Lecture 9: Boosting. Akshay Krishnamurthy October 3, 2017

Size: px
Start display at page:

Download "Lecture 9: Boosting. Akshay Krishnamurthy October 3, 2017"

Transcription

1 Lecture 9: Boostig Akshay Krishamurthy October 3, 07 Recap Last week we discussed some algorithmic aspects of machie learig We saw oe very powerful family of learig algorithms, amely oparametric methods that make very weak assumptios o that data-geeratig distributio, but cosequetly have poor geeralizatio error/covergece rates These methods ted to have low approximatio errors, but extremely high estimatio errors The we saw some pricipled ways to maage the approximatio/estimatio tradeoff Today we ll see aother powerful class of learig algorithm that teds to have small approximatio errors i practice Weak Learig Boostig refers to the techique of aggregatig may predictors together to form oe (hopefully better) predictor There are may boostig algorithms for may differet settigs ad the theory here is quite rich Boostig arose to positively aswer a questio about weak versus strog learig from the computatioal learig theory literature: Defiitio (Weak PAC learig) A hypothesis class H is weakly-pac learable with edge γ if there exists a fuctio weak H : (0, ) N ad a algorithm such that for every δ (0, ) ad for every realizable data distributio, if the algorithm is ru o weak H (δ) samples from the distributio, the with probability at least δ it produces a predictor ĥ with R(ĥ) / γ At face value, this is much weaker tha the previous defiitio of (realizable) PAC learig that we saw before I particular, with the associatio ɛ = / γ it could very well be the case that H (ɛ, δ) = weak H (δ) / ɛ which would ot be a polyomial sample complexity boud for (strog) PAC learig O the other had, we saw that for classificatio, a hypothesis class is PAC learable if ad oly if the VC dimesio is fiite This applies equally for weak learig agai usig the associatio ɛ = / γ i the sample complexity lower boud The mai advatage of weak learig is computatioal Whe we are learig a class H for which we might ot kow how to fid the ERM efficietly, the idea is to istead use a differet class B for which (a) ay ERM i B satisfies the weak learig property for the origial problem, ad (b) we ca fid a ERM for B i polyomial time Thikig about it this way, the algorithm just may ot be able to fid a hypothesis with error rate ɛ, but it ca always fid a hypothesis with error rate 045 which is better tha radom Example (Decisio stumps) Decisio stumps are similar to the decisio lists that we saw o the homework The decisio stump class is: B DS = {x sig(θ x i ) b θ R, i [d], b {, +}} These are fuctios that pick a axis, ad split the data o that axis ad assig positive label to oe side ad egative label to the oither side These are essetially axis aliged thresholds It is easy to fid the ERM for decisio stumps i polyomial time For each coordiate, sort the data accordig to that coordiate value, ad compute the risk of the threshold betwee each pair of poits The take the miimal

2 A atural questio is: suppose a class H ca be γ-weak leared i a computatioal efficiet maer The is there a way to strogly PAC-lear this class i a computatioally efficiet maer? Boostig provides a positive resolutio to this questio Theorem Let H be ay cocept class ad let B be aother hypothesis class The if H is efficetly weakly PAC learable usig B, H is also efficietly strogly PAC learable usig a hypothesis class that is derived from B This hypothesis class cosists of terery majority trees with leaves from B We will ot prove this theorem (it is quite complicated) However at a high level the idea is to combie the weak learers, traied o differet data distributios, i a clever way to boost the accuracy of the predictios This idea has bee tured ito a much more practical algorithm called AdaBoost, which itself has may iterestig theoretical properties 3 Boostig Let s assume for ow that we have a weak learig algorithm with edge γ We d like to use this algorithm iteratively to compute a globally good predictor Whe thikig about this, a atural idea is to first trai a weak predictor o the empirical distributio over the samples, the see where the weak predictor is makig mistakes ad trai a predictor focuses o just this part Ituitively if we aggregate these predictors together, we should do well o the etire domai This leads to the AdaBoost algorithm which formalizes this ituitio We are give samples {(x i, y i )} where y i {, +} ad x i X, some abstract istace space We also have a weak learig algorithm Alg The algorithm will operate o distributios over or re-weightigs of the traiig set, specified by D t where D t R + with D t(i) = With this re-weightig, the empirical error of hypothesis h t is ɛ t = R Dt (h t ) = D t (i){h t (x i ) y i } () The algorithm operates iteratively We start with D (i) = / for all i For each roud t =,, T Let h t be the weak learer traied o D t Let ɛ t be as i Eq () Set α t = l ( ɛ t ɛ t ) 3 Update where Z t ormalizes the distributio { D t+ (i) = D t(i) e α t if h t (x i ) = y i = D t(i) exp( α t y i h t (x i )) Z t e αt if h t (x i ) y i Z t After T iteratios we output the weighted majority hypothesis H(x) = sig( T t= α th t (x)) Let s try to uderstad the algorithm ituitively first If the weak learig assumptio holds, the ɛ t < / ad this meas that α t > 0 With this i mid, the re-weightig scheme clearly dowweights poits that h t labels correctly ad upweights poits that h t gets wrog Based o this, if the weak classifier at roud t + is to also satisfy the weak learig assumptio, the it must focus its attetio o the examples that h t got wrog, which will help us whe we do the aggregatio I particular, it is ot too hard to check that the error rate of h t o the distributio D t+ is exactly /, ad this meas that the weak learer (if it is to maitai its edge), must choose a differet hypothesis o the ext roud There are may theoretical properties of boostig that are worthy of exploratio Ideed there is a whole textbook dedicated to it! Today we ll discuss just a few of them Theorem 3 (Traiig error) Let γ t = / ɛ t be the edge at roud t The T {H(x i ) y i } t= 4γ T exp ( t= γ t )

3 Remark 4 Uder a slightly weaker otio tha the weak learig assumptio (we just eed it o the empirical distributio), we are guarateed that γ t γ for all rouds t Sice if the traiig error is strictly less tha /, it must be exactly zero, this meas that after ) γ rouds, AdaBoost fids a predictor with zero traiig error Remark 5 Of course this says othig about the geeralizatio performace of AdaBoost, which is what we are ultimately iterested i We will cover this shortly Proof The ituitio for the proof is that ay example that you are predictig icorrectly after T rouds has a expoetially large weight i the distributio But sice it is a distributio, it must sum to oe, so you caot be wrog o may poits Defie F (x) = T t= α th t (x) ad let us uravel the recurrece for the defiitios of D T D T + (i) = D (i) exp( α y i h (x i )) Z exp( α T y i h T (x i )) Z T = D (i) exp( y i T t= α th t (x i )) T t= Z t = D (i) exp( y i F (x i )) T t= Z i The ext step is to observe that exp( yf (x)) is a upper boud o the 0/ loss This follows sice H(x) = sig(f (x)) ad if H(x) y the yf (x) 0 so that exp( yf (x)) = {H(x) y} Thus we ca express the empirical error as {H(x i ) y i } D (i) exp( y i F (x i )) = T T D T + (i) Z t = The last equality follows sice D T + is a distributio The last step i the proof is to show that Z t = 4γ t, which requires aalyzig the update scheme Z t = D t (i) exp( α t y i h t (x i )) = = exp( α t )( ɛ t ) + exp(α t )ɛ t i:y i=h t(x i) = exp( α t )(/ + γ t ) + exp(α t )(/ + γ t ) = D t (i) exp( α t ) + 4γ t t= i:y i h t(x i) t= Z t D t (i) exp(α t ) I the last step we use the defiitio of α t + x e x = ɛt ɛ t ) = /+γt / γ t ) Fially, we use the approximatio There are two atural questios you might be askig at this poit First, how do we esure that the weaklearig assumptio is satisifed at every iteratio so that we ca drive the traiig error to zero? Secod, what about geeralizatio? O our way to thikig about geeralizatio, let us first take a detour to describe aother perspective about boostig 4 Boostig ad Loss Miimizatio Aother deep coectio for boostig is that it ca be see as a algorithm for computig the empirical risk miimizer with a particular hypothesis space ad loss fuctio Revisitig the proof of the traiig error boud, we used the iequality {y i H(x i )} exp( y i F (x i )) I fact, every other step i the proof was a equality! This term o the right had side is the empirical expoetial loss of the fuctio F Rather tha derive AdaBoost as a algorithm, we ca thik of the ERM problem, where 3

4 the hypothesis class cosists of distributios over base learers ie R N +, h,, h N H}, ad the loss fuctio is the expoetial loss F = {x N j= α jh j (x) N N, α miimize f F exp( y i f(x i )) We have see may problems of this form before, although ot usig the expoetial loss ad ot with this strage fuctio class But AdaBoost ca be viewed as a coordiate descet algorithm for solvig this optimizatio problem Specifically, cosider the followig procedure, which iitializes F 0 = 0 ad repeats for T iteratios: Choose h t H, α t R to miimize Update F t F t + α t h t exp( y i (F t (x i ) + α t h t (x i ))) If you thik about H = N, this procedure is just coordiate descet o the α parameters, which are i R N + At each iteratio you fid the coordiate (hypothesis) that helps miimize the loss fuctio as much as possible, ad the you take a step i the α space by addig it i to the curret predictor I fact this is exactly what AdaBoost is also doig Theorem 6 The coordiate descet algorithm is equivalet to AdaBoost if the weak learer always miimizes the traiig error o the weighted distributio Proof We already saw i AdaBoost s traiig error boud that Ad this meas that exp( y i (F t (x i )) = exp( y i F t (x i )) = ( t D t (i) τ= t D t (i) Z τ ) exp( y i α t h t (x i )) τ= Z τ D t (i) exp( y i α t h t (x i )) = Z t Thus the optimizatio i the coordiate descet procedure is equivalet to miimizig the ormalizatio factor i AdaBoost We ow show that the choices h t, α t from AdaBoost i fact miimize these First for fixed h with error ɛ, the choice α = ɛ ɛ ) miimizes the ormalizatio factor, sice it amouts to Z t = e α ( ɛ) + e α ɛ By takig derivative, we ca verify that the above choice of α miimizes the expressio, ad moreover the miimum is ɛ( ɛ), which is mootoically decreasig i ɛ Thus we should choose the h t with miimum error o D t This coects AdaBoost with covex optimizatio ad loss miimizatio, as AdaBoost ca be see as computig a approximate ERM This ca also help us obtai geeralizatio bouds by thikig of AdaBoost as a ERM algorithm over the fuctio space F 5 Boostig ad Geeralizatio Thikig about AdaBoost as optimizig the expoetial loss over F gives us a immediate VC-based boud Theorem 7 (VC-based geeralizatio boud) Suppose AdaBoost is ru for T iteratios o radom examples usig base classifiers from H with VCdim(H) = d Assume max{d, T } With probability at least δ R(H) ˆR(H) 3 (T e/t ) + dt e/d) + 8/δ)) + 4

5 Moreover, if H has ˆR(H) = 0 the R(H) (T e/t ) + d e/d) + /δ)) The terms here should be somewhat familiar from the VC-theorem proof Basically what we re goig to show is that if you ru AdaBoost for T iteratios, the you are searchig for a hypothesis of the form sig( T t= α th t ( )) The VC-dimesio of this liear combiatio class scales liearly with umber of coefficiets T This more or less proves the theorem But if you remember the Rademacher complexity problem o homework, this should be usatisfyig sice we are takig a covex combiatio of base learers but somehow payig for it, while there we did ot pay for the umber of hidde uits We ll see ext time how to get a much better geeralizatio boud that is idepedet of the umber of iteratios Proof Let S be a traiig sample of size ad let H S be the restrictio of H to S as we have see before We kow by the Sauer-Shelah lemma that H C (e/d) d sice VCdim(H) = d (ad usig the fact that d for the approximatio to kick i) Let us choose a fixed sequece of T of these restrictios, which we call h,, h T From these, create a modified sample S where x i = (h (x i ),, h T (x i )) is a T -dimesioal biary vector Oce we commit to these T hypotheses, the aggregatio step is equivalet to applyig a liear separator to this augmeted dataset Sice we kow that liear separators i T dimesios have VC-dimesio T, we get that umber of labeligs of the augmeted dataset is at most (e/t ) T Thus the total umber of labeligs is at most τ() ( e ) T ( e ) T d T d Pluggig this i for the growth fuctio i the usual VC theorem proof gives the result Propositio 8 I T dimesios, the set of liear thresholds, h(x) = sig( w, x ), has VC-dimesio T Note that these are axis-aliged thresholds, which is why we are ot gettig T + as we predicted earlier Proof That there exists T poits that ca be shattered is obvious if we use the stadard basis vectors as the poits The other part is less obvious If we have T + poits, the they must be liearly depedet, so i particular we ca write x T + = T β ix i If this set ca be shattered, the we ca fid a predictor w that agrees with β i for each x i ad predicts h(x T + ) = This appears to be a cotradictio 0 = w, β t x t x T + = t= β t w, x t w, x T + > 0 t= 5

10-701/ Machine Learning Mid-term Exam Solution

10-701/ Machine Learning Mid-term Exam Solution 0-70/5-78 Machie Learig Mid-term Exam Solutio Your Name: Your Adrew ID: True or False (Give oe setece explaatio) (20%). (F) For a cotiuous radom variable x ad its probability distributio fuctio p(x), it

More information

Intro to Learning Theory

Intro to Learning Theory Lecture 1, October 18, 2016 Itro to Learig Theory Ruth Urer 1 Machie Learig ad Learig Theory Comig soo 2 Formal Framework 21 Basic otios I our formal model for machie learig, the istaces to be classified

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract I this lecture we derive risk bouds for kerel methods. We will start by showig that Soft Margi kerel SVM correspods to miimizig

More information

Boosting. Professor Ameet Talwalkar. Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 1, / 32

Boosting. Professor Ameet Talwalkar. Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 1, / 32 Boostig Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machie Learig Algorithms March 1, 2017 1 / 32 Outlie 1 Admiistratio 2 Review of last lecture 3 Boostig Professor Ameet Talwalkar CS260

More information

Empirical Process Theory and Oracle Inequalities

Empirical Process Theory and Oracle Inequalities Stat 928: Statistical Learig Theory Lecture: 10 Empirical Process Theory ad Oracle Iequalities Istructor: Sham Kakade 1 Risk vs Risk See Lecture 0 for a discussio o termiology. 2 The Uio Boud / Boferoi

More information

Machine Learning Theory (CS 6783)

Machine Learning Theory (CS 6783) Machie Learig Theory (CS 6783) Lecture 2 : Learig Frameworks, Examples Settig up learig problems. X : istace space or iput space Examples: Computer Visio: Raw M N image vectorized X = 0, 255 M N, SIFT

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 11

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 11 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract We will itroduce the otio of reproducig kerels ad associated Reproducig Kerel Hilbert Spaces (RKHS). We will cosider couple

More information

Regression with quadratic loss

Regression with quadratic loss Regressio with quadratic loss Maxim Ragisky October 13, 2015 Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X,Y, where, as before,

More information

6.883: Online Methods in Machine Learning Alexander Rakhlin

6.883: Online Methods in Machine Learning Alexander Rakhlin 6.883: Olie Methods i Machie Learig Alexader Rakhli LECTURES 5 AND 6. THE EXPERTS SETTING. EXPONENTIAL WEIGHTS All the algorithms preseted so far halluciate the future values as radom draws ad the perform

More information

REGRESSION WITH QUADRATIC LOSS

REGRESSION WITH QUADRATIC LOSS REGRESSION WITH QUADRATIC LOSS MAXIM RAGINSKY Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X, Y ), where, as before, X is a R d

More information

1 Review and Overview

1 Review and Overview CS9T/STATS3: Statistical Learig Theory Lecturer: Tegyu Ma Lecture #6 Scribe: Jay Whag ad Patrick Cho October 0, 08 Review ad Overview Recall i the last lecture that for ay family of scalar fuctios F, we

More information

1 Review and Overview

1 Review and Overview DRAFT a fial versio will be posted shortly CS229T/STATS231: Statistical Learig Theory Lecturer: Tegyu Ma Lecture #3 Scribe: Migda Qiao October 1, 2013 1 Review ad Overview I the first half of this course,

More information

CSCI567 Machine Learning (Fall 2014)

CSCI567 Machine Learning (Fall 2014) CSCI567 Machie Learig (Fall 2014) Drs. Sha & Liu {feisha,yaliu.cs}@usc.edu October 14, 2014 Drs. Sha & Liu ({feisha,yaliu.cs}@usc.edu) CSCI567 Machie Learig (Fall 2014) October 14, 2014 1 / 49 Outlie Admiistratio

More information

Rademacher Complexity

Rademacher Complexity EECS 598: Statistical Learig Theory, Witer 204 Topic 0 Rademacher Complexity Lecturer: Clayto Scott Scribe: Ya Deg, Kevi Moo Disclaimer: These otes have ot bee subjected to the usual scrutiy reserved for

More information

Math 61CM - Solutions to homework 3

Math 61CM - Solutions to homework 3 Math 6CM - Solutios to homework 3 Cédric De Groote October 2 th, 208 Problem : Let F be a field, m 0 a fixed oegative iteger ad let V = {a 0 + a x + + a m x m a 0,, a m F} be the vector space cosistig

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 3

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 3 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture 3 Tolstikhi Ilya Abstract I this lecture we will prove the VC-boud, which provides a high-probability excess risk boud for the ERM algorithm whe

More information

Machine Learning Brett Bernstein

Machine Learning Brett Bernstein Machie Learig Brett Berstei Week 2 Lecture: Cocept Check Exercises Starred problems are optioal. Excess Risk Decompositio 1. Let X = Y = {1, 2,..., 10}, A = {1,..., 10, 11} ad suppose the data distributio

More information

Introduction to Machine Learning DIS10

Introduction to Machine Learning DIS10 CS 189 Fall 017 Itroductio to Machie Learig DIS10 1 Fu with Lagrage Multipliers (a) Miimize the fuctio such that f (x,y) = x + y x + y = 3. Solutio: The Lagragia is: L(x,y,λ) = x + y + λ(x + y 3) Takig

More information

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015 ECE 8527: Itroductio to Machie Learig ad Patter Recogitio Midterm # 1 Vaishali Ami Fall, 2015 tue39624@temple.edu Problem No. 1: Cosider a two-class discrete distributio problem: ω 1 :{[0,0], [2,0], [2,2],

More information

6.867 Machine learning

6.867 Machine learning 6.867 Machie learig Mid-term exam October, ( poits) Your ame ad MIT ID: Problem We are iterested here i a particular -dimesioal liear regressio problem. The dataset correspodig to this problem has examples

More information

CS 2750 Machine Learning. Lecture 23. Concept learning. CS 2750 Machine Learning. Concept Learning

CS 2750 Machine Learning. Lecture 23. Concept learning. CS 2750 Machine Learning. Concept Learning Lecture 3 Cocept learig Milos Hauskrecht milos@cs.pitt.edu Cocept Learig Outlie: Learig boolea fuctios Most geeral ad most specific cosistet hypothesis. Mitchell s versio space algorithm Probably approximately

More information

Support vector machine revisited

Support vector machine revisited 6.867 Machie learig, lecture 8 (Jaakkola) 1 Lecture topics: Support vector machie ad kerels Kerel optimizatio, selectio Support vector machie revisited Our task here is to first tur the support vector

More information

Optimally Sparse SVMs

Optimally Sparse SVMs A. Proof of Lemma 3. We here prove a lower boud o the umber of support vectors to achieve geeralizatio bouds of the form which we cosider. Importatly, this result holds ot oly for liear classifiers, but

More information

1 Duality revisited. AM 221: Advanced Optimization Spring 2016

1 Duality revisited. AM 221: Advanced Optimization Spring 2016 AM 22: Advaced Optimizatio Sprig 206 Prof. Yaro Siger Sectio 7 Wedesday, Mar. 9th Duality revisited I this sectio, we will give a slightly differet perspective o duality. optimizatio program: f(x) x R

More information

6.883: Online Methods in Machine Learning Alexander Rakhlin

6.883: Online Methods in Machine Learning Alexander Rakhlin 6.883: Olie Methods i Machie Learig Alexader Rakhli LECTURE 23. SOME CONSEQUENCES OF ONLINE NO-REGRET METHODS I this lecture, we explore some cosequeces of the developed techiques.. Covex optimizatio Wheever

More information

Clustering. CM226: Machine Learning for Bioinformatics. Fall Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar.

Clustering. CM226: Machine Learning for Bioinformatics. Fall Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar. Clusterig CM226: Machie Learig for Bioiformatics. Fall 216 Sriram Sakararama Ackowledgmets: Fei Sha, Ameet Talwalkar Clusterig 1 / 42 Admiistratio HW 1 due o Moday. Email/post o CCLE if you have questios.

More information

Lecture 7: October 18, 2017

Lecture 7: October 18, 2017 Iformatio ad Codig Theory Autum 207 Lecturer: Madhur Tulsiai Lecture 7: October 8, 207 Biary hypothesis testig I this lecture, we apply the tools developed i the past few lectures to uderstad the problem

More information

Statistical Machine Learning II Spring 2017, Learning Theory, Lecture 7

Statistical Machine Learning II Spring 2017, Learning Theory, Lecture 7 Statistical Machie Learig II Sprig 2017, Learig Theory, Lecture 7 1 Itroductio Jea Hoorio jhoorio@purdue.edu So far we have see some techiques for provig geeralizatio for coutably fiite hypothesis classes

More information

Ada Boost, Risk Bounds, Concentration Inequalities. 1 AdaBoost and Estimates of Conditional Probabilities

Ada Boost, Risk Bounds, Concentration Inequalities. 1 AdaBoost and Estimates of Conditional Probabilities CS8B/Stat4B Sprig 008) Statistical Learig Theory Lecture: Ada Boost, Risk Bouds, Cocetratio Iequalities Lecturer: Peter Bartlett Scribe: Subhrasu Maji AdaBoost ad Estimates of Coditioal Probabilities We

More information

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss ECE 90 Lecture : Complexity Regularizatio ad the Squared Loss R. Nowak 5/7/009 I the previous lectures we made use of the Cheroff/Hoeffdig bouds for our aalysis of classifier errors. Hoeffdig s iequality

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak

More information

CS 2750 Machine Learning. Lecture 22. Concept learning. CS 2750 Machine Learning. Concept Learning

CS 2750 Machine Learning. Lecture 22. Concept learning. CS 2750 Machine Learning. Concept Learning Lecture 22 Cocept learig Milos Hauskrecht milos@cs.pitt.edu 5329 Seott Square Cocept Learig Outlie: Learig boolea fuctios Most geeral ad most specific cosistet hypothesis. Mitchell s versio space algorithm

More information

Sieve Estimators: Consistency and Rates of Convergence

Sieve Estimators: Consistency and Rates of Convergence EECS 598: Statistical Learig Theory, Witer 2014 Topic 6 Sieve Estimators: Cosistecy ad Rates of Covergece Lecturer: Clayto Scott Scribe: Julia Katz-Samuels, Brado Oselio, Pi-Yu Che Disclaimer: These otes

More information

MA131 - Analysis 1. Workbook 3 Sequences II

MA131 - Analysis 1. Workbook 3 Sequences II MA3 - Aalysis Workbook 3 Sequeces II Autum 2004 Cotets 2.8 Coverget Sequeces........................ 2.9 Algebra of Limits......................... 2 2.0 Further Useful Results........................

More information

Math 451: Euclidean and Non-Euclidean Geometry MWF 3pm, Gasson 204 Homework 3 Solutions

Math 451: Euclidean and Non-Euclidean Geometry MWF 3pm, Gasson 204 Homework 3 Solutions Math 451: Euclidea ad No-Euclidea Geometry MWF 3pm, Gasso 204 Homework 3 Solutios Exercises from 1.4 ad 1.5 of the otes: 4.3, 4.10, 4.12, 4.14, 4.15, 5.3, 5.4, 5.5 Exercise 4.3. Explai why Hp, q) = {x

More information

Topics Machine learning: lecture 2. Review: the learning problem. Hypotheses and estimation. Estimation criterion cont d. Estimation criterion

Topics Machine learning: lecture 2. Review: the learning problem. Hypotheses and estimation. Estimation criterion cont d. Estimation criterion .87 Machie learig: lecture Tommi S. Jaakkola MIT CSAIL tommi@csail.mit.edu Topics The learig problem hypothesis class, estimatio algorithm loss ad estimatio criterio samplig, empirical ad epected losses

More information

Definitions and Theorems. where x are the decision variables. c, b, and a are constant coefficients.

Definitions and Theorems. where x are the decision variables. c, b, and a are constant coefficients. Defiitios ad Theorems Remember the scalar form of the liear programmig problem, Miimize, Subject to, f(x) = c i x i a 1i x i = b 1 a mi x i = b m x i 0 i = 1,2,, where x are the decisio variables. c, b,

More information

Problem Set 4 Due Oct, 12

Problem Set 4 Due Oct, 12 EE226: Radom Processes i Systems Lecturer: Jea C. Walrad Problem Set 4 Due Oct, 12 Fall 06 GSI: Assae Gueye This problem set essetially reviews detectio theory ad hypothesis testig ad some basic otios

More information

Lecture 11: Pseudorandom functions

Lecture 11: Pseudorandom functions COM S 6830 Cryptography Oct 1, 2009 Istructor: Rafael Pass 1 Recap Lecture 11: Pseudoradom fuctios Scribe: Stefao Ermo Defiitio 1 (Ge, Ec, Dec) is a sigle message secure ecryptio scheme if for all uppt

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

18.657: Mathematics of Machine Learning

18.657: Mathematics of Machine Learning 8.657: Mathematics of Machie Learig Lecturer: Philippe Rigollet Lecture 0 Scribe: Ade Forrow Oct. 3, 05 Recall the followig defiitios from last time: Defiitio: A fuctio K : X X R is called a positive symmetric

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

Posted-Price, Sealed-Bid Auctions

Posted-Price, Sealed-Bid Auctions Posted-Price, Sealed-Bid Auctios Professors Greewald ad Oyakawa 207-02-08 We itroduce the posted-price, sealed-bid auctio. This auctio format itroduces the idea of approximatios. We describe how well this

More information

n outcome is (+1,+1, 1,..., 1). Let the r.v. X denote our position (relative to our starting point 0) after n moves. Thus X = X 1 + X 2 + +X n,

n outcome is (+1,+1, 1,..., 1). Let the r.v. X denote our position (relative to our starting point 0) after n moves. Thus X = X 1 + X 2 + +X n, CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 9 Variace Questio: At each time step, I flip a fair coi. If it comes up Heads, I walk oe step to the right; if it comes up Tails, I walk oe

More information

Last time, we talked about how Equation (1) can simulate Equation (2). We asserted that Equation (2) can also simulate Equation (1).

Last time, we talked about how Equation (1) can simulate Equation (2). We asserted that Equation (2) can also simulate Equation (1). 6896 Quatum Complexity Theory Sept 23, 2008 Lecturer: Scott Aaroso Lecture 6 Last Time: Quatum Error-Correctio Quatum Query Model Deutsch-Jozsa Algorithm (Computes x y i oe query) Today: Berstei-Vazirii

More information

w (1) ˆx w (1) x (1) /ρ and w (2) ˆx w (2) x (2) /ρ.

w (1) ˆx w (1) x (1) /ρ and w (2) ˆx w (2) x (2) /ρ. 2 5. Weighted umber of late jobs 5.1. Release dates ad due dates: maximimizig the weight of o-time jobs Oce we add release dates, miimizig the umber of late jobs becomes a sigificatly harder problem. For

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

Machine Learning. Ilya Narsky, Caltech

Machine Learning. Ilya Narsky, Caltech Machie Learig Ilya Narsky, Caltech Lecture 4 Multi-class problems. Multi-class versios of Neural Networks, Decisio Trees, Support Vector Machies ad AdaBoost. Reductio of a multi-class problem to a set

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Lecture 3: August 31

Lecture 3: August 31 36-705: Itermediate Statistics Fall 018 Lecturer: Siva Balakrisha Lecture 3: August 31 This lecture will be mostly a summary of other useful expoetial tail bouds We will ot prove ay of these i lecture,

More information

1 Review of Probability & Statistics

1 Review of Probability & Statistics 1 Review of Probability & Statistics a. I a group of 000 people, it has bee reported that there are: 61 smokers 670 over 5 960 people who imbibe (drik alcohol) 86 smokers who imbibe 90 imbibers over 5

More information

Lecture 10 October Minimaxity and least favorable prior sequences

Lecture 10 October Minimaxity and least favorable prior sequences STATS 300A: Theory of Statistics Fall 205 Lecture 0 October 22 Lecturer: Lester Mackey Scribe: Brya He, Rahul Makhijai Warig: These otes may cotai factual ad/or typographic errors. 0. Miimaxity ad least

More information

Lecture 15: Learning Theory: Concentration Inequalities

Lecture 15: Learning Theory: Concentration Inequalities STAT 425: Itroductio to Noparametric Statistics Witer 208 Lecture 5: Learig Theory: Cocetratio Iequalities Istructor: Ye-Chi Che 5. Itroductio Recall that i the lecture o classificatio, we have see that

More information

Binary classification, Part 1

Binary classification, Part 1 Biary classificatio, Part 1 Maxim Ragisky September 25, 2014 The problem of biary classificatio ca be stated as follows. We have a radom couple Z = (X,Y ), where X R d is called the feature vector ad Y

More information

Chapter 2 The Monte Carlo Method

Chapter 2 The Monte Carlo Method Chapter 2 The Mote Carlo Method The Mote Carlo Method stads for a broad class of computatioal algorithms that rely o radom sampligs. It is ofte used i physical ad mathematical problems ad is most useful

More information

2.4 Sequences, Sequences of Sets

2.4 Sequences, Sequences of Sets 72 CHAPTER 2. IMPORTANT PROPERTIES OF R 2.4 Sequeces, Sequeces of Sets 2.4.1 Sequeces Defiitio 2.4.1 (sequece Let S R. 1. A sequece i S is a fuctio f : K S where K = { N : 0 for some 0 N}. 2. For each

More information

Machine Learning Theory (CS 6783)

Machine Learning Theory (CS 6783) Machie Learig Theory (CS 6783) Lecture 3 : Olie Learig, miimax value, sequetial Rademacher complexity Recap: Miimax Theorem We shall use the celebrated miimax theorem as a key tool to boud the miimax rate

More information

18.657: Mathematics of Machine Learning

18.657: Mathematics of Machine Learning 18.657: Mathematics of Machie Learig Lecturer: Philippe Rigollet Lecture 15 Scribe: Zach Izzo Oct. 27, 2015 Part III Olie Learig It is ofte the case that we will be asked to make a sequece of predictios,

More information

Analysis of Algorithms. Introduction. Contents

Analysis of Algorithms. Introduction. Contents Itroductio The focus of this module is mathematical aspects of algorithms. Our mai focus is aalysis of algorithms, which meas evaluatig efficiecy of algorithms by aalytical ad mathematical methods. We

More information

NUMERICAL METHODS FOR SOLVING EQUATIONS

NUMERICAL METHODS FOR SOLVING EQUATIONS Mathematics Revisio Guides Numerical Methods for Solvig Equatios Page 1 of 11 M.K. HOME TUITION Mathematics Revisio Guides Level: GCSE Higher Tier NUMERICAL METHODS FOR SOLVING EQUATIONS Versio:. Date:

More information

Selective Prediction

Selective Prediction COMS 6998-4 Fall 2017 November 8, 2017 Selective Predictio Preseter: Rog Zhou Scribe: Wexi Che 1 Itroductio I our previous discussio o a variatio o the Valiat Model [3], the described learer has the ability

More information

Admin REGULARIZATION. Schedule. Midterm 9/29/16. Assignment 5. Midterm next week, due Friday (more on this in 1 min)

Admin REGULARIZATION. Schedule. Midterm 9/29/16. Assignment 5. Midterm next week, due Friday (more on this in 1 min) Admi Assigmet 5! Starter REGULARIZATION David Kauchak CS 158 Fall 2016 Schedule Midterm ext week, due Friday (more o this i 1 mi Assigmet 6 due Friday before fall break Midterm Dowload from course web

More information

Differentiable Convex Functions

Differentiable Convex Functions Differetiable Covex Fuctios The followig picture motivates Theorem 11. f ( x) f ( x) f '( x)( x x) ˆx x 1 Theorem 11 : Let f : R R be differetiable. The, f is covex o the covex set C R if, ad oly if for

More information

Bertrand s Postulate

Bertrand s Postulate Bertrad s Postulate Lola Thompso Ross Program July 3, 2009 Lola Thompso (Ross Program Bertrad s Postulate July 3, 2009 1 / 33 Bertrad s Postulate I ve said it oce ad I ll say it agai: There s always a

More information

Machine Learning for Data Science (CS 4786)

Machine Learning for Data Science (CS 4786) Machie Learig for Data Sciece CS 4786) Lecture & 3: Pricipal Compoet Aalysis The text i black outlies high level ideas. The text i blue provides simple mathematical details to derive or get to the algorithm

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit theorems Throughout this sectio we will assume a probability space (Ω, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

An Introduction to Randomized Algorithms

An Introduction to Randomized Algorithms A Itroductio to Radomized Algorithms The focus of this lecture is to study a radomized algorithm for quick sort, aalyze it usig probabilistic recurrece relatios, ad also provide more geeral tools for aalysis

More information

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled 1 Lecture : Area Area ad distace traveled Approximatig area by rectagles Summatio The area uder a parabola 1.1 Area ad distace Suppose we have the followig iformatio about the velocity of a particle, how

More information

Lecture 20. Brief Review of Gram-Schmidt and Gauss s Algorithm

Lecture 20. Brief Review of Gram-Schmidt and Gauss s Algorithm 8.409 A Algorithmist s Toolkit Nov. 9, 2009 Lecturer: Joatha Keler Lecture 20 Brief Review of Gram-Schmidt ad Gauss s Algorithm Our mai task of this lecture is to show a polyomial time algorithm which

More information

This section is optional.

This section is optional. 4 Momet Geeratig Fuctios* This sectio is optioal. The momet geeratig fuctio g : R R of a radom variable X is defied as g(t) = E[e tx ]. Propositio 1. We have g () (0) = E[X ] for = 1, 2,... Proof. Therefore

More information

Axis Aligned Ellipsoid

Axis Aligned Ellipsoid Machie Learig for Data Sciece CS 4786) Lecture 6,7 & 8: Ellipsoidal Clusterig, Gaussia Mixture Models ad Geeral Mixture Models The text i black outlies high level ideas. The text i blue provides simple

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Learning Theory: Lecture Notes

Learning Theory: Lecture Notes Learig Theory: Lecture Notes Kamalika Chaudhuri October 4, 0 Cocetratio of Averages Cocetratio of measure is very useful i showig bouds o the errors of machie-learig algorithms. We will begi with a basic

More information

The Growth of Functions. Theoretical Supplement

The Growth of Functions. Theoretical Supplement The Growth of Fuctios Theoretical Supplemet The Triagle Iequality The triagle iequality is a algebraic tool that is ofte useful i maipulatig absolute values of fuctios. The triagle iequality says that

More information

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22 CS 70 Discrete Mathematics for CS Sprig 2007 Luca Trevisa Lecture 22 Aother Importat Distributio The Geometric Distributio Questio: A biased coi with Heads probability p is tossed repeatedly util the first

More information

A survey on penalized empirical risk minimization Sara A. van de Geer

A survey on penalized empirical risk minimization Sara A. van de Geer A survey o pealized empirical risk miimizatio Sara A. va de Geer We address the questio how to choose the pealty i empirical risk miimizatio. Roughly speakig, this pealty should be a good boud for the

More information

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d Liear regressio Daiel Hsu (COMS 477) Maximum likelihood estimatio Oe of the simplest liear regressio models is the followig: (X, Y ),..., (X, Y ), (X, Y ) are iid radom pairs takig values i R d R, ad Y

More information

MAT1026 Calculus II Basic Convergence Tests for Series

MAT1026 Calculus II Basic Convergence Tests for Series MAT026 Calculus II Basic Covergece Tests for Series Egi MERMUT 202.03.08 Dokuz Eylül Uiversity Faculty of Sciece Departmet of Mathematics İzmir/TURKEY Cotets Mootoe Covergece Theorem 2 2 Series of Real

More information

1 Approximating Integrals using Taylor Polynomials

1 Approximating Integrals using Taylor Polynomials Seughee Ye Ma 8: Week 7 Nov Week 7 Summary This week, we will lear how we ca approximate itegrals usig Taylor series ad umerical methods. Topics Page Approximatig Itegrals usig Taylor Polyomials. Defiitios................................................

More information

MATH 10550, EXAM 3 SOLUTIONS

MATH 10550, EXAM 3 SOLUTIONS MATH 155, EXAM 3 SOLUTIONS 1. I fidig a approximate solutio to the equatio x 3 +x 4 = usig Newto s method with iitial approximatio x 1 = 1, what is x? Solutio. Recall that x +1 = x f(x ) f (x ). Hece,

More information

Fall 2013 MTH431/531 Real analysis Section Notes

Fall 2013 MTH431/531 Real analysis Section Notes Fall 013 MTH431/531 Real aalysis Sectio 8.1-8. Notes Yi Su 013.11.1 1. Defiitio of uiform covergece. We look at a sequece of fuctios f (x) ad study the coverget property. Notice we have two parameters

More information

Notes for Lecture 11

Notes for Lecture 11 U.C. Berkeley CS78: Computatioal Complexity Hadout N Professor Luca Trevisa 3/4/008 Notes for Lecture Eigevalues, Expasio, ad Radom Walks As usual by ow, let G = (V, E) be a udirected d-regular graph with

More information

Solution of Final Exam : / Machine Learning

Solution of Final Exam : / Machine Learning Solutio of Fial Exam : 10-701/15-781 Machie Learig Fall 2004 Dec. 12th 2004 Your Adrew ID i capital letters: Your full ame: There are 9 questios. Some of them are easy ad some are more difficult. So, if

More information

Recursive Algorithms. Recurrences. Recursive Algorithms Analysis

Recursive Algorithms. Recurrences. Recursive Algorithms Analysis Recursive Algorithms Recurreces Computer Sciece & Egieerig 35: Discrete Mathematics Christopher M Bourke cbourke@cseuledu A recursive algorithm is oe i which objects are defied i terms of other objects

More information

Recitation 4: Lagrange Multipliers and Integration

Recitation 4: Lagrange Multipliers and Integration Math 1c TA: Padraic Bartlett Recitatio 4: Lagrage Multipliers ad Itegratio Week 4 Caltech 211 1 Radom Questio Hey! So, this radom questio is pretty tightly tied to today s lecture ad the cocept of cotet

More information

Worksheet on Generating Functions

Worksheet on Generating Functions Worksheet o Geeratig Fuctios October 26, 205 This worksheet is adapted from otes/exercises by Nat Thiem. Derivatives of Geeratig Fuctios. If the sequece a 0, a, a 2,... has ordiary geeratig fuctio A(x,

More information

Math 155 (Lecture 3)

Math 155 (Lecture 3) Math 55 (Lecture 3) September 8, I this lecture, we ll cosider the aswer to oe of the most basic coutig problems i combiatorics Questio How may ways are there to choose a -elemet subset of the set {,,,

More information

Lecture 1: Basic problems of coding theory

Lecture 1: Basic problems of coding theory Lecture 1: Basic problems of codig theory Error-Correctig Codes (Sprig 016) Rutgers Uiversity Swastik Kopparty Scribes: Abhishek Bhrushudi & Aditya Potukuchi Admiistrivia was discussed at the begiig of

More information

18.657: Mathematics of Machine Learning

18.657: Mathematics of Machine Learning 8.657: Mathematics of Machie Learig Lecturer: Philippe Rigollet Lecture 4 Scribe: Cheg Mao Sep., 05 I this lecture, we cotiue to discuss the effect of oise o the rate of the excess risk E(h) = R(h) R(h

More information

Recurrence Relations

Recurrence Relations Recurrece Relatios Aalysis of recursive algorithms, such as: it factorial (it ) { if (==0) retur ; else retur ( * factorial(-)); } Let t be the umber of multiplicatios eeded to calculate factorial(). The

More information

Lecture 2 October 11

Lecture 2 October 11 Itroductio to probabilistic graphical models 203/204 Lecture 2 October Lecturer: Guillaume Oboziski Scribes: Aymeric Reshef, Claire Verade Course webpage: http://www.di.es.fr/~fbach/courses/fall203/ 2.

More information

Random Models. Tusheng Zhang. February 14, 2013

Random Models. Tusheng Zhang. February 14, 2013 Radom Models Tusheg Zhag February 14, 013 1 Radom Walks Let me describe the model. Radom walks are used to describe the motio of a movig particle (object). Suppose that a particle (object) moves alog the

More information

Mixtures of Gaussians and the EM Algorithm

Mixtures of Gaussians and the EM Algorithm Mixtures of Gaussias ad the EM Algorithm CSE 6363 Machie Learig Vassilis Athitsos Computer Sciece ad Egieerig Departmet Uiversity of Texas at Arligto 1 Gaussias A popular way to estimate probability desity

More information

Machine Learning Brett Bernstein

Machine Learning Brett Bernstein Machie Learig Brett Berstei Week Lecture: Cocept Check Exercises Starred problems are optioal. Statistical Learig Theory. Suppose A = Y = R ad X is some other set. Furthermore, assume P X Y is a discrete

More information

Inverse Matrix. A meaning that matrix B is an inverse of matrix A.

Inverse Matrix. A meaning that matrix B is an inverse of matrix A. Iverse Matrix Two square matrices A ad B of dimesios are called iverses to oe aother if the followig holds, AB BA I (11) The otio is dual but we ofte write 1 B A meaig that matrix B is a iverse of matrix

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

Linear Classifiers III

Linear Classifiers III Uiversität Potsdam Istitut für Iformatik Lehrstuhl Maschielles Lere Liear Classifiers III Blaie Nelso, Tobias Scheffer Cotets Classificatio Problem Bayesia Classifier Decisio Liear Classifiers, MAP Models

More information

6. Sufficient, Complete, and Ancillary Statistics

6. Sufficient, Complete, and Ancillary Statistics Sufficiet, Complete ad Acillary Statistics http://www.math.uah.edu/stat/poit/sufficiet.xhtml 1 of 7 7/16/2009 6:13 AM Virtual Laboratories > 7. Poit Estimatio > 1 2 3 4 5 6 6. Sufficiet, Complete, ad Acillary

More information

The Random Walk For Dummies

The Random Walk For Dummies The Radom Walk For Dummies Richard A Mote Abstract We look at the priciples goverig the oe-dimesioal discrete radom walk First we review five basic cocepts of probability theory The we cosider the Beroulli

More information