanics and Materials (ICIMM 2016)

6th International Conference on Information Engineering for Mechanics and Materials (ICIMM 2016) 6th International Conference on Information Engineering for Mechanics and Materials (ICIMM 2016) Design of Compensated Thermal Neutron Detector Based on He-3 Tube of SiC Micro-structure Jianlu Wu1, Hui

More information

ASAP: Accelerated Stability Assessment Program. Improved Protocol and Data Analysis for Accelerated Shelf-Life Estimation of Solid.

ASAP: Accelerated Stability Assessment Program. Improved Protocol and Data Analysis for Accelerated Shelf-Life Estimation of Solid. ASAP: Accelerated Stability Assessment Program Improved Protocol and Data Analysis for Accelerated Shelf-Life Estimation of Solid Dosage Forms Kenneth C. Waterman Research Fellow, Pfizer Inc A more rapid

More information

Secondary Ion Mass Spectrometry (SIMS)

Secondary Ion Mass Spectrometry (SIMS) CHEM53200: Lecture 10 Secondary Ion Mass Spectrometry (SIMS) Major reference: Surface Analysis Edited by J. C. Vickerman (1997). 1 Primary particles may be: Secondary particles can be e s, neutral species

More information

Supporting Information. Ce 3+ -Doping to Modulate Photoluminescence Kinetics for Efficient CsPbBr 3 Nanocrystals Based Light-Emitting Diodes

Supporting Information. Ce 3+ -Doping to Modulate Photoluminescence Kinetics for Efficient CsPbBr 3 Nanocrystals Based Light-Emitting Diodes Supporting Information Ce 3+ -Doping to Modulate Photoluminescence Kinetics for Efficient CsPbBr 3 Nanocrystals Based Light-Emitting Diodes Ji-Song Yao 1,2,, Jing Ge 1,3,, Bo-Ning Han 4, Kun-Hua Wang 1,2,

More information

Optimization of flue gas turbulent heat transfer with condensation in a tube

Optimization of flue gas turbulent heat transfer with condensation in a tube Article Calorifics July 011 Vol.56 No.19: 1978 1984 doi: 10.1007/s11434-011-4533-9 SPECIAL TOPICS: Optimization of flue gas turbulent heat transfer with condensation in a tube SONG WeiMing, MENG JiAn &

More information

We call the characteristic of a system that determines how much its temperature will change heat capacity.

We call the characteristic of a system that determines how much its temperature will change heat capacity. 3/3 Measuring Heat If all we do is add heat to a system its temperature will rise. How much the temperature rises depends on the system. We call the characteristic of a system that determines how much

More information

The Mathematical Analysis of Temperature-Pressure-Adsorption Data of Deep Shale Gas

The Mathematical Analysis of Temperature-Pressure-Adsorption Data of Deep Shale Gas International Journal of Oil, Gas and Coal Engineering 2018; 6(6): 177-182 http://www.sciencepublishinggroup.com/j/ogce doi: 10.11648/j.ogce.20180606.18 ISSN: 2376-7669 (Print); ISSN: 2376-7677(Online)

More information

Chapter 4: Bonding in Solids and Electronic Properties. Free electron theory

Chapter 4: Bonding in Solids and Electronic Properties. Free electron theory Chapter 4: Bonding in Solids and Electronic Properties Free electron theory Consider free electrons in a metal an electron gas. regards a metal as a box in which electrons are free to move. assumes nuclei

More information

Ohm s Law. R = L ρ, (2)

Ohm s Law. R = L ρ, (2) Ohm s Law Ohm s Law which is perhaps the best known law in all of Physics applies to most conducting bodies regardless if they conduct electricity well or poorly, or even so poorly they are called insulators.

More information

A DELAYED FRACTIONAL MODEL FOR COCOON HEAT-PROOF PROPERTY

A DELAYED FRACTIONAL MODEL FOR COCOON HEAT-PROOF PROPERTY THERMAL SCIENCE, Year 2017, Vol. 21, No. 4, pp. 1867-1871 1867 A DELAYED FRACTIONAL MODEL FOR COCOON HEAT-PROOF PROPERTY by Fu-Juan LIU a, Hong-Yan LIU a,b, Zheng-Biao LI c, and Ji-Huan HE a* a National

More information

Finite element analysis of the temperature field in a vertical MOCVD reactor by induction heating

Finite element analysis of the temperature field in a vertical MOCVD reactor by induction heating Vol. 30, No. 11 Journal of Semiconductors November 2009 Finite element analysis of the temperature field in a vertical MOCVD reactor by induction heating Li Zhiming( ), Xu Shengrui( ), Zhang Jincheng(

More information

Study on Coal Methane Adsorption Behavior Under Variation Temperature and Pressure-Taking Xia-Yu-Kou Coal for Example

Study on Coal Methane Adsorption Behavior Under Variation Temperature and Pressure-Taking Xia-Yu-Kou Coal for Example International Journal of Oil, Gas and Coal Engineering 2018; 6(4): 60-66 http://www.sciencepublishinggroup.com/j/ogce doi: 10.11648/j.ogce.20180604.13 ISSN: 2376-7669 (Print); ISSN: 2376-7677(Online) Study

More information

Study on Acoustically Transparent Test Section of Aeroacoustic Wind Tunnel

Study on Acoustically Transparent Test Section of Aeroacoustic Wind Tunnel Journal of Applied Mathematics and Physics, 2018, 6, 1-10 http://www.scirp.org/journal/jamp ISSN Online: 2327-4379 ISSN Print: 2327-4352 Study on Acoustically Transparent Test Section of Aeroacoustic Wind

More information

THERMAL PERFORMANCE OF WIND TURBINE POWER SYSTEM S ENGINE ROOM

THERMAL PERFORMANCE OF WIND TURBINE POWER SYSTEM S ENGINE ROOM Fourth International Symposium on Physics of Fluids (ISPF4) International Journal of Modern Physics: Conference Series Vol. 19 (2012) 424 434 World Scientific Publishing Company DOI: 10.1142/S2010194512009026

More information

Experimental and numerical simulation studies of the squeezing dynamics of the UBVT system with a hole-plug device

Experimental and numerical simulation studies of the squeezing dynamics of the UBVT system with a hole-plug device Experimental numerical simulation studies of the squeezing dynamics of the UBVT system with a hole-plug device Wen-bin Gu 1 Yun-hao Hu 2 Zhen-xiong Wang 3 Jian-qing Liu 4 Xiao-hua Yu 5 Jiang-hai Chen 6

More information

In-Situ Fabrication of CoS and NiS Nanomaterials Anchored on. Reduced Graphene Oxide for Reversible Lithium Storage

In-Situ Fabrication of CoS and NiS Nanomaterials Anchored on. Reduced Graphene Oxide for Reversible Lithium Storage Supporting Information In-Situ Fabrication of CoS and NiS Nanomaterials Anchored on Reduced Graphene Oxide for Reversible Lithium Storage Yingbin Tan, [a] Ming Liang, [b, c] Peili Lou, [a] Zhonghui Cui,

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture 34 Heat Heat transfer Conduction Convection Radiation http://www.physics.wayne.edu/~apetrov/phy2130/ Lightning Review Last lecture: 1. Thermal physics Heat. Specific

More information

Chapter 4 Scintillation Detectors

Chapter 4 Scintillation Detectors Med Phys 4RA3, 4RB3/6R03 Radioisotopes and Radiation Methodology 4-1 4.1. Basic principle of the scintillator Chapter 4 Scintillation Detectors Scintillator Light sensor Ionizing radiation Light (visible,

More information

Physical Science Exam 3 Study Guide. Dr. Karoline Rostamiani. Chapter 3

Physical Science Exam 3 Study Guide. Dr. Karoline Rostamiani. Chapter 3 Chapter 3 Section 1 States of Matter What is matter made of? What are the three most common states of matter? How do particles behave in each state of matter? Solids, Liquids, and Gases Materials can be

More information

Supplemental Information. Storage and Recycling of Interfacial. Solar Steam Enthalpy

Supplemental Information. Storage and Recycling of Interfacial. Solar Steam Enthalpy JOUL, Volume 2 Supplemental Information Storage and Recycling of Interfacial Solar Steam Enthalpy Xiuqiang Li, Xinzhe Min, Jinlei Li, Ning Xu, Pengchen Zhu, Bin Zhu, Shining Zhu, and Jia Zhu Supplemental

More information

Study of Ni/Al Interface Diffusion by Molecular Dynamics Simulation*

Study of Ni/Al Interface Diffusion by Molecular Dynamics Simulation* Engineering, 2011, 3, 227-232 doi:10.4236/eng.2011.33026 Published Online March 2011 (http://www.scirp.org/journal/eng) Study of Ni/Al Interface Diffusion by Molecular Dynamics Simulation* Chunguang Zhang,

More information

Study of Steady and Transient Thermal Behavior of High Power Semiconductor Lasers

Study of Steady and Transient Thermal Behavior of High Power Semiconductor Lasers Study of Steady and Transient Thermal Behavior of High Power Semiconductor Lasers Zhenbang Yuan a, Jingwei Wang b, Di Wu c, Xu Chen a, Xingsheng Liu b,c a School of Chemical Engineering & Technology of

More information

Predicting Air Permeability of Nylon Parachute Fabrics

Predicting Air Permeability of Nylon Parachute Fabrics 235 El Shakankery et al Predicting Air Permeability of Nylon Parachute Fabrics Mahmoud H. El Shakankery Spinning and Weaving Engineering Dept., Textile Research Division, National Research Centre, Mohmed

More information

A New Dielectrophoretic Coating Process for Depositing Thin Uniform Coatings on Films and Fibrous Surfaces

A New Dielectrophoretic Coating Process for Depositing Thin Uniform Coatings on Films and Fibrous Surfaces A New Dielectrophoretic Coating Process for Depositing Thin Uniform Coatings on Films and Fibrous Surfaces by Angelo Yializis Ph.D., Xin Dai Ph.D. Sigma Technologies International Tucson, AZ USA SIGMA

More information

A Report F.I.E.R.O. Total Heat Loss and Evaporative Resistance Measurements of Eight Firefighter Composites. Report #HP

A Report F.I.E.R.O. Total Heat Loss and Evaporative Resistance Measurements of Eight Firefighter Composites. Report #HP A Report to F.I.E.R.O on Total Heat Loss and Evaporative Resistance Measurements of Eight Firefighter Composites Report #HP170626 from Textile Protection and Comfort Center (T-PACC) College of Textiles

More information

Supporting Information for

Supporting Information for Supporting Information for Multilayer CuO@NiO Hollow Spheres: Microwave-Assisted Metal-Organic-Framework Derivation and Highly Reversible Structure-Matched Stepwise Lithium Storage Wenxiang Guo, Weiwei

More information

CIE Physics IGCSE. Topic 2: Thermal Physics

CIE Physics IGCSE. Topic 2: Thermal Physics CIE Physics IGCSE Topic 2: Thermal Physics Summary Notes Simple kinetic molecular model of matter Molecular model Solids Molecules close together in regular pattern Strong intermolecular forces of attraction

More information

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules.

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules. Today From Last Time Important new Quantum Mechanical Concepts Indistinguishability: Symmetries of the wavefunction: Symmetric and Antisymmetric Pauli exclusion principle: only one fermion per state Spin

More information

Perovskite Solar Cells Powered Electrochromic Batteries for Smart. Windows

Perovskite Solar Cells Powered Electrochromic Batteries for Smart. Windows Electronic Supplementary Material (ESI) for Materials Horizons. This journal is The Royal Society of Chemistry 2016 Supporting Information for Perovskite Solar Cells Powered Electrochromic Batteries for

More information

NATURAL CONVECTION HEAT TRANSFER CHARACTERISTICS OF KUR FUEL ASSEMBLY DURING LOSS OF COOLANT ACCIDENT

NATURAL CONVECTION HEAT TRANSFER CHARACTERISTICS OF KUR FUEL ASSEMBLY DURING LOSS OF COOLANT ACCIDENT NATURAL CONVECTION HEAT TRANSFER CHARACTERISTICS OF KUR FUEL ASSEMBLY DURING LOSS OF COOLANT ACCIDENT Ito D*, and Saito Y Research Reactor Institute Kyoto University 2-1010 Asashiro-nishi, Kumatori, Sennan,

More information

A Hydrophilic/Hydrophobic Janus Inverse-Opal

A Hydrophilic/Hydrophobic Janus Inverse-Opal Supporting information A Hydrophilic/Hydrophobic Janus Inverse-Opal Actuator via Gradient Infiltration Dajie Zhang #, Jie Liu //#, Bo Chen *, Yong Zhao, Jingxia Wang * //, Tomiki Ikeda, Lei Jiang //. CAS

More information

Strength analysis on load rejection working condition of steam turbine

Strength analysis on load rejection working condition of steam turbine Strength analysis on load rejection working condition of steam turbine WANG Gongyi, CHENG Kai, YANG Jiandao, YU Deqi, GU Luyin, PENG Zeying Shanghai Turbine Works Co., Ltd., Shanghai 201612, China Abstract:

More information

Investigation of the Thermal Insulation Properties of Multilayer Textiles

Investigation of the Thermal Insulation Properties of Multilayer Textiles Małgorzata Matusiak Institute of Textile Architecture ul. Piotrkowska 276, 90-950 Łódź, Poland E-mail: mmatusiak@iat.pai.net.pl Investigation of the Thermal Insulation Properties of Multilayer Textiles

More information

Superconductivity at 41.0 K in the F-doped LaFeAsO 1-x F x

Superconductivity at 41.0 K in the F-doped LaFeAsO 1-x F x Superconductivity at 41.0 K in the F-doped LaFeAsO 1-x F x Wei Lu, Xiao-Li Shen, Jie Yang, Zheng-Cai Li, Wei Yi, Zhi-An Ren*, Xiao-Li Dong, Guang-Can Che, Li-Ling Sun, Fang Zhou, Zhong-Xian Zhao* National

More information

Experimental Study on Brillouin Optical Fiber Temperature Distributed Sensing System

Experimental Study on Brillouin Optical Fiber Temperature Distributed Sensing System 4th International Conference on Sensors, Mechatronics and Automation (ICSMA 2016) Experimental Study on Brillouin Optical Fiber Temperature Distributed Sensing System Yinqi Feng1,a, Yuan Li1, Yingjie Zhou1,

More information

SPH3U1 Lesson 03 Energy

SPH3U1 Lesson 03 Energy THERMAL ENERGY AND LATENT HEAT LEARNING GOALS Students will learn: Heat changes the amount of thermal energy in an object Temperature is a measure of the average thermal energy in an object Heat capacity

More information

Atmospheric Basics Atmospheric Composition

Atmospheric Basics Atmospheric Composition Atmospheric Basics Atmospheric Composition Air is a combination of many gases, each with its own unique characteristics. About 99 percent of the atmosphere is composed of nitrogen and oxygen, with the

More information

ANALYSIS OF TRANSIENT HEAT CONDUCTION IN DIFFERENT GEOMETRIES BY POLYNOMIAL APPROXIMATION METHOD

ANALYSIS OF TRANSIENT HEAT CONDUCTION IN DIFFERENT GEOMETRIES BY POLYNOMIAL APPROXIMATION METHOD Int. J. Mech. Eng. & Rob. Res. Devanshu Prasad, Research Paper ISSN 78 9 www.ijmerr.com Vol., No., April IJMERR. All Rights Reserved ANALYSIS OF TRANSIENT HEAT CONDUCTION IN DIFFERENT GEOMETRIES Y POLYNOMIAL

More information

Physical Science Chapter 5 Cont3. Temperature & Heat

Physical Science Chapter 5 Cont3. Temperature & Heat Physical Science Chapter 5 Cont3 Temperature & Heat What are we going to study? Heat Transfer Phases of Matter The Kinetic Theory of Gases Thermodynamics Specific Heat (Capacity) Specific Heat Latent Heat

More information

Evaluation on source rocks and the oil-source correlation in Bayanhushu sag of Hailaer Basin

Evaluation on source rocks and the oil-source correlation in Bayanhushu sag of Hailaer Basin 30 2 2011 6 GLOBAL GEOLOGY Vol. 30 No. 2 Jun. 2011 1004-5589 2011 02-0231 - 07 163712 3 7 Ⅰ Ⅱ1 3 - - P618. 130 A doi 10. 3969 /j. issn. 1004-5589. 2011. 02. 011 Evaluation on source rocks and the oil-source

More information

Physics 1501 Lecture 35

Physics 1501 Lecture 35 Physics 1501: Lecture 35 Todays Agenda Announcements Homework #11 (Dec. 2) and #12 (Dec. 9): 2 lowest dropped Honors students: see me after the class! Todays topics Chap.16: Temperature and Heat» Latent

More information

1817. Research of sound absorption characteristics for the periodically porous structure and its application in automobile

1817. Research of sound absorption characteristics for the periodically porous structure and its application in automobile 1817. Research of sound absorption characteristics for the periodically porous structure and its application in automobile Xian-lin Ren School of Mechatronics Engineering, University of Electronic Science

More information

Available online at ScienceDirect. Procedia Engineering 121 (2015 )

Available online at   ScienceDirect. Procedia Engineering 121 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 121 (2015 ) 2176 2183 9th International Symposium on Heating, Ventilation and Air Conditioning (ISHVAC) and the 3rd International

More information

Thermal properties + heat transfer

Thermal properties + heat transfer Thermal properties + heat transfer Daniel Pringle, Fall 2006, GEOS 692, University Alaska Fairbanks Heat capacity Thermal conductivity Variability -Rock type -Anisotropy -Pressure -Temperature Mineralogy

More information

Please do not adjust margins. Graphene oxide based moisture-responsive biomimetic film actuators with nacrelike layered structures

Please do not adjust margins. Graphene oxide based moisture-responsive biomimetic film actuators with nacrelike layered structures Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry Please do 2017 not adjust margins Journal Name ARTICLE Supporting information

More information

Rheological properties of polymer micro-gel dispersions

Rheological properties of polymer micro-gel dispersions 294 DOI 10.1007/s12182-009-0047-3 Rheological properties of polymer micro-gel dispersions Dong Zhaoxia, Li Yahua, Lin Meiqin and Li Mingyuan Enhanced Oil Recovery Research Center, China University of Petroleum,

More information

http://www.diva-portal.org This is the published version of a paper presented at 18th International Symposium on High Voltage Engineering (ISH), 213 Korea. Citation for the original published paper: Wang,

More information

ARX System identification of a positioning stage based on theoretical modeling and an ARX model WANG Jing-shu 1 GUO Jie 2 ZHU Chang-an 2

ARX System identification of a positioning stage based on theoretical modeling and an ARX model WANG Jing-shu 1 GUO Jie 2 ZHU Chang-an 2 DOI:10.13465/j.cnki.jvs.2013.13.026 32 13 JOURNAL OF VIBRATION AND SHOCK Vol. 32 No. 13 2013 ARX 1 2 2 1. 400054 2. 230027 ARX ARX ARX TH113 A System identification of a positioning stage based on theoretical

More information

Graphene Size-dependent Modulation of Graphene Framework Contributing to Superior. Thermal Conductivity of Epoxy Composite

Graphene Size-dependent Modulation of Graphene Framework Contributing to Superior. Thermal Conductivity of Epoxy Composite Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Graphene Size-dependent Modulation of Graphene Framework Contributing to

More information

Fan, Hai-fu Institute of Physics, Chinese Academy of Sciences, Beijing , China

Fan, Hai-fu Institute of Physics, Chinese Academy of Sciences, Beijing , China Direct Methods in Crystallography Fan, Hai-fu Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China An important branch of crystallography is the X-ray diffraction analysis of crystal

More information