The WENO method. Solution proposal to Project 2: MATH-459 Numerical Methods for Conservation Laws by Prof. Jan S. Hesthaven

Size: px
Start display at page:

Download "The WENO method. Solution proposal to Project 2: MATH-459 Numerical Methods for Conservation Laws by Prof. Jan S. Hesthaven"

Transcription

1 MATH-459 Nmerical Metods for Conservation Laws by Prof. Jan S. Hestaven Soltion proposal to Project : Te WENO metod Qestion. (a) See SHU 998. (b) In te ENO metod for reconstrction of cell bondaries we sp a lot of comptational eort for eac cell to create and compare varios stencils of lengt K before nally coosing one of tem. Te idea wit te WENO metod is, instead of sping so mc eort comparing stencils and coosing te most appropriate, lets jst take all of tem and instead sp comptational eort on calclating some set of weigts to be sed at eac cell, tis as te added advantage of leading to O ( d k ) accrate approimations in smoot regions. Qestion. (a)(b) See DEMO script and fnctions attaced. (c) Te initial conditions are depicted in grer. Te soltion for eac initial condition at T= is presented in gre for K = and in gre 3 for K = 3. We notice tat for K = everyting looks nice and smoot bt for K = 3 in te case of sock initial condition oscillations appear. Wen sing a La-Friedrics type, te large nmerical dision dampens tese oscillations, wen sing te Godnov's type wit Roe's approimate Riemann solver, tere is less articial dision and te oscillations appear larger. (d) Te rst initial condition is smoot and remains smoot trogot te soltion, te second initial condition is also smoot bt two discontinities arise dring te soltion procedre. Te tird initial condition contains two socks and trogot te soltion to tis initial conditions discontinities are presented. (e) See DEMO script and fnctions attaced and grer 4 containing te accracy reslts. (f ) For te case of te smoot initial condition, initial condition, we measre tird order accracy. For te two initial conditions, and 3, containing discontinities, te accracy degenerates to rst order. (g) Yes. (f ) First order. (i) Also rst order, bt te error constant is sbstantially better ten wen solving initial condition 3. Qestion.3 (a) Done in previos project. (b) See DEMO script and fnctions attaced. (c) See grer 4 containing te accracy reslts (d) Wen sing WENO reconstrction, te dierence in accracy between sing a la-friedric's type and sing a Godnov's type wit roes approimate Riemann matri is qalitatively te same as wen simply approimating cell interfaces wit cell averages. Tere is an error constant dierence between te La-Friedrics and te Godnov's, te Godnov's is sbject to less nmerical dision tan te La-Friedrics type.

2 (a) Initial condition (b) Initial condition (c) Initial condition 3 Figre : Te initial conditions q(, ).

3 (a) La-Friedrics and initial data set..5 (b) Roe's metod and initial data set (c) La-Friedrics and initial data set..5 (d) Roe's metod and initial data set (e) La-Friedrics and initial data set 3..5 (f) Roe's metod and initial data set 3. Figre : Soltion at T = sing =.5 wit K =. 3

4 (a) La-Friedrics and initial data set..5 (b) Roe's metod and initial data set (c) La-Friedrics and initial data set..5 (d) Roe's metod and initial data set (e) La-Friedrics and initial data set 3..5 (f) Roe's metod and initial data set 3. Figre 3: Soltion at T = sing =.5 wit K = 3. 4

5 La-Friedrics Roes-Metod O(d3) Error (a) Cells La-Friedrics Roes-Metod O(d) Error (b) Cells La-Friedrics Roes-Metod O(d) Error (c) Figre 4: Accracy as measred in te -norm against a Roe's metod soltion sing grid cells wit K = on initial condition (a), (b), (c) 3. Cells 5

6 clear all,clc % In tis DEMO script for project we attempt to solve te one dimensional sallow % water eqation. Te problem can be formlated as a conservatioin law in te form % of a system of two copled nonlinear partial differential eqations. Te soltion % can be visalized and te accracy of te sed metod can be measred. % Visalize and estimate accracy Visalize = ; Accracy = ; % Nmerical fl fnctions available types = {'La Friedrics','Roes Metod'}; % Pysical constants g = ; % Coose stencil size to se K = (3) or K = 3(5) K = ; C = GetC(K); % Coose initial dataset to 3 data = ; % Do magic if Visalize view = [ ]; =.5; [k,x,nx,t,nt] = Setp(); for i = :nmel(types) Q = InitialData(data,X,nX,/); F = zeros(,nx+); figre(i); plot(x,q(,:),' b',x,q(,:)./q(,:),' r'); ais(view); grid on; label('');leg('',''); %matlabtikz([nmstr(data),'_initial.tikz'], 'eigt', '\figreeigt', 'widt', '\figrewidt'); Qedge = zeros(,*nx+); for t = :nt Q = SSPRK3(F,C,,nX,X,Q,K,g,k,types{i}); plot(x,q(,:),' b',x,q(,:)./q(,:),' r'); ais(view) drawnow [Q,X] = GetRef(data,g,K); Qplot(,:) = interp(x,q(,:),x); Qplot(,:) = interp(x,q(,:),x); old on;plot(x,qplot(,:),'k',x,qplot(,:)./qplot(,:),'k'); label('');leg('','','');grid on; name = [types{i},'d',nmstr(data),'k',nmstr(k),'_soltion.tikz']; matlabtikz(name,'eigt', '\figreeigt', 'widt', '\figrewidt'); if Accracy % Calclate soltion [Q,X] = GetRef(data,g,K); % Measre accracy of metods figre(nmel(types)+); n =.^(:.:.); =./ceil(n); error = zeros(nmel(),); cells = zeros(nmel(),); slope = zeros(nmel(types),); legen = {' ob',' or',' k'}; for i = :nmel(types) for j = :nmel() [k,x,nx,t,nt] = Setp((j)); 6

7 Q = InitialData(data,X,nX,(j)/); F = zeros(,nx+); for t = :nt Q = SSPRK3(F,C,(j),nX,X,Q,K,g,k,types{i}); % Measre error error(j) = norm(interp(x,q(,:),x) Q(,:),)/nX; cells(j) = nx; % Plot slope(i,:) = polyfit(log(cells( :)),log(error( :)),); loglog(cells,error,legen{i});old on; switc data case ebar = ^(.3)*(./n).^(3); loglog(n,ebar,legen{3}) ais([^ *^ ^( 5) ^( )]) lgdstring = 'O(d3)'; case ebar = ^(.4)*(./n).^(); loglog(n,ebar,legen{3}) ais([^ *^ ^( 3) ^( )]) lgdstring = 'O(d)'; case 3 ebar = ^()*(./n).^(); loglog(n,ebar,legen{3}) ais([^ *^ ^( ) ^( )]) lgdstring = 'O(d)'; label('cells');ylabel('error');grid on; leg(types{},types{},lgdstring); slope(:,) name = ['data_',nmstr(data),'k',nmstr(k),'_acc.tikz']; matlabtikz(name, 'eigt', '\figreeigt', 'widt', '\figrewidt'); fnction [ k,x,nx,t,nt ] = Setp() k = *; X = ::; nx = nmel(x); T = :k:; nt = nmel(t) ; fnction Q = InitialData(data,X,nX,d) % Initial pressre distribtion switc data case H HU zeros(size()); case H HU *ones(size()); case 3 H (<).*.5 + (>=).* ; HU zeros(size()); % Integrate data Q = zeros(,nx); for i = :nmel(x) Q(,i) = integral(h,x(i) d,x(i)+d,'abstol',e )/(d*); Q(,i) = integral(hu,x(i) d,x(i)+d,'abstol',e )/(d*); 7

8 fnction [ Q,X ] = GetRef(data,g,K) Name = ['Q_',nmstr(data),'_k',nmstr(K),'.mat'] if eist(name, 'file') == ; load(name); else K = ; C = GetC(K); =.; wstring = 'Compting erence soltion'; w = waitbar(,wstring); [k,x,nx,t,nt] = Setp(); Q = initialdata(data,x,nx,/); F = zeros(,nx+); for t = :nt Q = SSPRK3(F,C,,nX,X,Q,K,g,k,'Roes Metod'); waitbar(t/nt); close(w); save(name,'q','x'); fnction [ Q ] = SSPRK3(F,C,,nX,X,Q,K,g,k,type) % Do first step in te Rnge Ktta Qedge(,:) = WENO(C,,nX,X,Q(,:),K); Qedge(,:) = WENO(C,,nX,X,Q(,:),K); F = Fl(F,Qedge,nX,g,,k,type); Y = Q(:,:) k/*(f(:,:nx+) F(:,:nX)); % Do second step in te Rnge Ktta Yedge(,:) = WENO(C,,nX,X,Y(,:),K); Yedge(,:) = WENO(C,,nX,X,Y(,:),K); F = Fl(F,Yedge,nX,g,,k,type); Y = (3/4)*Q(:,:)+.5*Y.5*k/*(F(:,:nX+) F(:,:nX)); % Do te tird step in te Rnge Ktta Yedge(,:) = WENO(C,,nX,X,Y(,:),K); Yedge(,:) = WENO(C,,nX,X,Y(,:),K); F = Fl(F,Yedge,nX,g,,k,type); Q = (/3)*Q(:,:)+(/3)*Y (/3)*k/*(F(:,:nX+) F(:,:nX)); fnction F = Fl(F,Qedge,nX,g,,k,type) switc type case 'La Friedrics' for i = :nx+ a = Qedge(:,*i ); b = Qedge(:,*i); F(:,i) = *(/k)*(a b)+*(f(a,g)+f(b,g)); case 'Roes Metod' for i = :nx+ Ql = Qedge(:,*i ); Qr = Qedge(:,*i); rql = sqrt(ql); rqr = sqrt(qr); avg = (Ql()/rQl()+Qr()/rQr())/(rQl()+rQr()); cavg = sqrt(g*(ql()+qr())/); L = [avg cavg,;,avg+cavg]; A = [,;L(,),L(,)] * abs(l) * /cavg*[l(,), ; L(,),]; F(:,i) = *(f(ql,g)+f(qr,g)) *A*(Qr Ql); 8

9 fnction f = f(q,g) f = [Q(,:);Q(,:).^./Q(,:)+*g*Q(,:).^]; fnction [Uedge,Xedge] = WENO(C,,nX,X,,K) % Add gost points, modify tis line according to initial condition type Ug = [(nx K:nX ),,(:K+)]; % Calclate te vales at te edges of eac cell for eac of te K stencils U = zeros(*nx+,k); for j = :K r = j ; U(,j) = sm( C(r+,:).* Ug((K r):(*k r)) ); for i = (K+):(nX+K) U((i K)*,j) = sm( C(r+,:).* Ug((i r):(i+k r)) ); U((i K)*+,j) = sm( C(r+,:).* Ug((i r):(i+k r)) ); U(*nX+,j) = sm( C(r+,:).* Ug((nX+K+ r):(nx+k++k r)) ); % Find weigts Wedge for Uedge W = FindWeigts(nX,Ug,K); % Apply weigts and retrn Uedge Uedge = zeros(*nx+,); for i = :(*nx+) Uedge(i) = sm(u(i,:).*w(i,:)); % Pass tis, somebody migt want it.. Xedge = resape([x /,X()+/;X /,X()+/],*nX+,); fnction [ Wedge ] = GetW(K,A,B,d,e) Wedge = zeros(,k); for j = :K A(j) = d(j)/((e+b(j))^); for j = :K Wedge(,j) = A(j)/sm(A); fnction [ B ] = GetB(B,U,K) % Retrn Beta coefficients switc K case B() = (U(3) U())^; B() = (U() U())^; case 3 B() = (3/)*(U(3) *U(4)+U(5))^ +.5*(3*U(3) 4*U(4)+U(5))^; B() = (3/)*(U() *U(3)+U(4))^ +.5*(U() U(4))^; B(3) = (3/)*(U() *U()+U(3))^ +.5*(U() 4*U()+3*U(3))^; oterwise error('only WENO coefficients for K = {,3} available'); fnction [ C ] = GetC(K) % Calclate matri wit interpolation coefficients C = zeros(k+,k); for r = ::K for j = :K 9

10 temp = ; for m = j+:k % Sm denominator C = ; for l = :K if l ~= m temp = ; for q = :K if (q ~= m) && (q ~= l) temp = temp*(r q+); C = C + temp; % Sm nmerator temp = ; for l = :K if l ~= m temp = temp*(m l); C = temp; % Devide and add temp = temp + C/C; C(r+,j+) = temp; fnction [ d ] = GetD(K) % Retrn d coefficients d = zeros(,k); switc K case d() = /3; d() = /3; d() = 3/4; d() = /4; case 3 d() = 3/; d() = 3/5; d(3) = /; oterwise error('only WENO coefficients for K = {,3} available');

Finite Volume Methods for Conservation laws

Finite Volume Methods for Conservation laws MATH-459 Nmerical Metods for Conservation Laws by Prof. Jan S. Hestaven Soltion proposal to Project : Finite Volme Metods for Conservation laws Qestion. (a) See Matlab/Octave code attaced. (b) Large amont

More information

Suyeon Shin* and Woonjae Hwang**

Suyeon Shin* and Woonjae Hwang** JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volme 5, No. 3, Agst THE NUMERICAL SOLUTION OF SHALLOW WATER EQUATION BY MOVING MESH METHODS Syeon Sin* and Woonjae Hwang** Abstract. Tis paper presents

More information

New Fourth Order Explicit Group Method in the Solution of the Helmholtz Equation Norhashidah Hj. Mohd Ali, Teng Wai Ping

New Fourth Order Explicit Group Method in the Solution of the Helmholtz Equation Norhashidah Hj. Mohd Ali, Teng Wai Ping World Academy of Science, Engineering and Tecnology International Jornal of Matematical and Comptational Sciences Vol:9, No:, 05 New Fort Order Eplicit Grop Metod in te Soltion of te elmoltz Eqation Norasida.

More information

08.06 Shooting Method for Ordinary Differential Equations

08.06 Shooting Method for Ordinary Differential Equations 8.6 Shooting Method for Ordinary Differential Eqations After reading this chapter, yo shold be able to 1. learn the shooting method algorithm to solve bondary vale problems, and. apply shooting method

More information

On the scaling of entropy viscosity in high order methods

On the scaling of entropy viscosity in high order methods On te scaling of entropy viscosity in ig order metods Adeline Kornels and Daniel Appelö Abstract In tis work, we otline te entropy viscosity metod and discss ow te coice of scaling inflences te size of

More information

Formal Methods for Deriving Element Equations

Formal Methods for Deriving Element Equations Formal Methods for Deriving Element Eqations And the importance of Shape Fnctions Formal Methods In previos lectres we obtained a bar element s stiffness eqations sing the Direct Method to obtain eact

More information

Adjoint-Based Sensitivity Analysis for Computational Fluid Dynamics

Adjoint-Based Sensitivity Analysis for Computational Fluid Dynamics Adjoint-Based Sensitivity Analysis for Comptational Flid Dynamics Dimitri J. Mavriplis Department of Mecanical Engineering niversity of Wyoming Laramie, WY Motivation Comptational flid dynamics analysis

More information

Chapter 4: Numerical Methods for Common Mathematical Problems

Chapter 4: Numerical Methods for Common Mathematical Problems 1 Capter 4: Numerical Metods for Common Matematical Problems Interpolation Problem: Suppose we ave data defined at a discrete set of points (x i, y i ), i = 0, 1,..., N. Often it is useful to ave a smoot

More information

A Survey of the Implementation of Numerical Schemes for Linear Advection Equation

A Survey of the Implementation of Numerical Schemes for Linear Advection Equation Advances in Pre Mathematics, 4, 4, 467-479 Pblished Online Agst 4 in SciRes. http://www.scirp.org/jornal/apm http://dx.doi.org/.436/apm.4.485 A Srvey of the Implementation of Nmerical Schemes for Linear

More information

HIGH-ORDER ACCURATE SPECTRAL DIFFERENCE METHOD FOR SHALLOW WATER EQUATIONS

HIGH-ORDER ACCURATE SPECTRAL DIFFERENCE METHOD FOR SHALLOW WATER EQUATIONS IJRRAS 6 Janary www.arpapress.com/volmes/vol6isse/ijrras_6 5.pdf HIGH-ORDER ACCURATE SPECTRAL DIFFERENCE METHOD FOR SHALLOW WATER EUATIONS Omer San,* & Krsat Kara Department of Engineering Science and

More information

1. Introduction. In this paper, we are interested in accurate numerical approximations to the nonlinear Camassa Holm (CH) equation:

1. Introduction. In this paper, we are interested in accurate numerical approximations to the nonlinear Camassa Holm (CH) equation: SIAM J. SCI. COMPUT. Vol. 38, No. 4, pp. A99 A934 c 6 Society for Indstrial and Applied Matematics AN INVARIANT PRESERVING DISCONTINUOUS GALERKIN METHOD FOR THE CAMASSA HOLM EQUATION HAILIANG LIU AND YULONG

More information

Analytic Solution of Fuzzy Second Order Differential Equations under H-Derivation

Analytic Solution of Fuzzy Second Order Differential Equations under H-Derivation Teory of Approximation and Applications Vol. 11, No. 1, (016), 99-115 Analytic Soltion of Fzzy Second Order Differential Eqations nder H-Derivation Lale Hoosangian a, a Department of Matematics, Dezfl

More information

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 Mat 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 f(x+) f(x) 10 1. For f(x) = x 2 + 2x 5, find ))))))))) and simplify completely. NOTE: **f(x+) is NOT f(x)+! f(x+) f(x) (x+) 2 + 2(x+) 5 ( x 2

More information

Math 4A03: Practice problems on Multivariable Calculus

Math 4A03: Practice problems on Multivariable Calculus Mat 4A0: Practice problems on Mltiariable Calcls Problem Consider te mapping f, ) : R R defined by fx, y) e y + x, e x y) x, y) R a) Is it possible to express x, y) as a differentiable fnction of, ) near

More information

Shooting Method for Ordinary Differential Equations Autar Kaw

Shooting Method for Ordinary Differential Equations Autar Kaw Shooting Method or Ordinary Dierential Eqations Atar Kaw Ater reading this chapter, yo shold be able to. learn the shooting method algorithm to solve bondary vale problems, and. apply shooting method to

More information

Numerical methods for the generalized Fisher Kolmogorov Petrovskii Piskunov equation

Numerical methods for the generalized Fisher Kolmogorov Petrovskii Piskunov equation Applied Nmerical Matematics 57 7 89 1 www.elsevier.com/locate/apnm Nmerical metods for te generalized Fiser Kolmogorov Petrovskii Pisknov eqation J.R. Branco a,j.a.ferreira b,, P. de Oliveira b a Departamento

More information

Discontinuous Fluctuation Distribution for Time-Dependent Problems

Discontinuous Fluctuation Distribution for Time-Dependent Problems Discontinos Flctation Distribtion for Time-Dependent Problems Matthew Hbbard School of Compting, University of Leeds, Leeds, LS2 9JT, UK meh@comp.leeds.ac.k Introdction For some years now, the flctation

More information

Appendix Proof. Proposition 1. According to steady-state demand condition,

Appendix Proof. Proposition 1. According to steady-state demand condition, Appendix roof. roposition. Accordin to steady-state demand condition, D =A f ss θ,a; D α α f ss,a; D α α θ. A,weref ss θ e,a; D is te steady-state measre of plants wit ae a and te expected idiosyncratic

More information

Computational Geosciences 2 (1998) 1, 23-36

Computational Geosciences 2 (1998) 1, 23-36 A STUDY OF THE MODELLING ERROR IN TWO OPERATOR SPLITTING ALGORITHMS FOR POROUS MEDIA FLOW K. BRUSDAL, H. K. DAHLE, K. HVISTENDAHL KARLSEN, T. MANNSETH Comptational Geosciences 2 (998), 23-36 Abstract.

More information

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point.

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point. Popper 6: Review of skills: Find tis difference quotient. f ( x ) f ( x) if f ( x) x Answer coices given in audio on te video. Section.1 Te Definition of te Derivative We are interested in finding te slope

More information

FREQUENCY DOMAIN FLUTTER SOLUTION TECHNIQUE USING COMPLEX MU-ANALYSIS

FREQUENCY DOMAIN FLUTTER SOLUTION TECHNIQUE USING COMPLEX MU-ANALYSIS 7 TH INTERNATIONAL CONGRESS O THE AERONAUTICAL SCIENCES REQUENCY DOMAIN LUTTER SOLUTION TECHNIQUE USING COMPLEX MU-ANALYSIS Yingsong G, Zhichn Yang Northwestern Polytechnical University, Xi an, P. R. China,

More information

Stability properties of a family of chock capturing methods for hyperbolic conservation laws

Stability properties of a family of chock capturing methods for hyperbolic conservation laws Proceedings of te 3rd IASME/WSEAS Int. Conf. on FLUID DYNAMICS & AERODYNAMICS, Corfu, Greece, August 0-, 005 (pp48-5) Stability properties of a family of cock capturing metods for yperbolic conservation

More information

Function Composition and Chain Rules

Function Composition and Chain Rules Function Composition and s James K. Peterson Department of Biological Sciences and Department of Matematical Sciences Clemson University Marc 8, 2017 Outline 1 Function Composition and Continuity 2 Function

More information

Introduction to Multigrid Method

Introduction to Multigrid Method Introduction to Multigrid Metod Presented by: Bogojeska Jasmina /08/005 JASS, 005, St. Petersburg 1 Te ultimate upsot of MLAT Te amount of computational work sould be proportional to te amount of real

More information

Approximate Solution of Convection- Diffusion Equation by the Homotopy Perturbation Method

Approximate Solution of Convection- Diffusion Equation by the Homotopy Perturbation Method Gen. Math. Notes, Vol. 1, No., December 1, pp. 18-114 ISSN 19-7184; Copyright ICSRS Pblication, 1 www.i-csrs.org Available free online at http://www.geman.in Approximate Soltion of Convection- Diffsion

More information

Restricted Three-Body Problem in Different Coordinate Systems

Restricted Three-Body Problem in Different Coordinate Systems Applied Mathematics 3 949-953 http://dx.doi.org/.436/am..394 Pblished Online September (http://www.scirp.org/jornal/am) Restricted Three-Body Problem in Different Coordinate Systems II-In Sidereal Spherical

More information

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx.

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx. Capter 2 Integrals as sums and derivatives as differences We now switc to te simplest metods for integrating or differentiating a function from its function samples. A careful study of Taylor expansions

More information

A WAVE DISPERSION MODEL FOR HEALTH MONITORING OF PLATES WITH PIEZOELECTRIC COUPLING IN AEROSPACE APPLICATIONS

A WAVE DISPERSION MODEL FOR HEALTH MONITORING OF PLATES WITH PIEZOELECTRIC COUPLING IN AEROSPACE APPLICATIONS 4t Middle East NDT Conference and Eibition Kingdom of Barain Dec 007 A WAVE DISPERSION MODEL FOR HEALTH MONITORING OF PLATES WITH PIEZOELECTRIC COUPLING IN AEROSPACE APPLICATIONS Amed Z. El-Garni and Wael

More information

A = h w (1) Error Analysis Physics 141

A = h w (1) Error Analysis Physics 141 Introduction In all brances of pysical science and engineering one deals constantly wit numbers wic results more or less directly from experimental observations. Experimental observations always ave inaccuracies.

More information

lim 1 lim 4 Precalculus Notes: Unit 10 Concepts of Calculus

lim 1 lim 4 Precalculus Notes: Unit 10 Concepts of Calculus Syllabus Objectives: 1.1 Te student will understand and apply te concept of te limit of a function at given values of te domain. 1. Te student will find te limit of a function at given values of te domain.

More information

WYSE Academic Challenge 2004 Sectional Mathematics Solution Set

WYSE Academic Challenge 2004 Sectional Mathematics Solution Set WYSE Academic Callenge 00 Sectional Matematics Solution Set. Answer: B. Since te equation can be written in te form x + y, we ave a major 5 semi-axis of lengt 5 and minor semi-axis of lengt. Tis means

More information

Solving the Lienard equation by differential transform method

Solving the Lienard equation by differential transform method ISSN 1 746-7233, England, U World Jornal of Modelling and Simlation Vol. 8 (2012) No. 2, pp. 142-146 Solving the Lienard eqation by differential transform method Mashallah Matinfar, Saber Rakhshan Bahar,

More information

BLOOM S TAXONOMY. Following Bloom s Taxonomy to Assess Students

BLOOM S TAXONOMY. Following Bloom s Taxonomy to Assess Students BLOOM S TAXONOMY Topic Following Bloom s Taonomy to Assess Stdents Smmary A handot for stdents to eplain Bloom s taonomy that is sed for item writing and test constrction to test stdents to see if they

More information

du(l) 5 dl = U(0) = 1 and 1.) Substitute for U an unspecified trial function into governing equation, i.e. dx + = =

du(l) 5 dl = U(0) = 1 and 1.) Substitute for U an unspecified trial function into governing equation, i.e. dx + = = Consider an ODE of te form: Finite Element Metod du fu g d + wit te following Boundary Conditions: U(0) and du(l) 5 dl.) Substitute for U an unspecified trial function into governing equation, i.e. ^ U

More information

Determining of temperature field in a L-shaped domain

Determining of temperature field in a L-shaped domain Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 0, (:-8 Determining of temperatre field in a L-shaped domain Oigo M. Zongo, Sié Kam, Kalifa Palm, and Alione Oedraogo

More information

A sixth-order dual preserving algorithm for the Camassa-Holm equation

A sixth-order dual preserving algorithm for the Camassa-Holm equation A sith-order dal preserving algorithm for the Camassa-Holm eqation Pao-Hsing Chi Long Lee Tony W. H. She November 6, 29 Abstract The paper presents a sith-order nmerical algorithm for stdying the completely

More information

PREDICTIVE CONTROL OF A PROCESS WITH VARIABLE DEAD-TIME. Smaranda Cristea*, César de Prada*, Robin de Keyser**

PREDICTIVE CONTROL OF A PROCESS WITH VARIABLE DEAD-TIME. Smaranda Cristea*, César de Prada*, Robin de Keyser** PREDICIVE CONROL OF A PROCESS WIH VARIABLE DEAD-IME Smaranda Cristea, César de Prada, Robin de Keyser Department of Systems Engineering and Atomatic Control Faclty of Sciences, c/ Real de Brgos, s/n, University

More information

Week #15 - Word Problems & Differential Equations Section 8.2

Week #15 - Word Problems & Differential Equations Section 8.2 Week #1 - Word Problems & Differential Equations Section 8. From Calculus, Single Variable by Huges-Hallett, Gleason, McCallum et. al. Copyrigt 00 by Jon Wiley & Sons, Inc. Tis material is used by permission

More information

Chapter 2. Limits and Continuity 16( ) 16( 9) = = 001. Section 2.1 Rates of Change and Limits (pp ) Quick Review 2.1

Chapter 2. Limits and Continuity 16( ) 16( 9) = = 001. Section 2.1 Rates of Change and Limits (pp ) Quick Review 2.1 Capter Limits and Continuity Section. Rates of Cange and Limits (pp. 969) Quick Review..... f ( ) ( ) ( ) 0 ( ) f ( ) f ( ) sin π sin π 0 f ( ). < < < 6. < c c < < c 7. < < < < < 8. 9. 0. c < d d < c

More information

STEP Support Programme. STEP III Hyperbolic Functions: Solutions

STEP Support Programme. STEP III Hyperbolic Functions: Solutions STEP Spport Programme STEP III Hyperbolic Fnctions: Soltions Start by sing the sbstittion t cosh x. This gives: sinh x cosh a cosh x cosh a sinh x t sinh x dt t dt t + ln t ln t + ln cosh a ln ln cosh

More information

. Compute the following limits.

. Compute the following limits. Today: Tangent Lines and te Derivative at a Point Warmup:. Let f(x) =x. Compute te following limits. f( + ) f() (a) lim f( +) f( ) (b) lim. Let g(x) = x. Compute te following limits. g(3 + ) g(3) (a) lim

More information

Unfortunately the derivative of a product is not the product of the derivatives. For example, if

Unfortunately the derivative of a product is not the product of the derivatives. For example, if Prodct Rle Unortnately te deriatie o a prodct is not te prodct o te deriaties. For eample, i Ten p So is p bt 11 1, and tey are not eal in general. Tat [ is not ] in general To compte te deriatie o a prodct

More information

Elasto-Plastic EFGM Analysis of an Edge Crack

Elasto-Plastic EFGM Analysis of an Edge Crack Proceedings of te World Congress on Engineering 9 Vol WCE 9, Jly - 3, 9, London, U.. Elasto-Plastic EFGM Analysis of an Edge Crack B Aswani mar, V Sing, and V H Saran Abstract-n tis aer, elasto-lastic

More information

Discretization and Solution of Convection-Diffusion Problems. Howard Elman University of Maryland

Discretization and Solution of Convection-Diffusion Problems. Howard Elman University of Maryland Discretization and Soltion of Convection-Diffsion Problems Howard Elman University of Maryland Overview. Te convection-diffsion eqation Introdction and examples. Discretization strategies inite element

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com C Integration - By sbstittion PhysicsAndMathsTtor.com. Using the sbstittion cos +, or otherwise, show that e cos + sin d e(e ) (Total marks). (a) Using the sbstittion cos, or otherwise, find the eact vale

More information

A Macroscopic Traffic Data Assimilation Framework Based on Fourier-Galerkin Method and Minimax Estimation

A Macroscopic Traffic Data Assimilation Framework Based on Fourier-Galerkin Method and Minimax Estimation A Macroscopic Traffic Data Assimilation Framework Based on Forier-Galerkin Method and Minima Estimation Tigran T. Tchrakian and Sergiy Zhk Abstract In this paper, we propose a new framework for macroscopic

More information

Chapter 2 Difficulties associated with corners

Chapter 2 Difficulties associated with corners Chapter Difficlties associated with corners This chapter is aimed at resolving the problems revealed in Chapter, which are cased b corners and/or discontinos bondar conditions. The first section introdces

More information

4 Exact laminar boundary layer solutions

4 Exact laminar boundary layer solutions 4 Eact laminar bondary layer soltions 4.1 Bondary layer on a flat plate (Blasis 1908 In Sec. 3, we derived the bondary layer eqations for 2D incompressible flow of constant viscosity past a weakly crved

More information

STABILIZATIO ON OF LONGITUDINAL AIRCRAFT MOTION USING MODEL PREDICTIVE CONTROL AND EXACT LINEARIZATION

STABILIZATIO ON OF LONGITUDINAL AIRCRAFT MOTION USING MODEL PREDICTIVE CONTROL AND EXACT LINEARIZATION 8 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES STABILIZATIO ON OF LONGITUDINAL AIRCRAFT MOTION USING MODEL PREDICTIVE CONTROL AND EXACT LINEARIZATION Čeliovsý S.*, Hospodář P.** *CTU Prage, Faclty

More information

Assignment Fall 2014

Assignment Fall 2014 Assignment 5.086 Fall 04 De: Wednesday, 0 December at 5 PM. Upload yor soltion to corse website as a zip file YOURNAME_ASSIGNMENT_5 which incldes the script for each qestion as well as all Matlab fnctions

More information

INTRODUCTION AND MATHEMATICAL CONCEPTS

INTRODUCTION AND MATHEMATICAL CONCEPTS Capter 1 INTRODUCTION ND MTHEMTICL CONCEPTS PREVIEW Tis capter introduces you to te basic matematical tools for doing pysics. You will study units and converting between units, te trigonometric relationsips

More information

Approximate Solution for the System of Non-linear Volterra Integral Equations of the Second Kind by using Block-by-block Method

Approximate Solution for the System of Non-linear Volterra Integral Equations of the Second Kind by using Block-by-block Method Astralian Jornal of Basic and Applied Sciences, (1): 114-14, 008 ISSN 1991-8178 Approximate Soltion for the System of Non-linear Volterra Integral Eqations of the Second Kind by sing Block-by-block Method

More information

Math Spring 2013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, (1/z) 2 (1/z 1) 2 = lim

Math Spring 2013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, (1/z) 2 (1/z 1) 2 = lim Mat 311 - Spring 013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, 013 Question 1. [p 56, #10 (a)] 4z Use te teorem of Sec. 17 to sow tat z (z 1) = 4. We ave z 4z (z 1) = z 0 4 (1/z) (1/z

More information

Mehmet Pakdemirli* Precession of a Planet with the Multiple Scales Lindstedt Poincare Technique (2)

Mehmet Pakdemirli* Precession of a Planet with the Multiple Scales Lindstedt Poincare Technique (2) Z. Natrforsch. 05; aop Mehmet Pakemirli* Precession of a Planet with the Mltiple Scales Linstet Poincare Techniqe DOI 0.55/zna-05-03 Receive May, 05; accepte Jly 5, 05 Abstract: The recently evelope mltiple

More information

A compact upwind second order scheme for the Eikonal equation

A compact upwind second order scheme for the Eikonal equation A compact upwind second order sceme for te Eikonal equation Jean-David Benamou Songting Luo Hongkai Zao Abstract We present a compact upwind second order sceme for computing te viscosity solution of te

More information

FRTN10 Exercise 12. Synthesis by Convex Optimization

FRTN10 Exercise 12. Synthesis by Convex Optimization FRTN Exercise 2. 2. We want to design a controller C for the stable SISO process P as shown in Figre 2. sing the Yola parametrization and convex optimization. To do this, the control loop mst first be

More information

Third order Approximation on Icosahedral Great Circle Grids on the Sphere. J. Steppeler, P. Ripodas DWD Langen 2006

Third order Approximation on Icosahedral Great Circle Grids on the Sphere. J. Steppeler, P. Ripodas DWD Langen 2006 Tird order Approximation on Icosaedral Great Circle Grids on te Spere J. Steppeler, P. Ripodas DWD Langen 2006 Deasirable features of discretisation metods on te spere Great circle divisions of te spere:

More information

The spreading residue harmonic balance method for nonlinear vibration of an electrostatically actuated microbeam

The spreading residue harmonic balance method for nonlinear vibration of an electrostatically actuated microbeam J.L. Pan W.Y. Zh Nonlinear Sci. Lett. Vol.8 No. pp.- September The spreading reside harmonic balance method for nonlinear vibration of an electrostatically actated microbeam J. L. Pan W. Y. Zh * College

More information

Chapter 3 MATHEMATICAL MODELING OF DYNAMIC SYSTEMS

Chapter 3 MATHEMATICAL MODELING OF DYNAMIC SYSTEMS Chapter 3 MATHEMATICAL MODELING OF DYNAMIC SYSTEMS 3. System Modeling Mathematical Modeling In designing control systems we mst be able to model engineered system dynamics. The model of a dynamic system

More information

Finding and Using Derivative The shortcuts

Finding and Using Derivative The shortcuts Calculus 1 Lia Vas Finding and Using Derivative Te sortcuts We ave seen tat te formula f f(x+) f(x) (x) = lim 0 is manageable for relatively simple functions like a linear or quadratic. For more complex

More information

A h u h = f h. 4.1 The CoarseGrid SystemandtheResidual Equation

A h u h = f h. 4.1 The CoarseGrid SystemandtheResidual Equation Capter Grid Transfer Remark. Contents of tis capter. Consider a grid wit grid size and te corresponding linear system of equations A u = f. Te summary given in Section 3. leads to te idea tat tere migt

More information

5. (a) Find the slope of the tangent line to the parabola y = x + 2x

5. (a) Find the slope of the tangent line to the parabola y = x + 2x MATH 141 090 Homework Solutions Fall 00 Section.6: Pages 148 150 3. Consider te slope of te given curve at eac of te five points sown (see text for figure). List tese five slopes in decreasing order and

More information

Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics. Fall Semester Homework Problem Set Number 10 Solutions

Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics. Fall Semester Homework Problem Set Number 10 Solutions Chem 4501 Introdction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics Fall Semester 2017 Homework Problem Set Nmber 10 Soltions 1. McQarrie and Simon, 10-4. Paraphrase: Apply Eler s theorem

More information

1watt=1W=1kg m 2 /s 3

1watt=1W=1kg m 2 /s 3 Appendix A Matematics Appendix A.1 Units To measure a pysical quantity, you need a standard. Eac pysical quantity as certain units. A unit is just a standard we use to compare, e.g. a ruler. In tis laboratory

More information

A compact upwind second order scheme for the Eikonal equation

A compact upwind second order scheme for the Eikonal equation A compact upwind second order sceme for te Eikonal equation J.-D. Benamou INRIA, INRIA B.P. 05, 7853 Le Cesnay Cedex, France. jean-david.benamou@inria.fr Songting Luo Department of Matematics, Micigan

More information

Change of Variables. f(x, y) da = (1) If the transformation T hasn t already been given, come up with the transformation to use.

Change of Variables. f(x, y) da = (1) If the transformation T hasn t already been given, come up with the transformation to use. MATH 2Q Spring 26 Daid Nichols Change of Variables Change of ariables in mltiple integrals is complicated, bt it can be broken down into steps as follows. The starting point is a doble integral in & y.

More information

Active Flux Schemes for Advection Diffusion

Active Flux Schemes for Advection Diffusion AIAA Aviation - Jne, Dallas, TX nd AIAA Comptational Flid Dynamics Conference AIAA - Active Fl Schemes for Advection Diffsion Hiroaki Nishikawa National Institte of Aerospace, Hampton, VA 3, USA Downloaded

More information

High Order Unstructured Finite Difference Method in Aeroacoustics

High Order Unstructured Finite Difference Method in Aeroacoustics High Order Unstrctred Finite Difference Method in Aeroacostics B. Basel, A.Kolb, M.Grünewald Corporate Research Centre Germany Page B.Basel, A.Kolb Branschweig, 3th Janary 3 IRT/LG/MD Introdction Vertex

More information

RIVER & STREAMS HYDRAULICS

RIVER & STREAMS HYDRAULICS RIVER & STREAMS HYRAULICS Benoit Csman-Roisin artmot College River flow is 3 and nsteady (trblent). Bt: lengt of river >> widt & dept As a reslt, te downstream velocity, aligned wit te cannel, dominates

More information

), σ is a parameter, is the Euclidean norm in R d.

), σ is a parameter, is the Euclidean norm in R d. WEIGHTED GRAPH LAPLACIAN AND IMAGE INPAINTING ZUOQIANG SHI, STANLEY OSHER, AND WEI ZHU Abstract. Inspired by the graph Laplacian and the point integral method, we introdce a novel weighted graph Laplacian

More information

3 2D Elastostatic Problems in Cartesian Coordinates

3 2D Elastostatic Problems in Cartesian Coordinates D lastostatic Problems in Cartesian Coordinates Two dimensional elastostatic problems are discssed in this Chapter, that is, static problems of either plane stress or plane strain. Cartesian coordinates

More information

Derivatives of Exponentials

Derivatives of Exponentials mat 0 more on derivatives: day 0 Derivatives of Eponentials Recall tat DEFINITION... An eponential function as te form f () =a, were te base is a real number a > 0. Te domain of an eponential function

More information

= 0 and states ''hence there is a stationary point'' All aspects of the proof dx must be correct (c)

= 0 and states ''hence there is a stationary point'' All aspects of the proof dx must be correct (c) Paper 1: Pure Matematics 1 Mark Sceme 1(a) (i) (ii) d d y 3 1x 4x x M1 A1 d y dx 1.1b 1.1b 36x 48x A1ft 1.1b Substitutes x = into teir dx (3) 3 1 4 Sows d y 0 and states ''ence tere is a stationary point''

More information

1 Differential Equations for Solid Mechanics

1 Differential Equations for Solid Mechanics 1 Differential Eqations for Solid Mechanics Simple problems involving homogeneos stress states have been considered so far, wherein the stress is the same throghot the component nder std. An eception to

More information

10.2 Solving Quadratic Equations by Completing the Square

10.2 Solving Quadratic Equations by Completing the Square . Solving Qadratic Eqations b Completing the Sqare Consider the eqation ( ) We can see clearl that the soltions are However, What if the eqation was given to s in standard form, that is 6 How wold we go

More information

POLYNOMIAL AND SPLINE ESTIMATORS OF THE DISTRIBUTION FUNCTION WITH PRESCRIBED ACCURACY

POLYNOMIAL AND SPLINE ESTIMATORS OF THE DISTRIBUTION FUNCTION WITH PRESCRIBED ACCURACY APPLICATIONES MATHEMATICAE 36, (29), pp. 2 Zbigniew Ciesielski (Sopot) Ryszard Zieliński (Warszawa) POLYNOMIAL AND SPLINE ESTIMATORS OF THE DISTRIBUTION FUNCTION WITH PRESCRIBED ACCURACY Abstract. Dvoretzky

More information

Outline. Model Predictive Control: Current Status and Future Challenges. Separation of the control problem. Separation of the control problem

Outline. Model Predictive Control: Current Status and Future Challenges. Separation of the control problem. Separation of the control problem Otline Model Predictive Control: Crrent Stats and Ftre Challenges James B. Rawlings Department of Chemical and Biological Engineering University of Wisconsin Madison UCLA Control Symposim May, 6 Overview

More information

Technical Note. ODiSI-B Sensor Strain Gage Factor Uncertainty

Technical Note. ODiSI-B Sensor Strain Gage Factor Uncertainty Technical Note EN-FY160 Revision November 30, 016 ODiSI-B Sensor Strain Gage Factor Uncertainty Abstract Lna has pdated or strain sensor calibration tool to spport NIST-traceable measrements, to compte

More information

Discrete Energy Laws for the First-Order System Least-Squares Finite-Element Approach

Discrete Energy Laws for the First-Order System Least-Squares Finite-Element Approach Discrete Energy Laws for te First-Order System Least-Sqares Finite-Element Approac J. H. Adler (B),I.Lask, S. P. MacLaclan, and L. T. Zikatanov 3 Department of Matematics, Tfts University, Medford, MA

More information

Continuity and Differentiability of the Trigonometric Functions

Continuity and Differentiability of the Trigonometric Functions [Te basis for te following work will be te definition of te trigonometric functions as ratios of te sides of a triangle inscribed in a circle; in particular, te sine of an angle will be defined to be te

More information

Calculations involving a single random variable (SRV)

Calculations involving a single random variable (SRV) Calclations involving a single random variable (SRV) Example of Bearing Capacity q φ = 0 µ σ c c = 100kN/m = 50kN/m ndrained shear strength parameters What is the relationship between the Factor of Safety

More information

Juan Casado-Díaz University of Sevilla

Juan Casado-Díaz University of Sevilla Jan Casado-Díaz University of Sevilla Model problem: α β μ > R N open bonded f H F i : R R N R Caratédory fnctions i = 2 F i (x s ξ) C + s 2 + ξ 2 CP inf ω F (x ) + F 2 (x ) \ω div αχ ω + βχ \ω = f in

More information

1 Upwind scheme for advection equation with variable. 2 Modified equations: numerical dissipation and dispersion

1 Upwind scheme for advection equation with variable. 2 Modified equations: numerical dissipation and dispersion 1 Upwind sceme for advection equation wit variable coefficient Consider te equation u t + a(x)u x Applying te upwind sceme, we ave u n 1 = a (un u n 1), a 0 u n 1 = a (un +1 u n ) a < 0. CFL condition

More information

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x.

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x. Problem. Let f x x. Using te definition of te derivative prove tat f x x Solution. Te function f x is only defined wen x 0, so we will assume tat x 0 for te remainder of te solution. By te definition of

More information

arxiv: v1 [physics.flu-dyn] 4 Sep 2013

arxiv: v1 [physics.flu-dyn] 4 Sep 2013 THE THREE-DIMENSIONAL JUMP CONDITIONS FOR THE STOKES EQUATIONS WITH DISCONTINUOUS VISCOSITY, SINGULAR FORCES, AND AN INCOMPRESSIBLE INTERFACE PRERNA GERA AND DAVID SALAC arxiv:1309.1728v1 physics.fl-dyn]

More information

REVIEW LAB ANSWER KEY

REVIEW LAB ANSWER KEY REVIEW LAB ANSWER KEY. Witout using SN, find te derivative of eac of te following (you do not need to simplify your answers): a. f x 3x 3 5x x 6 f x 3 3x 5 x 0 b. g x 4 x x x notice te trick ere! x x g

More information

Average Rate of Change

Average Rate of Change Te Derivative Tis can be tougt of as an attempt to draw a parallel (pysically and metaporically) between a line and a curve, applying te concept of slope to someting tat isn't actually straigt. Te slope

More information

Sin, Cos and All That

Sin, Cos and All That Sin, Cos and All Tat James K. Peterson Department of Biological Sciences and Department of Matematical Sciences Clemson University Marc 9, 2017 Outline Sin, Cos and all tat! A New Power Rule Derivatives

More information

Curves - Foundation of Free-form Surfaces

Curves - Foundation of Free-form Surfaces Crves - Fondation of Free-form Srfaces Why Not Simply Use a Point Matrix to Represent a Crve? Storage isse and limited resoltion Comptation and transformation Difficlties in calclating the intersections

More information

PREDICTABILITY OF SOLID STATE ZENER REFERENCES

PREDICTABILITY OF SOLID STATE ZENER REFERENCES PREDICTABILITY OF SOLID STATE ZENER REFERENCES David Deaver Flke Corporation PO Box 99 Everett, WA 986 45-446-6434 David.Deaver@Flke.com Abstract - With the advent of ISO/IEC 175 and the growth in laboratory

More information

A New Fifth Order Finite Difference WENO Scheme for Hamilton-Jacobi Equations

A New Fifth Order Finite Difference WENO Scheme for Hamilton-Jacobi Equations A New Fift Order Finite Difference WENO Sceme for Hamilton-Jacobi Equations Jun Zu, 1 Jianxian Qiu 1 College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 10016, People

More information

Lecture 21. Numerical differentiation. f ( x+h) f ( x) h h

Lecture 21. Numerical differentiation. f ( x+h) f ( x) h h Lecture Numerical differentiation Introduction We can analytically calculate te derivative of any elementary function, so tere migt seem to be no motivation for calculating derivatives numerically. However

More information

ERROR BOUNDS FOR THE METHODS OF GLIMM, GODUNOV AND LEVEQUE BRADLEY J. LUCIER*

ERROR BOUNDS FOR THE METHODS OF GLIMM, GODUNOV AND LEVEQUE BRADLEY J. LUCIER* EO BOUNDS FO THE METHODS OF GLIMM, GODUNOV AND LEVEQUE BADLEY J. LUCIE* Abstract. Te expected error in L ) attimet for Glimm s sceme wen applied to a scalar conservation law is bounded by + 2 ) ) /2 T

More information

Order of Accuracy. ũ h u Ch p, (1)

Order of Accuracy. ũ h u Ch p, (1) Order of Accuracy 1 Terminology We consider a numerical approximation of an exact value u. Te approximation depends on a small parameter, wic can be for instance te grid size or time step in a numerical

More information

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible.

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible. 004 Algebra Pretest answers and scoring Part A. Multiple coice questions. Directions: Circle te letter ( A, B, C, D, or E ) net to te correct answer. points eac, no partial credit. Wic one of te following

More information

VNVe 2017/ Final project

VNVe 2017/ Final project VNVe 2017/2018 - Final project Athor s name Febrary 21, 2018 Solve all examples and send yor final soltion (pdf file) and all sorce codes (LaTex, MATLAB,, ++, etc.) to e-mail address satek@fit.vtbr.cz

More information

Part 2: Introduction to Open-Channel Flow SPRING 2005

Part 2: Introduction to Open-Channel Flow SPRING 2005 Part : Introduction to Open-Cannel Flow SPRING 005. Te Froude number. Total ead and specific energy 3. Hydraulic jump. Te Froude Number Te main caracteristics of flows in open cannels are tat: tere is

More information

Homotopy Perturbation Method for Solving Linear Boundary Value Problems

Homotopy Perturbation Method for Solving Linear Boundary Value Problems International Jornal of Crrent Engineering and Technolog E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/categor/ijcet Research Article Homotop

More information

Math 312 Lecture Notes Modeling

Math 312 Lecture Notes Modeling Mat 3 Lecture Notes Modeling Warren Weckesser Department of Matematics Colgate University 5 7 January 006 Classifying Matematical Models An Example We consider te following scenario. During a storm, a

More information

Lecture 15. Interpolation II. 2 Piecewise polynomial interpolation Hermite splines

Lecture 15. Interpolation II. 2 Piecewise polynomial interpolation Hermite splines Lecture 5 Interpolation II Introduction In te previous lecture we focused primarily on polynomial interpolation of a set of n points. A difficulty we observed is tat wen n is large, our polynomial as to

More information