Prompt Neutrino Fluxes from Charm Production in the Atmosphere

Size: px
Start display at page:

Download "Prompt Neutrino Fluxes from Charm Production in the Atmosphere"

Transcription

1 Prompt Neutrino Fluxes from Charm Production in the Atmosphere Yu Seon Jeong Yonsei University Wor in progress with M. H. Reno, and C. S. Kim, and with A. Bhattacharya, I. Sarcevic, and R. nberg YongPyong-High1 015 Joint Winter Conference High1 Resort, Korea, January 5-31, 015

2 Atmospheric Neutrino Cosmic rays interact with air nuclei in the atmosphere and produce hadrons. Hadrons subsequently decay producing neutrinos. Atmospheric neutrino e. g. pp X e Atmospheric neutrinos are the bacground to astrophysical neutrinos. e

3 Conventional Neutrino Flux Neutrino flux from pion and aon decay is called the conventional flux. Κ, π long-lived particles interact before the decay suppress the neutrino production at high IceCube

4 Prompt Neutrino Flux IceCube Neutrino flux from the decay of the charmed hadrons is called the prompt flux. e.g. D-mesons The charmed hadrons are short-lived particles. The resulting neutrino flux less depends on energy.

5 Cascade equations The neutrino flux is obtained by solving the coupled cascade equations for nucleon, meson and lepton fluxes. d N dx N N S NA NY N - nucleon flux d dx M M M S NA MY S MA MY dec M M dl dx S M ly M 0 0 M D, D, D, Ds, c for prompt fluxes from charm The function S is responsible for the generation.

6 d dn d S, ; Cascade equations generation function for decay, 1 for production,, 1, ; A d Y d d Y A d d dn dn/d the energy distribution of the final state particle.

7 Z-moments d dn X X d Z, ;,,, : Assumption X X d dn d Z, ; P. Lipari, Astropart. Phys P. Gondolo, G. Ingelman and M.Thunman, Astropart. Phys TIG

8 Approximate Lepton Fluxes low l Z Ml Z NM 1 Z NN N high l Z Ml Z NM 1 Z NN ln 1 M N / / N M M N i i / 1 Z ii i N, M The lepton flux can be obtained by interpolating these two solutions.

9 The essential input to the neutrino flux evaluation is the charm production cross section. The charm production cross section can be calculated 1 in the perturbative QCD, in the dipole model, 3 with non-perturbative intrinsic charm production.

10 Charm Production Cross Section in QCD The cross section for charm pair production d dx LO F dm x x 1 cc s ggcc sˆ G x 1, G x, x 1, 1 x F 4M s cc x F At high energies, x1xf and x 1. e.g. at p = 1 PeV, x 10-6 for xf 1. x become smaller at higher energy.

11 Gluon distribution at small x The gluon distribution increases rapidly as x becomes small. At the high density region, gluons can be overlapped and recombined. Saturation effect K.Golec-Biernat conf. proceeding arxiv:

12 Color Dipole Model C. werz et al, JHP The virtual photon splits into a quar-antiquar pair color dipole before scattering on the proton. * N x, Q f 1 0 dz d r z, r, Q ˆ qqn r, x z, r, Q - fluctuation ˆ r, x - interaction of qqn a dipole with a target

13 PP collisions in the dipole model The differential cross section for heavy quar production from proton-proton collision Gp, x, d pp QQX x1 G x1, Q dy The partonic cross section in the dipole model Gp Q x,, Q dzd r z, r x, G dg r Q G z, r - splitting of gluon to dipole dg x, r - interaction of qq pair from a gluon with the target nucleon

14 dg x, r a d a PP collisions in the dipole model 9 1 x, r d d d 8 8 x x 0 0 x x r r r brc x, zr x,1 z r x, r for r 0.5 and r 1.8 e b 1 r ce d r for 0.5 r r r 0.17r 0.044r r 0.035r 0.004r 3 r 1.8 r 1.8 r a b c d e r <r r> YSJ, C. S. Kim, M. V. Luu and M. H. Reno, JHP

15 Cosmic Ray Flux for Nucleon T.K. Gaisser, Astropart. Phys

16 Prompt Flux in Dipole Model New dipole cross section from the recent F parameterization increases the flux by ~15%. The effect of CR spectrum above 1 PeV, reduction in flux is by a factor of 3-4.

17 Intrinsic charm Charm can be produced from non-perturbative fluctuation of nucleon and it goes into a charmed baryon-meson pair. e.g. p c D Meson-Baryon Model MBM 0 c In the MBM, is produced through D 0 c and D * 0 c. T.J. Hobbs, J.T. Londergan and W. Melnitchou, PRD HLM

18 Intrinsic charm production cross section d dx F c M D, D f * c M x F Mp tot Dp tot * D tot p 0 10 mb y 1 xf f c M - splitting function T.J. Hobbs, J.T. Londergan and W. Melnitchou, PRD HLM

19 Prompt Flux Intrinsic charm

20 Conclusion The prompt flux with more realistic cosmic ray nucleon spectrum is reduced relative to the prompt spectrum using the broen power law. At 1 PeV, the reduction in flux is about a factor of 3. The dipole cross section from the F parameterization by Bloc et al increase the flux about 15%. Intrinsic charm contribution based on the Hobbs et al MBM results may be important. wor in progress More update with separate lepton flavors with bottom quar contribution with other models for intrinsic charm

21

22 Prompt flux : DM vs. NLO QCD

Neutrinos from charm production: atmospheric and astrophysical applications

Neutrinos from charm production: atmospheric and astrophysical applications Neutrinos from charm production: atmospheric and astrophysical applications Mary Hall Reno Department of Physics and Astronomy University of Iowa Iowa City, Iowa, 52242, USA 1 Introduction High energy

More information

Constraints on atmospheric charmed-meson production from IceCube

Constraints on atmospheric charmed-meson production from IceCube Constraints on atmospheric charmed-meson production from IceCube Tomasz Jan Palczewski 1,2, for the IceCube Collaboration 1 University of California, Berkeley, USA 2 Lawrence Berkeley National Laboratory,

More information

Atmospheric neutrinos in the context of muon and neutrino radiography

Atmospheric neutrinos in the context of muon and neutrino radiography Earth Planets Space, 62, 195 199, 2010 Atmospheric neutrinos in the context of muon and neutrino radiography Thomas K. Gaisser Bartol Research Institute & Department of Physics and Astronomy, University

More information

seasonal variations of atmospheric leptons as a probe for charm production

seasonal variations of atmospheric leptons as a probe for charm production seasonal variations of atmospheric leptons as a probe for charm production WIPAC & Department of Astronomy University of Wisconsin - Madison ISVHECRI 2014 CERN - August 20, 2014

More information

Heavy ion physics at LHCb

Heavy ion physics at LHCb J/ψ in ppb, 8 ev D in ppb, 5 ev Λ+ c in ppb, 5 ev Heavy flavour with SMOG data Conclusion Heavy ion physics at E milie Maurice on behalf of the collaboration ICFNP 25th August 217, Kolymbari, Creta August

More information

arxiv: v1 [hep-ph] 17 Dec 2018

arxiv: v1 [hep-ph] 17 Dec 2018 Impact of the astic proton nucleus cross section on the prompt neutrino flux A. V. Giannini Instituto de Física, Universidade de São Paulo C.P. 66318, 5315-97 São Paulo, SP, Brazil V. P. Gonçalves High

More information

IceCube: Ultra-high Energy Neutrinos

IceCube: Ultra-high Energy Neutrinos IceCube: Ultra-high Energy Neutrinos Aya Ishihara JSPS Research Fellow at Chiba University for the IceCube collaboration Neutrino2012 at Kyoto June 8 th 2012 1 Ultra-high Energy Neutrinos: PeV and above

More information

ULTRA-HIGH ENERGY COSMIC RAY COMPOSITION and MUON CONTENT vs. HADRONIC MODELS. Esteban Roulet Bariloche, Argentina

ULTRA-HIGH ENERGY COSMIC RAY COMPOSITION and MUON CONTENT vs. HADRONIC MODELS. Esteban Roulet Bariloche, Argentina ULTRA-HIGH ENERGY COSMIC RAY COMPOSITION and MUON CONTENT vs. HADRONIC MODELS Esteban Roulet Bariloche, Argentina Many observables are sensitive to CR composition Shower maximum TA APP 64 (2014) Auger

More information

Hadronic Effects on T cc in Relativistic Heavy Ion Collisions

Hadronic Effects on T cc in Relativistic Heavy Ion Collisions Hadronic Effects on T cc in Relativistic Heavy Ion Collisions Juhee Hong Yonsei University New Frontiers in QCD 2018, YITP, Kyoto University arxiv: 1804.05336, JH, Sungtae Cho, Taesoo Song, and Su Houng

More information

Inclusive and Exclusive Processes with a Leading Neutron in ep and pp collisions

Inclusive and Exclusive Processes with a Leading Neutron in ep and pp collisions Inclusive and Exclusive Processes with a Leading Neutron in ep and pp collisions Victor P. Goncalves High and Medium Energy Group UFPel Brazil Based on PLB 572(2016) 76, PRD93 (2016) 054025 and PRD94 (2016)

More information

Prompt neutrinos from charm: atmospheric and beam dump fluxes

Prompt neutrinos from charm: atmospheric and beam dump fluxes Prompt neutrinos from charm: atmospheric and beam dump fluxes Hallsie Reno University of Iowa Work with I. Sarcevic, A. BhaEacharya, R. Enberg, A. Stasto, Y. S. Jeong and C. S. Kim, F. Tramontano, Weidong

More information

Understanding High Energy Neutrinos

Understanding High Energy Neutrinos Understanding High Energy Neutrinos Paolo Lipari: INFN Roma Sapienza NOW-2014 Conca Specchiulla 12th september 2014 An old dream is becoming a reality : Observing the Universe with Neutrinos ( A new way

More information

The atmospheric muon charge ratio: a probe to constrain the atmospheric ν µ / ν µ ratio

The atmospheric muon charge ratio: a probe to constrain the atmospheric ν µ / ν µ ratio The atmospheric muon charge ratio: a probe to constrain the atmospheric ν µ / ν µ ratio Nicoletta Mauri INFN - Sezione di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy DOI: http://dx.doi.org/.3204/desy-proc-2016-05/11

More information

PHYS 3446 Lecture #17

PHYS 3446 Lecture #17 PHY 3446 Lecture #7 Monday, Nov. 6, 26 Dr.. Elementary Particle Properties Quantum Numbers trangeness Isospin Gell-Mann-Nishijima Relations Production and Decay of Resonances Monday, Nov. 6, 26 PHY 3446,

More information

arxiv:hep-ph/ v1 13 Oct 2004

arxiv:hep-ph/ v1 13 Oct 2004 arxiv:hep-ph/0410184v1 13 Oct 2004 σ DIS (νn), NLO Perturbative QCD and O(1 GeV) Mass Corrections S. Kretzer a and M. H. Reno b a Physics Department and RIKEN-BNL Research Center, Bldg. 510a, Brookhaven

More information

The gluon PDF: from LHC heavy quark production to neutrino astrophysics

The gluon PDF: from LHC heavy quark production to neutrino astrophysics ! The gluon PDF: from LHC heavy quark production to neutrino astrophysics Juan Rojo! VU Amsterdam & Theory group, Nikhef!! Nikhef Jamboree 2016! Groningen, 13/12/2016 Juan Rojo 1 Nikhef Jamboree, 13/12/2016

More information

Threshold Photo-production of J/5 Mesons J. Dunne Jefferson Lab

Threshold Photo-production of J/5 Mesons J. Dunne Jefferson Lab hreshold Photo-production of J/5 Mesons J. Dunne Jefferson Lab Introduction With the advent of higher energies at Jefferson Lab, the study of charmonium becomes possible. he threshold production of J/5

More information

Quarkonia and heavy-quark production in proton and nuclear collisions at the LHC

Quarkonia and heavy-quark production in proton and nuclear collisions at the LHC Quarkonia and heavy-quark production in proton and nuclear collisions at the LHC Michael Schmelling / MPI for Nuclear Physics Introduction Double Parton Scattering Cold Nuclear Matter Effects Quark Gluon

More information

Probing the small-x regime through photonuclear reactions at LHC

Probing the small-x regime through photonuclear reactions at LHC Probing the small-x regime through photonuclear reactions at LHC 1/ 26 Probing the small-x regime through photonuclear reactions at LHC G.G. Silveira gustavo.silveira@ufrgs.br High Energy Physics Phenomenology

More information

Flavor Asymmetry of the Nucleon Sea and W-Boson Production*

Flavor Asymmetry of the Nucleon Sea and W-Boson Production* Flavor Asymmetry of the Nucleon Sea and W-Boson Production* Department of Physics University of Illinois 7 December 2012 *R. Yang, J.C. Peng, M. Grosse-Perdekamp, Phys. Lett. B 680 (2009) 231-234 What

More information

The strange asymmetry of the proton sea

The strange asymmetry of the proton sea The strange asymmetry of the proton sea J. Magnin CBPF Brazilian Center for Research in Physics XII Mexican Workshop on Particles and Fields Mazatlán, Mexico Outline Introduction The structure of the proton

More information

DEEP INELASTIC SCATTERING

DEEP INELASTIC SCATTERING DEEP INELASTIC SCATTERING Electron scattering off nucleons (Fig 7.1): 1) Elastic scattering: E = E (θ) 2) Inelastic scattering: No 1-to-1 relationship between E and θ Inelastic scattering: nucleon gets

More information

Perturbative origin of azimuthal anisotropy in nuclear collisions

Perturbative origin of azimuthal anisotropy in nuclear collisions Perturbative origin of azimuthal anisotropy in nuclear collisions Amir H. Rezaeian Uiversidad Tecnica Federico Santa Maria, Valparaiso Sixth International Conference on Perspectives in Hadronic Physics

More information

Duke University Chiho NONAKA. in Collaboration with R. J. Fries (Duke), S. A. Bass (Duke & RIKEN), B. Muller (Duke) nucl-th/ to appear in PRL

Duke University Chiho NONAKA. in Collaboration with R. J. Fries (Duke), S. A. Bass (Duke & RIKEN), B. Muller (Duke) nucl-th/ to appear in PRL Duke University Chiho NONAKA in Collaboration with R. J. Fries (Duke), S. A. Bass (Duke & RIKEN), B. Muller (Duke) nucl-th/00108 to appear in PRL May 1, 00@INT, University of Washington, Seattle Introduction

More information

Opportunities with diffraction

Opportunities with diffraction Opportunities with diffraction Krzysztof Golec-Biernat Institute of Nuclear Physics in Kraków IWHSS17, Cortona, 2 5 April 2017 Krzysztof Golec-Biernat Opportunities with diffraction 1 / 29 Plan Diffraction

More information

Quark model. Jan 30, 2006 Lecture 8 1

Quark model. Jan 30, 2006 Lecture 8 1 Quark model Jan 30, 2006 Lecture 8 1 Quark model of hadrons!!!! Developed long before QCD was recognized as the appropriate quantum field theory of the strong interactions Postulate that 1.! All baryons

More information

Probing Lorentz Invariance Violation

Probing Lorentz Invariance Violation University of Washington, Seattle, WA with high-energy astrophysical neutrinos based on PRD 87 116009 (2013) Department of Physics Arizona State University Enrico.Borriello@asu.edu June 8 th, 2015 In collaboration

More information

Photon and neutral meson production in pp and PbPb collisions at ALICE

Photon and neutral meson production in pp and PbPb collisions at ALICE Photon and neutral meson production in pp and PbPb collisions at ALICE Dieter Roehrich University of Bergen, Norway for the ALICE Collaboration Nuclear collisions at the LHC Photons as a probe for the

More information

The Quark-Gluon Plasma and the ALICE Experiment

The Quark-Gluon Plasma and the ALICE Experiment The Quark-Gluon Plasma and the ALICE Experiment David Evans The University of Birmingham IoP Nuclear Physics Conference 7 th April 2009 David Evans IoP Nuclear Physics Conference 2009 1 Outline of Talk

More information

Diffractive dijet photoproduction in UPCs at the LHC

Diffractive dijet photoproduction in UPCs at the LHC Diffractive dijet photoproduction in UPCs at the LHC V. Guzey Petersburg Nuclear Physics Institute (PNPI), National Research Center Kurchatov Institute, Gatchina, Russia Outline: l Diffractive dijet photoproduction

More information

PoS(ICRC2017)933. Cosmic rays and new fermionic dark matters. Jae-Kwang Hwang 1

PoS(ICRC2017)933. Cosmic rays and new fermionic dark matters. Jae-Kwang Hwang 1 1 JJJ Physics Laboratory, Brentwood, TN 37027 USA E-mail: jkhwang.koh@gmail.com Three generations of leptons and quarks correspond to the lepton charges (LC) in the present work. Then, the leptons have

More information

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes.

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Particle Physics 12.3.1 Outline the concept of antiparticles and give examples 12.3.2 Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Every

More information

PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS. Esteban Roulet CONICET, Bariloche, Argentina

PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS. Esteban Roulet CONICET, Bariloche, Argentina PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS Esteban Roulet CONICET, Bariloche, Argentina THE ENERGETIC UNIVERSE multi-messenger astronomy γ ν p γ rays neutrinos Fermi Amanda UHE

More information

Physique des Particules Avancées 2

Physique des Particules Avancées 2 Physique des Particules Avancées Interactions Fortes et Interactions Faibles Leçon 6 Les collisions p p (http://dpnc.unige.ch/~bravar/ppa/l6) enseignant Alessandro Bravar Alessandro.Bravar@unige.ch tél.:

More information

Probing Leptoquarks at IceCube. Haim Goldberg

Probing Leptoquarks at IceCube. Haim Goldberg 1 Leptoquarks in theory Experimental limits: HERA and Tevatron Phenomenology: cross sections and inelasticity Sensitivity reach at IceCube Work done with L. Anchordoqui, C. A. Garcia Canal, D. G. Dumm,

More information

INCLUSIVE D- AND B-MESON PRODUCTION

INCLUSIVE D- AND B-MESON PRODUCTION INCLUSIVE D- AND B-MESON PRODUCTION AT THE LHC Seminar Universitaet Muenster, May 7, 22 G. Kramer based on work in collaboration with B. Kniehl, I. Schienbein, H. Spiesberger G. Kramer (Universitaet Hamburg)

More information

Diffractive Dijets and Gap Survival Probability at HERA

Diffractive Dijets and Gap Survival Probability at HERA Diffractive Dijets and Gap Survival Probability at HERA Sebastian Schätzel (CERN) CERN EP Seminar 21 April 2008 HERA Electron-Proton Collider May 1992-June 2007, DESY Hamburg 27.5 GeV electrons on 820

More information

Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India

Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India . p.1/26 Sivers Asymmetry in e + p e + J/ψ + X Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India Single spin asymmetry Model for J/ψ production Formalism for calculating the asymmetry

More information

Electron-positron pairs can be produced from a photon of energy > twice the rest energy of the electron.

Electron-positron pairs can be produced from a photon of energy > twice the rest energy of the electron. Particle Physics Positron - discovered in 1932, same mass as electron, same charge but opposite sign, same spin but magnetic moment is parallel to angular momentum. Electron-positron pairs can be produced

More information

Models of the Nucleon & Parton Distribution Functions

Models of the Nucleon & Parton Distribution Functions 11th CTEQ Summer School on QCD Analysis and Phenomenology Madison, Wisconsin, June 22-30, 2004 Models of the Nucleon & Parton Distribution Functions Wally Melnitchouk Jefferson Lab Outline Introduction

More information

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April Quarkonia physics in Heavy Ion Collisions Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April 5 2013 1 2 Contents Introduction (QGP, Heavy Ion Collisions, Quarkonia) Quarkonia at the SPS

More information

Recent Heavy Flavors results from Tevatron. Aleksei Popov (Institute for High Energy Physics, Protvino) on behalf of the CDF and DØ Collaborations

Recent Heavy Flavors results from Tevatron. Aleksei Popov (Institute for High Energy Physics, Protvino) on behalf of the CDF and DØ Collaborations Recent Heavy Flavors results from Tevatron Aleksei Popov (Institute for High Energy Physics, Protvino) on behalf of the CDF and DØ Collaborations March 27, 2017 Outline Tevatron, CDF and DØ Confirmation

More information

Elementary particles, forces and Feynman diagrams

Elementary particles, forces and Feynman diagrams Elementary particles, forces and Feynman diagrams Particles & Forces quarks Charged leptons (e,µ,τ) Neutral leptons (ν) Strong Y N N Electro Magnetic Y Y N Weak Y Y Y Quarks carry strong, weak & EM charge!!!!!

More information

Measurement of High Energy Neutrino Nucleon Cross Section and Astrophysical Neutrino Flux Anisotropy Study of Cascade Channel with IceCube

Measurement of High Energy Neutrino Nucleon Cross Section and Astrophysical Neutrino Flux Anisotropy Study of Cascade Channel with IceCube Measurement of High Energy Neutrino Nucleon Cross Section and Astrophysical Neutrino Flux Anisotropy Study of Cascade Channel with IceCube The IceCube Collaboration http://icecube.wisc.edu/collaboration/authors/icrc17_icecube

More information

Hadronization with JLab 6/12 GeV

Hadronization with JLab 6/12 GeV Hadronization with JLab 6/12 GeV Next generation nuclear physics with JLab12 and EIC Florida International University February 10-13th, 2016 Lamiaa El Fassi (On behalf of EG2 and CLAS Collaborations) Outline

More information

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland CMS CR /8 he Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH- GENEVA 3, Switzerland 3/7/ Nuclear modification factors from the CMS experiment arxiv:7.3v [hep-ex] 3 Jul

More information

Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC

Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC PHENIX! AGS! RHIC! STAR! Cover 3 decades of energy in center-of-mass s NN = 2.76 TeV 5.5 TeV (2015) CMS LHC! s NN = 5-200 GeV

More information

Atmospheric muons & neutrinos in neutrino telescopes

Atmospheric muons & neutrinos in neutrino telescopes Atmospheric muons & neutrinos in neutrino telescopes Neutrino oscillations Muon & neutrino beams Muons & neutrinos underground Berlin, 1 October 2009 Tom Gaisser 1 Atmospheric neutrinos Produced by cosmic-ray

More information

PHYS 420: Astrophysics & Cosmology

PHYS 420: Astrophysics & Cosmology PHYS 420: Astrophysics & Cosmology Dr Richard H. Cyburt Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu My webpage: www.concord.edu/rcyburt

More information

Discovery of Pions and Kaons in Cosmic Rays in 1947

Discovery of Pions and Kaons in Cosmic Rays in 1947 Discovery of Pions and Kaons in Cosmic Rays in 947 π + µ + e + (cosmic rays) Points to note: de/dx Bragg Peak Low de/dx for fast e + Constant range (~600µm) (i.e. -body decay) small angle scattering Strange

More information

Probing nucleon structure by using a polarized proton beam

Probing nucleon structure by using a polarized proton beam Workshop on Hadron Physics in China and Opportunities with 12 GeV Jlab July 31 August 1, 2009 Physics Department, Lanzhou University, Lanzhou, China Probing nucleon structure by using a polarized proton

More information

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond Lawrence Berkeley National Laboratory Berkeley, US 1 Introduction: Heavy Ion Physics Today t = 5 10 17 sec T=1

More information

arxiv: v4 [hep-ph] 27 Jul 2011

arxiv: v4 [hep-ph] 27 Jul 2011 The Glashow resonance as a discriminator of UHE cosmic neutrinos originating from pγ and pp collisions Zhi-zhong Xing Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

More information

arxiv:hep-ph/ v1 4 Nov 1998

arxiv:hep-ph/ v1 4 Nov 1998 Gluon- vs. Sea quark-shadowing N. Hammon, H. Stöcker, W. Greiner 1 arxiv:hep-ph/9811242v1 4 Nov 1998 Institut Für Theoretische Physik Robert-Mayer Str. 10 Johann Wolfgang Goethe-Universität 60054 Frankfurt

More information

QCD at the Tevatron: The Production of Jets & Photons plus Jets

QCD at the Tevatron: The Production of Jets & Photons plus Jets QCD at the Tevatron: The Production of Jets & Photons plus Jets Mike Strauss The University of Oklahoma The Oklahoma Center for High Energy Physics for the CDF and DØD Collaborations APS 2009 Denver, Colorado

More information

Particles and Deep Inelastic Scattering

Particles and Deep Inelastic Scattering Particles and Deep Inelastic Scattering University HUGS - JLab - June 2010 June 2010 HUGS 1 Sum rules You can integrate the structure functions and recover quantities like the net number of quarks. Momentum

More information

Gamma-ray bursts as the sources of the ultra-high energy cosmic rays?

Gamma-ray bursts as the sources of the ultra-high energy cosmic rays? Gamma-ray bursts as the sources of the ultra-high energy cosmic rays? ACP seminar, IPMU Kashiwa, Japan Oct. 30, 2013 Walter Winter Universität Würzburg Contents Introduction Simulation of sources Multi-messenger

More information

Neutrino induced muons

Neutrino induced muons Neutrino induced muons The straight part of the depth intensity curve at about 10-13 is that of atmospheric neutrino induced muons in vertical and horizontal direction. Types of detected neutrino events:

More information

Opportunities in low x physics at a future Electron-Ion Collider (EIC) facility

Opportunities in low x physics at a future Electron-Ion Collider (EIC) facility 1 Opportunities in low x physics at a future Electron-Ion Collider (EIC) facility Motivation Quantum Chromo Dynamics Proton=uud Visible Universe Galaxies, stars, people, Silent Partners: Protons & Neutrons

More information

High-p T Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC

High-p T Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC High- Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC K. Reygers for the WA98 and the PHENIX collaboration Institut für Kernphysik der Universität Münster Wilhelm-Klemm-Str. 9, D-4849 Münster,

More information

arxiv: v1 [nucl-th] 23 Jan 2019

arxiv: v1 [nucl-th] 23 Jan 2019 arxiv:1901.08157v1 [nucl-th] 23 Jan 2019 Cyclotron Institute and Department of Physics and Astronomy, Texas A&M University, College Station TX 77843, USA E-mail: rjfries@comp.tamu.edu Michael Kordell Cyclotron

More information

Probing QCD approach to thermal equilibrium with ultrahigh energy cosmic rays

Probing QCD approach to thermal equilibrium with ultrahigh energy cosmic rays Probing QCD approach to thermal equilibrium with ultrahigh energy cosmic rays Department of Physics&Astronomy, Lehman College, CUNY, NY 10468, USA Department of Physics, Graduate Center, City University

More information

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s Quark matter probed by dileptons Olena Linnyk July 02, 2010 Information from photons and dileptons 14 12 10 ε/t 4 8 6 4 2 Lattice QCD: µ B =0 µ B =530 MeV 0 0.5 1.0 1.5 2.0 2.5 3.0 T/T c But what are the

More information

Particle Physics (concise summary) QuarkNet summer workshop June 24-28, 2013

Particle Physics (concise summary) QuarkNet summer workshop June 24-28, 2013 Particle Physics (concise summary) QuarkNet summer workshop June 24-28, 2013 1 Matter Particles Quarks: Leptons: Anti-matter Particles Anti-quarks: Anti-leptons: Hadrons Stable bound states of quarks Baryons:

More information

PHY-105: Introduction to Particle and Nuclear Physics

PHY-105: Introduction to Particle and Nuclear Physics M. Kruse, Spring 2011, Phy-105 PHY-105: Introduction to Particle and Nuclear Physics Up to 1900 indivisable atoms Early 20th century electrons, protons, neutrons Around 1945, other particles discovered.

More information

Gluons at high x in Nuclei at EIC

Gluons at high x in Nuclei at EIC Gluons at high x in Nuclei at EIC in collaboration with: E. Chudakov, D. Higinbotham, C. Hyde, C. Weiss Jefferson Lab DNP 2015 Fall meeting, Santa Fe, NM Outline Motivation HERA and ZEUS experience EIC

More information

Visit for more fantastic resources. AQA. A Level. A Level Physics. Particles (Answers) Name: Total Marks: /30

Visit   for more fantastic resources. AQA. A Level. A Level Physics. Particles (Answers) Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. AQA A Level A Level Physics Particles (Answers) Name: Total Marks: /30 Maths Made Easy Complete Tuition Ltd 2017 1. This question explores

More information

Contributions to our Understanding of TMDs from Polarized Proton Collisions at STAR

Contributions to our Understanding of TMDs from Polarized Proton Collisions at STAR Contributions to our Understanding of TMDs from Polarized Proton Collisions at STAR Stephen Trentalange University of California at Los Angeles, for the STAR Collaboration QCD-N16 Bilbao, Spain July 15,

More information

1 The pion bump in the gamma reay flux

1 The pion bump in the gamma reay flux 1 The pion bump in the gamma reay flux Calculation of the gamma ray spectrum generated by an hadronic mechanism (that is by π decay). A pion of energy E π generated a flat spectrum between kinematical

More information

Limits on Intrinsic Charm in the Nucleon

Limits on Intrinsic Charm in the Nucleon Limits on Intrinsic Charm in the Nucleon Intrinsic vs. Extrinsic sea quark distributions Contributions to quark distributions, structure functions emphasis on qualitative features of quark PDFs Models

More information

Hadronic Resonances in a Hadronic Picture. Daisuke Jido (Nuclear physics group)

Hadronic Resonances in a Hadronic Picture. Daisuke Jido (Nuclear physics group) Daisuke Jido (Nuclear physics group) Hadrons (particles interacting with strong interactions) are composite objects of quarks and gluons. It has been recently suggested that the structures of some hadrons

More information

Heavy Ion Physics at ATLAS, CMS and LHCb

Heavy Ion Physics at ATLAS, CMS and LHCb Heavy Ion Physics at ALAS, CMS and Michael Schmelling - MPI for Nuclear Physics on behalf of the collaborations Outline Introduction Quarkonia production Correlation studies Ultra-peripheral collisions

More information

Antiproton production in p-he collisions, and more, at LHCb LHCb on a Space Mission

Antiproton production in p-he collisions, and more, at LHCb LHCb on a Space Mission Antiproton production in p-he collisions, and more, at LHCb LHCb on a Space Mission 6.5 ev proton He at rest antiproton Giacomo Graziani (INFN Firenze) on behalf of the LHCb Collaboration ICRC 7, Busan,

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 Lecture: Standard Model of Particle Physics Heidelberg SS 013 Weak Interactions II 1 Important Experiments Wu-Experiment (1957): radioactive decay of Co60 Goldhaber-Experiment (1958): radioactive decay

More information

Most of Modern Physics today is concerned with the extremes of matter:

Most of Modern Physics today is concerned with the extremes of matter: Most of Modern Physics today is concerned with the extremes of matter: Very low temperatures, very large numbers of particles, complex systems Æ Condensed Matter Physics Very high temperatures, very large

More information

Transport Theoretical Studies of Hadron Attenuation in Nuclear DIS. Model Results Summary & Outlook

Transport Theoretical Studies of Hadron Attenuation in Nuclear DIS. Model Results Summary & Outlook Transport Theoretical Studies of Hadron Attenuation in Nuclear DIS T. Falter, W. Cassing,, K. Gallmeister,, U. Mosel Contents: Motivation Model Results Summary & Outlook Motivation elementary en reaction

More information

Introduction to Relativistic Heavy Ion Physics

Introduction to Relativistic Heavy Ion Physics 1 Introduction to Relativistic Heavy Ion Physics Lecture 2: Experimental Discoveries Columbia University Reminder- From Lecture 1 2 General arguments suggest that for temperatures T ~ 200 MeV, nuclear

More information

Most of Modern Physics today is concerned with the extremes of matter:

Most of Modern Physics today is concerned with the extremes of matter: Most of Modern Physics today is concerned with the extremes of matter: Very low temperatures, very large numbers of particles, complex systems Æ Condensed Matter Physics Very high temperatures, very large

More information

GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS. Jongkuk Kim (SKKU) Based on Physics Letters B.

GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS. Jongkuk Kim (SKKU) Based on Physics Letters B. GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS Jongkuk Kim (SKKU) Based on Physics Letters B. 752 (2016) 59-65 In collaboration with Jong Chul Park, Seong Chan Park The

More information

Physics at HERA. Summer Student Lectures August Katja Krüger Kirchhoff Institut für Physik H1 Collaboration

Physics at HERA. Summer Student Lectures August Katja Krüger Kirchhoff Institut für Physik H1 Collaboration Physics at HERA Summer Student Lectures 18 + 19 August 28 Kirchhoff Institut für Physik H1 Collaboration email: katja.krueger@desy.de Overview Part 2 Exotics Jet Physics Cross Sections Strong Coupling

More information

Proton longitudinal spin structure- RHIC and COMPASS results

Proton longitudinal spin structure- RHIC and COMPASS results Proton longitudinal spin structure- RHIC and COMPASS results Fabienne KUNNE CEA /IRFU Saclay, France Gluon helicity PHENIX & STAR: pp jets, pp p 0 COMPASS g 1 QCD fit + DG direct measurements Quark helicity

More information

The Physics of Particles and Forces David Wilson

The Physics of Particles and Forces David Wilson The Physics of Particles and Forces David Wilson Particle Physics Masterclass 21st March 2018 Overview David Wilson (TCD) Particles & Forces 2/30 Overview of Hadron Spectrum Collaboration (HadSpec) scattering

More information

Bulk matter formed in Pb Pb collisions at the LHC

Bulk matter formed in Pb Pb collisions at the LHC Bulk matter formed in Pb Pb collisions at the LHC Introductory remarks is quark matter at LHC in equilibrium? Energy dependence of hadron production and the quark hadron phase boundary The fireball expands

More information

arxiv: v1 [nucl-ex] 7 Nov 2009

arxiv: v1 [nucl-ex] 7 Nov 2009 Low-x QCD at the LHC with the ALICE detector Magdalena Malek for the ALICE Collaboration arxiv:0911.1458v1 [nucl-ex] 7 Nov 2009 Institut de Physique Nucléaire d Orsay (IPNO) - France CNRS: UMR8608 - IN2P3

More information

PoS(NEUTEL2017)079. Blazar origin of some IceCube events

PoS(NEUTEL2017)079. Blazar origin of some IceCube events Blazar origin of some IceCube events Sarira Sahu Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, C.U., A. Postal 70-543, 04510 México DF, México. Astrophysical

More information

arxiv: v1 [hep-ph] 5 Nov 2014

arxiv: v1 [hep-ph] 5 Nov 2014 Hard probes and the event generator EPOS arxiv:1411.1336v1 [hep-ph] 5 Nov 2014 B Guiot and K Werner SUBATECH, University of Nantes-IN2P3/CNRS-EMN, Nantes, France E-mail: guiot@subatech.in2p3.fr Abstract.

More information

Intrinsic charm of the proton

Intrinsic charm of the proton Intrinsic charm of the proton T. Hobbs, Indiana Univ....with J.T. Londergan & W. Melnitchouk POETIC Workshop August 20 22, 2012; Bloomington charm production and scaling properties of extrinsic evolution

More information

Solar-Atmospheric Neutrinos and the Sensitivity Floor for Solar Dark Matter Annihilation Searches

Solar-Atmospheric Neutrinos and the Sensitivity Floor for Solar Dark Matter Annihilation Searches Solar-Atmospheric Neutrinos and the Sensitivity Floor for Solar Dark Matter Annihilation Searches Carlos Argüelles in collaboration with Gwen de Wasseige, Anatoli Fedynitch, and Ben Jones Based on JCAP07

More information

Jet Energy Loss at RHIC

Jet Energy Loss at RHIC QCD Session Jet Energy Loss at RHIC Nathan Grau Columbia University for the PHENIX Collaboration Fundamental Question in QED An early study in QED: charged particles losing energy in matter Bethe Formula

More information

Intrinsic Heavy Quarks

Intrinsic Heavy Quarks Intrinsic Heavy Quarks Ingo Schienbein UGA/LPSC Laboratoire de Physique Subatomique et de Cosmologie Many thanks to my long term collaborators on heavy quark related topics: Fred Olness, Aleksander Kusina,

More information

Baryon Number Fluctuations in Energy Scan Program at RHIC

Baryon Number Fluctuations in Energy Scan Program at RHIC Baryon Number Fluctuations in Energy Scan Program at RHIC Masakiyo Kitazawa (Osaka U.) MK, Asakawa, arxiv:1107.2755 (to appear in PRC) HIRSCHEGG2012, 18, Jan, 2012, Hirschegg Energy Scan Program @ RHIC

More information

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE rhtjhtyhy EINN 2017 NOVEMBER 1, 2017 PAPHOS, CYPRUS THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE KAWTAR HAFIDI Argonne National Laboratory is a U.S. Department of Energy laboratory

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 Q1. (a) The K meson has strangeness 1. State the quark composition of a meson... State the baryon number of the K meson... (iii) What is the quark composition of the K meson?.... The figure below shows

More information

arxiv: v1 [hep-ph] 28 Jan 2019

arxiv: v1 [hep-ph] 28 Jan 2019 Charmonium excitation functions in pa collisions arxiv:1901.09910v1 [hep-ph] 28 Jan 2019 Gy. Wolf, G. Balassa, P. Kovács, M. Zétényi, Wigner RCP, Budapest, 1525 POB 49, Hungary Su Houng Lee Department

More information

PHENIX measurements of bottom and charm quark production

PHENIX measurements of bottom and charm quark production Journal of Physics: Conference Series PAPER OPEN ACCESS PHENIX measurements of bottom and charm quark production To cite this article: Timothy Rinn and PHENIX Collaboration 2018 J. Phys.: Conf. Ser. 1070

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Neutrino Physics with the IceCube Detector Permalink https://escholarship.org/uc/item/6rq7897p Authors Kiryluk, Joanna

More information

High Energy Particle Production by Space Plasmas

High Energy Particle Production by Space Plasmas Plasmas in Astrophysics and in Laboratory, 20 21 June, 2011 High Energy Particle Production by Space Plasmas A.A.Petrukhin National Research Nuclear University MEPhI C o n t e n t s 1. Introduction 2.

More information

Lecture 2: The First Second origin of neutrons and protons

Lecture 2: The First Second origin of neutrons and protons Lecture 2: The First Second origin of neutrons and protons Hot Big Bang Expanding and cooling Soup of free particles + anti-particles Symmetry breaking Soup of free quarks Quarks confined into neutrons

More information

using photons in p A and A A collisions

using photons in p A and A A collisions Probing parton densities and energy loss processes using photons in p A and A A collisions François Arleo LAPTH, Annecy High p Probes of High Density QCD May 2011 Francois Arleo (LAPTH) Prompt γ in p A

More information

Contents. Preface to the First Edition Preface to the Second Edition

Contents. Preface to the First Edition Preface to the Second Edition Contents Preface to the First Edition Preface to the Second Edition Notes xiii xv xvii 1 Basic Concepts 1 1.1 History 1 1.1.1 The Origins of Nuclear Physics 1 1.1.2 The Emergence of Particle Physics: the

More information