Feed-forward Networks Network Training Error Backpropagation Applications. Neural Networks. Oliver Schulte - CMPT 726. Bishop PRML Ch.

Size: px
Start display at page:

Download "Feed-forward Networks Network Training Error Backpropagation Applications. Neural Networks. Oliver Schulte - CMPT 726. Bishop PRML Ch."

Transcription

1 Neural Networks Oliver Schulte - CMPT 726 Bishop PRML Ch. 5

2 Neural Networks Neural networks arise from attempts to model human/animal brains Many models, many claims of biological plausibility We will focus on multi-layer perceptrons Mathematical properties rather than plausibility Prof. Hadley CMPT418

3 Uses of Neural Networks Pros Good for continuous input variables. General continuous function approximators. Highly non-linear. Learn feature functions. Good to use in continuous domains with little knowledge: When you don t know good features. You don t know the form of a good functional model. Cons Not interpretable, black box. Learning is slow. Good generalization can require many datapoints.

4 Applications There are many, many applications. World-Champion Backgammon Player. No Hands Across America Tour. Digit Recognition with 99.26% accuracy....

5 Outline Feed-forward Networks Network Training Error Backpropagation Applications

6 Outline Feed-forward Networks Network Training Error Backpropagation Applications

7 Feed-forward Networks We have looked at generalized linear models of the form: M y(x, w) = f w j φ j (x) for fixed non-linear basis functions φ( ) We now extend this model by allowing adaptive basis functions, and learning their parameters In feed-forward networks (a.k.a. multi-layer perceptrons) we let each basis function be another non-linear function of linear combination of the inputs: M φ j (x) = f... j=1 j=1

8 Feed-forward Networks We have looked at generalized linear models of the form: M y(x, w) = f w j φ j (x) for fixed non-linear basis functions φ( ) We now extend this model by allowing adaptive basis functions, and learning their parameters In feed-forward networks (a.k.a. multi-layer perceptrons) we let each basis function be another non-linear function of linear combination of the inputs: M φ j (x) = f... j=1 j=1

9 Feed-forward Networks Starting with input x = (x 1,..., x D ), construct linear combinations: D a j = w (1) ji x i + w (1) j0 i=1 These a j are known as activations Pass through an activation function h( ) to get output z j = h(a j ) Model of an individual neuron from Russell and Norvig, AIMA2e

10 Feed-forward Networks Starting with input x = (x 1,..., x D ), construct linear combinations: D a j = w (1) ji x i + w (1) j0 i=1 These a j are known as activations Pass through an activation function h( ) to get output z j = h(a j ) Model of an individual neuron from Russell and Norvig, AIMA2e

11 Feed-forward Networks Starting with input x = (x 1,..., x D ), construct linear combinations: D a j = w (1) ji x i + w (1) j0 i=1 These a j are known as activations Pass through an activation function h( ) to get output z j = h(a j ) Model of an individual neuron from Russell and Norvig, AIMA2e

12 Activation Functions Can use a variety of activation functions Sigmoidal (S-shaped) Logistic sigmoid 1/(1 + exp( a)) (useful for binary classification) Hyperbolic tangent tanh Radial basis function z j = i (x i w ji ) 2 Softmax Useful for multi-class classification Identity Useful for regression Threshold... Needs to be differentiable for gradient-based learning (later) Can use different activation functions in each unit

13 Feed-forward Networks x D hidden units z M w (1) MD w (2) KM y K inputs outputs y 1 x 1 x 0 z 1 w (2) 10 z 0 Connect together a number of these units into a feed-forward network (DAG) Above shows a network with one layer of hidden units Implements function: ) M y k (x, w) = h j=1 w (2) kj h ( D i=1 w (1) ji x i + w (1) j0 + w (2) k0

14 Hidden Units Compute Basis Functions red dots = network function dashed line = hidden unit activation function. blue dots = data points

15 Outline Feed-forward Networks Network Training Error Backpropagation Applications

16 Network Training Given a specified network structure, how do we set its parameters (weights)? As usual, we define a criterion to measure how well our network performs, optimize against it For regression, training data are (x n, t), t n R Squared error naturally arises: E(w) = N {y(x n, w) t n } 2 For binary classification, this is another discriminative model, ML: p(t w) = N n=1 E(w) = n=1 y tn n {1 y n } 1 tn N {t n ln y n + (1 t n ) ln(1 y n )} n=1

17 Network Training Given a specified network structure, how do we set its parameters (weights)? As usual, we define a criterion to measure how well our network performs, optimize against it For regression, training data are (x n, t), t n R Squared error naturally arises: E(w) = N {y(x n, w) t n } 2 For binary classification, this is another discriminative model, ML: p(t w) = N n=1 E(w) = n=1 y tn n {1 y n } 1 tn N {t n ln y n + (1 t n ) ln(1 y n )} n=1

18 Network Training Given a specified network structure, how do we set its parameters (weights)? As usual, we define a criterion to measure how well our network performs, optimize against it For regression, training data are (x n, t), t n R Squared error naturally arises: E(w) = N {y(x n, w) t n } 2 For binary classification, this is another discriminative model, ML: p(t w) = N n=1 E(w) = n=1 y tn n {1 y n } 1 tn N {t n ln y n + (1 t n ) ln(1 y n )} n=1

19 Parameter Optimization E(w) w A w B wc w 1 w 2 E For either of these problems, the error function E(w) is nasty Nasty = non-convex Non-convex = has local minima

20 Descent Methods The typical strategy for optimization problems of this sort is a descent method: w (τ+1) = w (τ) + w (τ) These come in many flavours Gradient descent E(w (τ) ) Stochastic gradient descent E n (w (τ) ) Newton-Raphson (second order) 2 All of these can be used here, stochastic gradient descent is particularly effective Redundancy in training data, escaping local minima

21 Descent Methods The typical strategy for optimization problems of this sort is a descent method: w (τ+1) = w (τ) + w (τ) These come in many flavours Gradient descent E(w (τ) ) Stochastic gradient descent E n (w (τ) ) Newton-Raphson (second order) 2 All of these can be used here, stochastic gradient descent is particularly effective Redundancy in training data, escaping local minima

22 Descent Methods The typical strategy for optimization problems of this sort is a descent method: w (τ+1) = w (τ) + w (τ) These come in many flavours Gradient descent E(w (τ) ) Stochastic gradient descent E n (w (τ) ) Newton-Raphson (second order) 2 All of these can be used here, stochastic gradient descent is particularly effective Redundancy in training data, escaping local minima

23 Computing Gradients The function y(x n, w) implemented by a network is complicated It isn t obvious how to compute error function derivatives with respect to weights Numerical method for calculating error derivatives, use finite differences: E n E n(w ji + ɛ) E n (w ji ɛ) 2ɛ How much computation would this take with W weights in the network? O(W) per derivative, O(W 2 ) total per gradient descent step

24 Computing Gradients The function y(x n, w) implemented by a network is complicated It isn t obvious how to compute error function derivatives with respect to weights Numerical method for calculating error derivatives, use finite differences: E n E n(w ji + ɛ) E n (w ji ɛ) 2ɛ How much computation would this take with W weights in the network? O(W) per derivative, O(W 2 ) total per gradient descent step

25 Computing Gradients The function y(x n, w) implemented by a network is complicated It isn t obvious how to compute error function derivatives with respect to weights Numerical method for calculating error derivatives, use finite differences: E n E n(w ji + ɛ) E n (w ji ɛ) 2ɛ How much computation would this take with W weights in the network? O(W) per derivative, O(W 2 ) total per gradient descent step

26 Computing Gradients The function y(x n, w) implemented by a network is complicated It isn t obvious how to compute error function derivatives with respect to weights Numerical method for calculating error derivatives, use finite differences: E n E n(w ji + ɛ) E n (w ji ɛ) 2ɛ How much computation would this take with W weights in the network? O(W) per derivative, O(W 2 ) total per gradient descent step

27 Outline Feed-forward Networks Network Training Error Backpropagation Applications

28 Error Backpropagation Backprop is an efficient method for computing error derivatives En O(W) to compute derivatives wrt all weights First, feed training example x n forward through the network, storing all activations a j Calculating derivatives for weights connected to output nodes is easy e.g. For linear output nodes y k = i w kiz i : E n = 1 w ki w ki 2 (y n t n ) 2 = (y n t n )x ni For hidden layers, propagate error backwards from the output nodes

29 Error Backpropagation Backprop is an efficient method for computing error derivatives En O(W) to compute derivatives wrt all weights First, feed training example x n forward through the network, storing all activations a j Calculating derivatives for weights connected to output nodes is easy e.g. For linear output nodes y k = i w kiz i : E n = 1 w ki w ki 2 (y n t n ) 2 = (y n t n )x ni For hidden layers, propagate error backwards from the output nodes

30 Error Backpropagation Backprop is an efficient method for computing error derivatives En O(W) to compute derivatives wrt all weights First, feed training example x n forward through the network, storing all activations a j Calculating derivatives for weights connected to output nodes is easy e.g. For linear output nodes y k = i w kiz i : E n = 1 w ki w ki 2 (y n t n ) 2 = (y n t n )x ni For hidden layers, propagate error backwards from the output nodes

31 Chain Rule for Partial Derivatives A reminder For f (x, y), with f differentiable wrt x and y, and x and y differentiable wrt u and v: f u = and f x x u + f y y u f v = f x x v + f y y v

32 We can write Error Backpropagation E n = E n (a j1, a j2,..., a jm ) where {j i } are the indices of the nodes in the same layer as node j Using the chain rule: E n = E n a j a j + k E n a k a k where k runs over all other nodes k in the same layer as node j. Since a k does not depend on w ji, all terms in the summation go to 0 E n = E n a j a j

33 We can write Error Backpropagation E n = E n (a j1, a j2,..., a jm ) where {j i } are the indices of the nodes in the same layer as node j Using the chain rule: E n = E n a j a j + k E n a k a k where k runs over all other nodes k in the same layer as node j. Since a k does not depend on w ji, all terms in the summation go to 0 E n = E n a j a j

34 We can write Error Backpropagation E n = E n (a j1, a j2,..., a jm ) where {j i } are the indices of the nodes in the same layer as node j Using the chain rule: E n = E n a j a j + k E n a k a k where k runs over all other nodes k in the same layer as node j. Since a k does not depend on w ji, all terms in the summation go to 0 E n = E n a j a j

35 Error Backpropagation cont. Introduce error δ j En a j E n = δ j a j Other factor is: a j = w jk z k = z i k

36 Error Backpropagation cont. Error δ j can also be computed using chain rule: δ j E n a j = k E n a k a }{{} k a j δ k where k runs over all nodes k in the layer after node j. Eventually: δ j = h (a j ) w kj δ k k A weighted sum of the later error caused by this weight

37 Error Backpropagation cont. Error δ j can also be computed using chain rule: δ j E n a j = k E n a k a }{{} k a j δ k where k runs over all nodes k in the layer after node j. Eventually: δ j = h (a j ) w kj δ k k A weighted sum of the later error caused by this weight

38 Outline Feed-forward Networks Network Training Error Backpropagation Applications

39 Applications of Neural Networks Many success stories for neural networks Credit card fraud detection Hand-written digit recognition Face detection Autonomous driving (CMU ALVINN)

40 Hand-written Digit Recognition MNIST - standard dataset for hand-written digit recognition training, test images

41 LeNet-5 INPUT 32x32 C1: feature maps C3: f. maps S4: f. maps S2: f. maps C5: layer 120 F6: layer 84 OUTPUT 10 Convolutions Subsampling Convolutions Full connection Gaussian connections Subsampling Full connection LeNet developed by Yann LeCun et al. Convolutional neural network Local receptive fields (5x5 connectivity) Subsampling (2x2) Shared weights (reuse same 5x5 filter ) Breaking symmetry See

42 4!>6 3!>5 8!>2 2!>1 5!>3 4!>8 2!>8 3!>5 6!>5 7!>3 9!>4 8!>0 7!>8 5!>3 8!>7 0!>6 3!>7 2!>7 8!>3 9!>4 8!>2 5!>3 4!>8 3!>9 6!>0 9!>8 4!>9 6!>1 9!>4 9!>1 9!>4 2!>0 6!>1 3!>5 3!>2 9!>5 6!>0 6!>0 6!>0 6!>8 4!>6 7!>3 9!>4 4!>6 2!>7 9!>7 4!>3 9!>4 9!>4 9!>4 8!>7 4!>2 8!>4 3!>5 8!>4 6!>5 8!>5 3!>8 3!>8 9!>8 1!>5 9!>8 6!>3 0!>2 6!>5 9!>5 0!>7 1!>6 4!>9 2!>1 2!>8 8!>5 4!>9 7!>2 7!>2 6!>5 9!>7 6!>1 5!>6 5!>0 4!>9 2!>8 The 82 errors made by LeNet5 (0.82% test error rate)

43 Conclusion Readings: Ch. 5.1, 5.2, 5.3 Feed-forward networks can be used for regression or classification Similar to linear models, except with adaptive non-linear basis functions These allow us to do more than e.g. linear decision boundaries Different error functions Learning is more difficult, error function not convex Use stochastic gradient descent, obtain (good?) local minimum Backpropagation for efficient gradient computation

Neural Networks. Bishop PRML Ch. 5. Alireza Ghane. Feed-forward Networks Network Training Error Backpropagation Applications

Neural Networks. Bishop PRML Ch. 5. Alireza Ghane. Feed-forward Networks Network Training Error Backpropagation Applications Neural Networks Bishop PRML Ch. 5 Alireza Ghane Neural Networks Alireza Ghane / Greg Mori 1 Neural Networks Neural networks arise from attempts to model human/animal brains Many models, many claims of

More information

Artificial Neural Networks

Artificial Neural Networks Artificial Neural Networks Oliver Schulte - CMPT 310 Neural Networks Neural networks arise from attempts to model human/animal brains Many models, many claims of biological plausibility We will focus on

More information

Reading Group on Deep Learning Session 1

Reading Group on Deep Learning Session 1 Reading Group on Deep Learning Session 1 Stephane Lathuiliere & Pablo Mesejo 2 June 2016 1/31 Contents Introduction to Artificial Neural Networks to understand, and to be able to efficiently use, the popular

More information

Neural networks. Chapter 20. Chapter 20 1

Neural networks. Chapter 20. Chapter 20 1 Neural networks Chapter 20 Chapter 20 1 Outline Brains Neural networks Perceptrons Multilayer networks Applications of neural networks Chapter 20 2 Brains 10 11 neurons of > 20 types, 10 14 synapses, 1ms

More information

Vasil Khalidov & Miles Hansard. C.M. Bishop s PRML: Chapter 5; Neural Networks

Vasil Khalidov & Miles Hansard. C.M. Bishop s PRML: Chapter 5; Neural Networks C.M. Bishop s PRML: Chapter 5; Neural Networks Introduction The aim is, as before, to find useful decompositions of the target variable; t(x) = y(x, w) + ɛ(x) (3.7) t(x n ) and x n are the observations,

More information

Introduction Neural Networks - Architecture Network Training Small Example - ZIP Codes Summary. Neural Networks - I. Henrik I Christensen

Introduction Neural Networks - Architecture Network Training Small Example - ZIP Codes Summary. Neural Networks - I. Henrik I Christensen Neural Networks - I Henrik I Christensen Robotics & Intelligent Machines @ GT Georgia Institute of Technology, Atlanta, GA 30332-0280 hic@cc.gatech.edu Henrik I Christensen (RIM@GT) Neural Networks 1 /

More information

Linear Models for Classification

Linear Models for Classification Linear Models for Classification Oliver Schulte - CMPT 726 Bishop PRML Ch. 4 Classification: Hand-written Digit Recognition CHINE INTELLIGENCE, VOL. 24, NO. 24, APRIL 2002 x i = t i = (0, 0, 0, 1, 0, 0,

More information

AN INTRODUCTION TO NEURAL NETWORKS. Scott Kuindersma November 12, 2009

AN INTRODUCTION TO NEURAL NETWORKS. Scott Kuindersma November 12, 2009 AN INTRODUCTION TO NEURAL NETWORKS Scott Kuindersma November 12, 2009 SUPERVISED LEARNING We are given some training data: We must learn a function If y is discrete, we call it classification If it is

More information

Artificial Neural Networks. MGS Lecture 2

Artificial Neural Networks. MGS Lecture 2 Artificial Neural Networks MGS 2018 - Lecture 2 OVERVIEW Biological Neural Networks Cell Topology: Input, Output, and Hidden Layers Functional description Cost functions Training ANNs Back-Propagation

More information

Feed-forward Network Functions

Feed-forward Network Functions Feed-forward Network Functions Sargur Srihari Topics 1. Extension of linear models 2. Feed-forward Network Functions 3. Weight-space symmetries 2 Recap of Linear Models Linear Models for Regression, Classification

More information

y(x n, w) t n 2. (1)

y(x n, w) t n 2. (1) Network training: Training a neural network involves determining the weight parameter vector w that minimizes a cost function. Given a training set comprising a set of input vector {x n }, n = 1,...N,

More information

Neural Networks, Computation Graphs. CMSC 470 Marine Carpuat

Neural Networks, Computation Graphs. CMSC 470 Marine Carpuat Neural Networks, Computation Graphs CMSC 470 Marine Carpuat Binary Classification with a Multi-layer Perceptron φ A = 1 φ site = 1 φ located = 1 φ Maizuru = 1 φ, = 2 φ in = 1 φ Kyoto = 1 φ priest = 0 φ

More information

Neural Networks (and Gradient Ascent Again)

Neural Networks (and Gradient Ascent Again) Neural Networks (and Gradient Ascent Again) Frank Wood April 27, 2010 Generalized Regression Until now we have focused on linear regression techniques. We generalized linear regression to include nonlinear

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

Multilayer Perceptrons (MLPs)

Multilayer Perceptrons (MLPs) CSE 5526: Introduction to Neural Networks Multilayer Perceptrons (MLPs) 1 Motivation Multilayer networks are more powerful than singlelayer nets Example: XOR problem x 2 1 AND x o x 1 x 2 +1-1 o x x 1-1

More information

What Do Neural Networks Do? MLP Lecture 3 Multi-layer networks 1

What Do Neural Networks Do? MLP Lecture 3 Multi-layer networks 1 What Do Neural Networks Do? MLP Lecture 3 Multi-layer networks 1 Multi-layer networks Steve Renals Machine Learning Practical MLP Lecture 3 7 October 2015 MLP Lecture 3 Multi-layer networks 2 What Do Single

More information

Neural networks. Chapter 19, Sections 1 5 1

Neural networks. Chapter 19, Sections 1 5 1 Neural networks Chapter 19, Sections 1 5 Chapter 19, Sections 1 5 1 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 19, Sections 1 5 2 Brains 10

More information

ECE521 Lectures 9 Fully Connected Neural Networks

ECE521 Lectures 9 Fully Connected Neural Networks ECE521 Lectures 9 Fully Connected Neural Networks Outline Multi-class classification Learning multi-layer neural networks 2 Measuring distance in probability space We learnt that the squared L2 distance

More information

Deep Neural Networks (1) Hidden layers; Back-propagation

Deep Neural Networks (1) Hidden layers; Back-propagation Deep Neural Networs (1) Hidden layers; Bac-propagation Steve Renals Machine Learning Practical MLP Lecture 3 2 October 2018 http://www.inf.ed.ac.u/teaching/courses/mlp/ MLP Lecture 3 / 2 October 2018 Deep

More information

Neural Networks and Deep Learning

Neural Networks and Deep Learning Neural Networks and Deep Learning Professor Ameet Talwalkar November 12, 2015 Professor Ameet Talwalkar Neural Networks and Deep Learning November 12, 2015 1 / 16 Outline 1 Review of last lecture AdaBoost

More information

Multi-layer Neural Networks

Multi-layer Neural Networks Multi-layer Neural Networks Steve Renals Informatics 2B Learning and Data Lecture 13 8 March 2011 Informatics 2B: Learning and Data Lecture 13 Multi-layer Neural Networks 1 Overview Multi-layer neural

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Neural Networks Varun Chandola x x 5 Input Outline Contents February 2, 207 Extending Perceptrons 2 Multi Layered Perceptrons 2 2. Generalizing to Multiple Labels.................

More information

Neural Network Training

Neural Network Training Neural Network Training Sargur Srihari Topics in Network Training 0. Neural network parameters Probabilistic problem formulation Specifying the activation and error functions for Regression Binary classification

More information

Lecture 5: Logistic Regression. Neural Networks

Lecture 5: Logistic Regression. Neural Networks Lecture 5: Logistic Regression. Neural Networks Logistic regression Comparison with generative models Feed-forward neural networks Backpropagation Tricks for training neural networks COMP-652, Lecture

More information

Artificial Neural Networks

Artificial Neural Networks Introduction ANN in Action Final Observations Application: Poverty Detection Artificial Neural Networks Alvaro J. Riascos Villegas University of los Andes and Quantil July 6 2018 Artificial Neural Networks

More information

Neural Networks and the Back-propagation Algorithm

Neural Networks and the Back-propagation Algorithm Neural Networks and the Back-propagation Algorithm Francisco S. Melo In these notes, we provide a brief overview of the main concepts concerning neural networks and the back-propagation algorithm. We closely

More information

Neural Networks. Henrik I. Christensen. Computer Science and Engineering University of California, San Diego

Neural Networks. Henrik I. Christensen. Computer Science and Engineering University of California, San Diego Neural Networks Henrik I. Christensen Computer Science and Engineering University of California, San Diego http://www.hichristensen.net Henrik I. Christensen (UCSD) Neural Networks 1 / 39 Introduction

More information

Deep Neural Networks (1) Hidden layers; Back-propagation

Deep Neural Networks (1) Hidden layers; Back-propagation Deep Neural Networs (1) Hidden layers; Bac-propagation Steve Renals Machine Learning Practical MLP Lecture 3 4 October 2017 / 9 October 2017 MLP Lecture 3 Deep Neural Networs (1) 1 Recap: Softmax single

More information

4. Multilayer Perceptrons

4. Multilayer Perceptrons 4. Multilayer Perceptrons This is a supervised error-correction learning algorithm. 1 4.1 Introduction A multilayer feedforward network consists of an input layer, one or more hidden layers, and an output

More information

Logistic Regression & Neural Networks

Logistic Regression & Neural Networks Logistic Regression & Neural Networks CMSC 723 / LING 723 / INST 725 Marine Carpuat Slides credit: Graham Neubig, Jacob Eisenstein Logistic Regression Perceptron & Probabilities What if we want a probability

More information

The XOR problem. Machine learning for vision. The XOR problem. The XOR problem. x 1 x 2. x 2. x 1. Fall Roland Memisevic

The XOR problem. Machine learning for vision. The XOR problem. The XOR problem. x 1 x 2. x 2. x 1. Fall Roland Memisevic The XOR problem Fall 2013 x 2 Lecture 9, February 25, 2015 x 1 The XOR problem The XOR problem x 1 x 2 x 2 x 1 (picture adapted from Bishop 2006) It s the features, stupid It s the features, stupid The

More information

Machine Learning. 7. Logistic and Linear Regression

Machine Learning. 7. Logistic and Linear Regression Sapienza University of Rome, Italy - Machine Learning (27/28) University of Rome La Sapienza Master in Artificial Intelligence and Robotics Machine Learning 7. Logistic and Linear Regression Luca Iocchi,

More information

Machine Learning Lecture 5

Machine Learning Lecture 5 Machine Learning Lecture 5 Linear Discriminant Functions 26.10.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course Outline Fundamentals Bayes Decision Theory

More information

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA 1/ 21

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA   1/ 21 Neural Networks Chapter 8, Section 7 TB Artificial Intelligence Slides from AIMA http://aima.cs.berkeley.edu / 2 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural

More information

NEURAL NETWORKS

NEURAL NETWORKS 5 Neural Networks In Chapters 3 and 4 we considered models for regression and classification that comprised linear combinations of fixed basis functions. We saw that such models have useful analytical

More information

Multilayer Perceptron

Multilayer Perceptron Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Single Perceptron 3 Boolean Function Learning 4

More information

Artificial Neural Networks" and Nonparametric Methods" CMPSCI 383 Nov 17, 2011!

Artificial Neural Networks and Nonparametric Methods CMPSCI 383 Nov 17, 2011! Artificial Neural Networks" and Nonparametric Methods" CMPSCI 383 Nov 17, 2011! 1 Todayʼs lecture" How the brain works (!)! Artificial neural networks! Perceptrons! Multilayer feed-forward networks! Error

More information

CSC 411 Lecture 10: Neural Networks

CSC 411 Lecture 10: Neural Networks CSC 411 Lecture 10: Neural Networks Roger Grosse, Amir-massoud Farahmand, and Juan Carrasquilla University of Toronto UofT CSC 411: 10-Neural Networks 1 / 35 Inspiration: The Brain Our brain has 10 11

More information

NONLINEAR CLASSIFICATION AND REGRESSION. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition

NONLINEAR CLASSIFICATION AND REGRESSION. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition NONLINEAR CLASSIFICATION AND REGRESSION Nonlinear Classification and Regression: Outline 2 Multi-Layer Perceptrons The Back-Propagation Learning Algorithm Generalized Linear Models Radial Basis Function

More information

Neural Networks. Nicholas Ruozzi University of Texas at Dallas

Neural Networks. Nicholas Ruozzi University of Texas at Dallas Neural Networks Nicholas Ruozzi University of Texas at Dallas Handwritten Digit Recognition Given a collection of handwritten digits and their corresponding labels, we d like to be able to correctly classify

More information

Engineering Part IIB: Module 4F10 Statistical Pattern Processing Lecture 6: Multi-Layer Perceptrons I

Engineering Part IIB: Module 4F10 Statistical Pattern Processing Lecture 6: Multi-Layer Perceptrons I Engineering Part IIB: Module 4F10 Statistical Pattern Processing Lecture 6: Multi-Layer Perceptrons I Phil Woodland: pcw@eng.cam.ac.uk Michaelmas 2012 Engineering Part IIB: Module 4F10 Introduction In

More information

Lecture 17: Neural Networks and Deep Learning

Lecture 17: Neural Networks and Deep Learning UVA CS 6316 / CS 4501-004 Machine Learning Fall 2016 Lecture 17: Neural Networks and Deep Learning Jack Lanchantin Dr. Yanjun Qi 1 Neurons 1-Layer Neural Network Multi-layer Neural Network Loss Functions

More information

Machine Learning and Data Mining. Multi-layer Perceptrons & Neural Networks: Basics. Prof. Alexander Ihler

Machine Learning and Data Mining. Multi-layer Perceptrons & Neural Networks: Basics. Prof. Alexander Ihler + Machine Learning and Data Mining Multi-layer Perceptrons & Neural Networks: Basics Prof. Alexander Ihler Linear Classifiers (Perceptrons) Linear Classifiers a linear classifier is a mapping which partitions

More information

April 9, Depto. de Ing. de Sistemas e Industrial Universidad Nacional de Colombia, Bogotá. Linear Classification Models. Fabio A. González Ph.D.

April 9, Depto. de Ing. de Sistemas e Industrial Universidad Nacional de Colombia, Bogotá. Linear Classification Models. Fabio A. González Ph.D. Depto. de Ing. de Sistemas e Industrial Universidad Nacional de Colombia, Bogotá April 9, 2018 Content 1 2 3 4 Outline 1 2 3 4 problems { C 1, y(x) threshold predict(x) = C 2, y(x) < threshold, with threshold

More information

Neural networks. Chapter 20, Section 5 1

Neural networks. Chapter 20, Section 5 1 Neural networks Chapter 20, Section 5 Chapter 20, Section 5 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 20, Section 5 2 Brains 0 neurons of

More information

How to do backpropagation in a brain

How to do backpropagation in a brain How to do backpropagation in a brain Geoffrey Hinton Canadian Institute for Advanced Research & University of Toronto & Google Inc. Prelude I will start with three slides explaining a popular type of deep

More information

Machine Learning for Large-Scale Data Analysis and Decision Making A. Neural Networks Week #6

Machine Learning for Large-Scale Data Analysis and Decision Making A. Neural Networks Week #6 Machine Learning for Large-Scale Data Analysis and Decision Making 80-629-17A Neural Networks Week #6 Today Neural Networks A. Modeling B. Fitting C. Deep neural networks Today s material is (adapted)

More information

Neural Networks with Applications to Vision and Language. Feedforward Networks. Marco Kuhlmann

Neural Networks with Applications to Vision and Language. Feedforward Networks. Marco Kuhlmann Neural Networks with Applications to Vision and Language Feedforward Networks Marco Kuhlmann Feedforward networks Linear separability x 2 x 2 0 1 0 1 0 0 x 1 1 0 x 1 linearly separable not linearly separable

More information

Intro to Neural Networks and Deep Learning

Intro to Neural Networks and Deep Learning Intro to Neural Networks and Deep Learning Jack Lanchantin Dr. Yanjun Qi UVA CS 6316 1 Neurons 1-Layer Neural Network Multi-layer Neural Network Loss Functions Backpropagation Nonlinearity Functions NNs

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks Steve Renals Automatic Speech Recognition ASR Lecture 10 24 February 2014 ASR Lecture 10 Introduction to Neural Networks 1 Neural networks for speech recognition Introduction

More information

Machine Learning Basics III

Machine Learning Basics III Machine Learning Basics III Benjamin Roth CIS LMU München Benjamin Roth (CIS LMU München) Machine Learning Basics III 1 / 62 Outline 1 Classification Logistic Regression 2 Gradient Based Optimization Gradient

More information

Error Backpropagation

Error Backpropagation Error Backpropagation Sargur Srihari 1 Topics in Error Backpropagation Terminology of backpropagation 1. Evaluation of Error function derivatives 2. Error Backpropagation algorithm 3. A simple example

More information

Mark Gales October y (x) x 1. x 2 y (x) Inputs. Outputs. x d. y (x) Second Output layer layer. layer.

Mark Gales October y (x) x 1. x 2 y (x) Inputs. Outputs. x d. y (x) Second Output layer layer. layer. University of Cambridge Engineering Part IIB & EIST Part II Paper I0: Advanced Pattern Processing Handouts 4 & 5: Multi-Layer Perceptron: Introduction and Training x y (x) Inputs x 2 y (x) 2 Outputs x

More information

Neural Networks. Yan Shao Department of Linguistics and Philology, Uppsala University 7 December 2016

Neural Networks. Yan Shao Department of Linguistics and Philology, Uppsala University 7 December 2016 Neural Networks Yan Shao Department of Linguistics and Philology, Uppsala University 7 December 2016 Outline Part 1 Introduction Feedforward Neural Networks Stochastic Gradient Descent Computational Graph

More information

Introduction to Natural Computation. Lecture 9. Multilayer Perceptrons and Backpropagation. Peter Lewis

Introduction to Natural Computation. Lecture 9. Multilayer Perceptrons and Backpropagation. Peter Lewis Introduction to Natural Computation Lecture 9 Multilayer Perceptrons and Backpropagation Peter Lewis 1 / 25 Overview of the Lecture Why multilayer perceptrons? Some applications of multilayer perceptrons.

More information

Kernel Methods and Support Vector Machines

Kernel Methods and Support Vector Machines Kernel Methods and Support Vector Machines Oliver Schulte - CMPT 726 Bishop PRML Ch. 6 Support Vector Machines Defining Characteristics Like logistic regression, good for continuous input features, discrete

More information

Ch 4. Linear Models for Classification

Ch 4. Linear Models for Classification Ch 4. Linear Models for Classification Pattern Recognition and Machine Learning, C. M. Bishop, 2006. Department of Computer Science and Engineering Pohang University of Science and echnology 77 Cheongam-ro,

More information

Machine Learning Lecture 10

Machine Learning Lecture 10 Machine Learning Lecture 10 Neural Networks 26.11.2018 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Today s Topic Deep Learning 2 Course Outline Fundamentals Bayes

More information

Max Margin-Classifier

Max Margin-Classifier Max Margin-Classifier Oliver Schulte - CMPT 726 Bishop PRML Ch. 7 Outline Maximum Margin Criterion Math Maximizing the Margin Non-Separable Data Kernels and Non-linear Mappings Where does the maximization

More information

Machine Learning (CSE 446): Backpropagation

Machine Learning (CSE 446): Backpropagation Machine Learning (CSE 446): Backpropagation Noah Smith c 2017 University of Washington nasmith@cs.washington.edu November 8, 2017 1 / 32 Neuron-Inspired Classifiers correct output y n L n loss hidden units

More information

From perceptrons to word embeddings. Simon Šuster University of Groningen

From perceptrons to word embeddings. Simon Šuster University of Groningen From perceptrons to word embeddings Simon Šuster University of Groningen Outline A basic computational unit Weighting some input to produce an output: classification Perceptron Classify tweets Written

More information

Linear & nonlinear classifiers

Linear & nonlinear classifiers Linear & nonlinear classifiers Machine Learning Hamid Beigy Sharif University of Technology Fall 1394 Hamid Beigy (Sharif University of Technology) Linear & nonlinear classifiers Fall 1394 1 / 34 Table

More information

Neural Networks. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington

Neural Networks. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington Neural Networks CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 Perceptrons x 0 = 1 x 1 x 2 z = h w T x Output: z x D A perceptron

More information

Intelligent Systems Discriminative Learning, Neural Networks

Intelligent Systems Discriminative Learning, Neural Networks Intelligent Systems Discriminative Learning, Neural Networks Carsten Rother, Dmitrij Schlesinger WS2014/2015, Outline 1. Discriminative learning 2. Neurons and linear classifiers: 1) Perceptron-Algorithm

More information

Artificial neural networks

Artificial neural networks Artificial neural networks Chapter 8, Section 7 Artificial Intelligence, spring 203, Peter Ljunglöf; based on AIMA Slides c Stuart Russel and Peter Norvig, 2004 Chapter 8, Section 7 Outline Brains Neural

More information

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels Need for Deep Networks Perceptron Can only model linear functions Kernel Machines Non-linearity provided by kernels Need to design appropriate kernels (possibly selecting from a set, i.e. kernel learning)

More information

Artificial Neural Networks. Edward Gatt

Artificial Neural Networks. Edward Gatt Artificial Neural Networks Edward Gatt What are Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning Very

More information

Deep Feedforward Networks

Deep Feedforward Networks Deep Feedforward Networks Yongjin Park 1 Goal of Feedforward Networks Deep Feedforward Networks are also called as Feedforward neural networks or Multilayer Perceptrons Their Goal: approximate some function

More information

CSE446: Neural Networks Spring Many slides are adapted from Carlos Guestrin and Luke Zettlemoyer

CSE446: Neural Networks Spring Many slides are adapted from Carlos Guestrin and Luke Zettlemoyer CSE446: Neural Networks Spring 2017 Many slides are adapted from Carlos Guestrin and Luke Zettlemoyer Human Neurons Switching time ~ 0.001 second Number of neurons 10 10 Connections per neuron 10 4-5 Scene

More information

Stochastic gradient descent; Classification

Stochastic gradient descent; Classification Stochastic gradient descent; Classification Steve Renals Machine Learning Practical MLP Lecture 2 28 September 2016 MLP Lecture 2 Stochastic gradient descent; Classification 1 Single Layer Networks MLP

More information

Machine Learning Lecture 12

Machine Learning Lecture 12 Machine Learning Lecture 12 Neural Networks 30.11.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course Outline Fundamentals Bayes Decision Theory Probability

More information

Neural Networks. Intro to AI Bert Huang Virginia Tech

Neural Networks. Intro to AI Bert Huang Virginia Tech Neural Networks Intro to AI Bert Huang Virginia Tech Outline Biological inspiration for artificial neural networks Linear vs. nonlinear functions Learning with neural networks: back propagation https://en.wikipedia.org/wiki/neuron#/media/file:chemical_synapse_schema_cropped.jpg

More information

SPSS, University of Texas at Arlington. Topics in Machine Learning-EE 5359 Neural Networks

SPSS, University of Texas at Arlington. Topics in Machine Learning-EE 5359 Neural Networks Topics in Machine Learning-EE 5359 Neural Networks 1 The Perceptron Output: A perceptron is a function that maps D-dimensional vectors to real numbers. For notational convenience, we add a zero-th dimension

More information

Neural Networks: Introduction

Neural Networks: Introduction Neural Networks: Introduction Machine Learning Fall 2017 Based on slides and material from Geoffrey Hinton, Richard Socher, Dan Roth, Yoav Goldberg, Shai Shalev-Shwartz and Shai Ben-David, and others 1

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Jeff Clune Assistant Professor Evolving Artificial Intelligence Laboratory Announcements Be making progress on your projects! Three Types of Learning Unsupervised Supervised Reinforcement

More information

CSCI567 Machine Learning (Fall 2018)

CSCI567 Machine Learning (Fall 2018) CSCI567 Machine Learning (Fall 2018) Prof. Haipeng Luo U of Southern California Sep 12, 2018 September 12, 2018 1 / 49 Administration GitHub repos are setup (ask TA Chi Zhang for any issues) HW 1 is due

More information

Sections 18.6 and 18.7 Analysis of Artificial Neural Networks

Sections 18.6 and 18.7 Analysis of Artificial Neural Networks Sections 18.6 and 18.7 Analysis of Artificial Neural Networks CS4811 - Artificial Intelligence Nilufer Onder Department of Computer Science Michigan Technological University Outline Univariate regression

More information

Stanford Machine Learning - Week V

Stanford Machine Learning - Week V Stanford Machine Learning - Week V Eric N Johnson August 13, 2016 1 Neural Networks: Learning What learning algorithm is used by a neural network to produce parameters for a model? Suppose we have a neural

More information

Neural Networks. Xiaojin Zhu Computer Sciences Department University of Wisconsin, Madison. slide 1

Neural Networks. Xiaojin Zhu Computer Sciences Department University of Wisconsin, Madison. slide 1 Neural Networks Xiaoin Zhu erryzhu@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison slide 1 Terminator 2 (1991) JOHN: Can you learn? So you can be... you know. More human. Not

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) For this week, Reading Chapter 4: Neural Networks (Mitchell, 1997) See Canvas For subsequent weeks: Scaling Learning Algorithms toward

More information

Convolutional Neural Networks

Convolutional Neural Networks Convolutional Neural Networks Books» http://www.deeplearningbook.org/ Books http://neuralnetworksanddeeplearning.com/.org/ reviews» http://www.deeplearningbook.org/contents/linear_algebra.html» http://www.deeplearningbook.org/contents/prob.html»

More information

Neural Networks (Part 1) Goals for the lecture

Neural Networks (Part 1) Goals for the lecture Neural Networks (Part ) Mark Craven and David Page Computer Sciences 760 Spring 208 www.biostat.wisc.edu/~craven/cs760/ Some of the slides in these lectures have been adapted/borrowed from materials developed

More information

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann (Feed-Forward) Neural Networks 2016-12-06 Dr. Hajira Jabeen, Prof. Jens Lehmann Outline In the previous lectures we have learned about tensors and factorization methods. RESCAL is a bilinear model for

More information

COMP-4360 Machine Learning Neural Networks

COMP-4360 Machine Learning Neural Networks COMP-4360 Machine Learning Neural Networks Jacky Baltes Autonomous Agents Lab University of Manitoba Winnipeg, Canada R3T 2N2 Email: jacky@cs.umanitoba.ca WWW: http://www.cs.umanitoba.ca/~jacky http://aalab.cs.umanitoba.ca

More information

CSE 190 Fall 2015 Midterm DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO START!!!!

CSE 190 Fall 2015 Midterm DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO START!!!! CSE 190 Fall 2015 Midterm DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO START!!!! November 18, 2015 THE EXAM IS CLOSED BOOK. Once the exam has started, SORRY, NO TALKING!!! No, you can t even say see ya

More information

Deep Feedforward Networks. Sargur N. Srihari

Deep Feedforward Networks. Sargur N. Srihari Deep Feedforward Networks Sargur N. srihari@cedar.buffalo.edu 1 Topics Overview 1. Example: Learning XOR 2. Gradient-Based Learning 3. Hidden Units 4. Architecture Design 5. Backpropagation and Other Differentiation

More information

COMP 551 Applied Machine Learning Lecture 14: Neural Networks

COMP 551 Applied Machine Learning Lecture 14: Neural Networks COMP 551 Applied Machine Learning Lecture 14: Neural Networks Instructor: Ryan Lowe (ryan.lowe@mail.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551 Unless otherwise noted,

More information

Artifical Neural Networks

Artifical Neural Networks Neural Networks Artifical Neural Networks Neural Networks Biological Neural Networks.................................. Artificial Neural Networks................................... 3 ANN Structure...........................................

More information

Neural Networks: Backpropagation

Neural Networks: Backpropagation Neural Networks: Backpropagation Seung-Hoon Na 1 1 Department of Computer Science Chonbuk National University 2018.10.25 eung-hoon Na (Chonbuk National University) Neural Networks: Backpropagation 2018.10.25

More information

Sections 18.6 and 18.7 Artificial Neural Networks

Sections 18.6 and 18.7 Artificial Neural Networks Sections 18.6 and 18.7 Artificial Neural Networks CS4811 - Artificial Intelligence Nilufer Onder Department of Computer Science Michigan Technological University Outline The brain vs artifical neural networks

More information

Neural networks and optimization

Neural networks and optimization Neural networks and optimization Nicolas Le Roux INRIA 8 Nov 2011 Nicolas Le Roux (INRIA) Neural networks and optimization 8 Nov 2011 1 / 80 1 Introduction 2 Linear classifier 3 Convolutional neural networks

More information

Artificial Neural Networks

Artificial Neural Networks Artificial Neural Networks 鮑興國 Ph.D. National Taiwan University of Science and Technology Outline Perceptrons Gradient descent Multi-layer networks Backpropagation Hidden layer representations Examples

More information

ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92

ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92 ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92 BIOLOGICAL INSPIRATIONS Some numbers The human brain contains about 10 billion nerve cells (neurons) Each neuron is connected to the others through 10000

More information

Multilayer Neural Networks

Multilayer Neural Networks Multilayer Neural Networks Multilayer Neural Networks Discriminant function flexibility NON-Linear But with sets of linear parameters at each layer Provably general function approximators for sufficient

More information

Introduction to Convolutional Neural Networks (CNNs)

Introduction to Convolutional Neural Networks (CNNs) Introduction to Convolutional Neural Networks (CNNs) nojunk@snu.ac.kr http://mipal.snu.ac.kr Department of Transdisciplinary Studies Seoul National University, Korea Jan. 2016 Many slides are from Fei-Fei

More information

Artificial Neuron (Perceptron)

Artificial Neuron (Perceptron) 9/6/208 Gradient Descent (GD) Hantao Zhang Deep Learning with Python Reading: https://en.wikipedia.org/wiki/gradient_descent Artificial Neuron (Perceptron) = w T = w 0 0 + + w 2 2 + + w d d where

More information

Feedforward Neural Nets and Backpropagation

Feedforward Neural Nets and Backpropagation Feedforward Neural Nets and Backpropagation Julie Nutini University of British Columbia MLRG September 28 th, 2016 1 / 23 Supervised Learning Roadmap Supervised Learning: Assume that we are given the features

More information

Supervised Learning. George Konidaris

Supervised Learning. George Konidaris Supervised Learning George Konidaris gdk@cs.brown.edu Fall 2017 Machine Learning Subfield of AI concerned with learning from data. Broadly, using: Experience To Improve Performance On Some Task (Tom Mitchell,

More information

Neural Nets Supervised learning

Neural Nets Supervised learning 6.034 Artificial Intelligence Big idea: Learning as acquiring a function on feature vectors Background Nearest Neighbors Identification Trees Neural Nets Neural Nets Supervised learning y s(z) w w 0 w

More information