1.2 The Mean, Variance, and Standard Deviation. x x. standard deviation: σ = σ ; geometric series is. 1 x. 1 n xi. n n n

Size: px
Start display at page:

Download "1.2 The Mean, Variance, and Standard Deviation. x x. standard deviation: σ = σ ; geometric series is. 1 x. 1 n xi. n n n"

Transcription

1 . The Mea, Varace, ad Sadard Devao mea: µ f ( u f ( u ukf ( uk S k k varace: ( f ( ( u f ( u ( u f ( u f ( S sadard devao: geomerc seres s [emrcal dsrbuo s] samle mea: [emrcal dsrbuo s] varace: [emrcal dsrbuo s] samle varace: S f <, ower: ( + seres:, X v ( ( ( s ( + f ( + ( + 6. Proeres of Probabl P(A-P(A muuall elcusve whe A B em se, so P( A B P( A + P( B P(A+P(A P( A B P( A + P( B P( A B, P( A B P( A + P( A' B, P( A' B P( B P( A B P( A B C P( A + P( B + P( C P( A B P( A C P( B C + P( A B C h ( A P( A m ( S Q: dvde a le segme o wo ars, rob. oe ar s a leas wce as log as aoher, s /. Mehods of Eumerao Ordered w/o Relaceme (ermuao of objecs ake r a a me: ags osos,..4 ou of 9 r Ordered w/ Relaceme: (combos of lock, zza ogs Uordered w/o Relaceme (combao of objecs ake r a a me: games, cards, dff. kds of cad seleced a radom Uordered w/ Relaceme: ( + r! r!(!! Pr (-dff. color flags ou of 4 4 ( r! C r! ( r (world seres r!( r!. Codoal Probabl P( A B of eve A gve B occurred: P( A B, f P( B > P( B robabl ha wo eves boh occur (mullcao rule: P( A B P( A P( B A, P( B A P( B P( A B P( A B C P( A P( B A P( C A B Q: Prob. of drawg wo hears: P( A B P( A P( B A (rob. of oe, mes rob. of drawg secod gve cards lef P(( A B' P( A B rob. of kgs -card had w/ a leas kgs: A or 4 Ks, B,, or 4 Ks, ( A ( ( + ( 4( 9 P( A B ( B ( ( + ( ( + ( 4( dce roll ls all oucomes 6 decks, draw 6 cards, all dffere f P(A rob he mach s -P(A

2 .4 Ideede Eves ff P( A B P( A P( B Also, hese are deede: A ad B, A ad B, A ad B A, B, C are muuall deede ff: arwse deede ( P( A B P( A P( B, P( A C P( A P( C, P( B C P( B P( C ad P( A B C P( A P( B P( C Also, hese are deede: A ad (BC, A ad (BuC, A ad (B C, A ad B ad C mu. de. Q: P( A B P( A + P( B P( A P( B f de. laers kck fooball: rob. eacl oe makes s P( A A' A' + P( A' A A' + P( A' A' A (ad so o co ossed mes: rob. of a sequece s (/^, heads of s ( choose *(/^. Radom Varables of he Dscree Te r.v. X(s sace of X{:X(s, ss}.m.f.: P(Xf( such ha f(>, sum of all f(. Hergeomerc dsrbuo: ( ( ( f (,,,, µ, (selecg r objecs a radom whou relaceme from a se comosed of wo es of objecs Q: deerme c such ha f(*c was.m.f.,, : se f(+..+f(c+c+..+c55c, so c/55 rel. freq: (X/ hergeo-- defecve ems eacl : P(X, a mos : P(X+P(X. Mahemacal Eecao s E[ u( X ] u( f (, mea s E( X S µ oo, E[( X ] E( X Var( X f c s a cosa, E(cc c cosa ad u fuco, E[c u(x]ce[u(x] E[cu(X+cu(X] ce[u(x]+ce[u(x] Q: radom eger from frs : f(/, E[X(-X]E[X]-E[X^] use seres o g. o calculae E(X loo ckes: $.5 each,,6 draw ou of Ml,,-$5, 4-$,, -$5,, -$,: E[X](*5+..+*/Ml value for us: E[X]-$.5 E[X] s DE whe seres does o coverge E[( X ] skewess s, o ar s: E[( X ] E[ X ] µ E[ X ] + µ. Beroulls Trals ad he Bomal Dsrbuo Ber. Trals: wo dffere oucomes (es/o each eerme rob. of success, q- of falure Beroull Dsrbuo: f ( (,,, M ( + e, µ, (,,! Bomal Dsrbuo: f ( (,,..,, ( ( M + e, µ, (, X#!(! of success Beroull rals b(, Q: draw wo dff. color balls: 7Red, Whe, X f red, X f whe > Beroull ad 7/8 es w/ 6 Qs, 5 oss. awers: P(correc o # ad #4P(C,I,I,C,I,I(/5^*(4/5^4 P(correc o QsP*(6 choose whe ask wha s eeced value, lug ha umber o E[#] bomal: P( X 5 P( X 4 rob. of wg a leas oe rze b(# of ckes bough, rob. loo s P( X P( X use formula for f (.4 The Mome-Geerag Fuco m.g.f: ( ( X X M E e e f (, -h<<h, M '( e X f ( S S ( z z z z..., z M "( < <, µ,, M (E(X, M (E(X M e f X "( ( S

3 egave Bomal Dsrbuo: ( r r( µ r r r f ( (, r, r +,..., r ( e M (, l( r [ ( e ] >, (,, do Ber. rals ul r successes, X# of ral whe success observed Geomerc Dsrbuo: f ( ( e, M (, l( ( e <, µ,, X# of rals o oba s success seq. of Ber. rals m + m Uform Dsrbuo: f (,,,.., m, µ, m Q: whe asked o fd mea&ec kowg M(, check o see whch dsr. M( s for ease whe we have b(, wh >.5, se Y s b(,-, P(X<-P(Y< Geo: eole s brhdas (/65, P(X>4(-^4 P(X<P(X<99-(-^99 k + P(( X > k + j ( X > k P( X > k + j q j P( X > k + j X > k q P( X > j k P( X > k P( X > k q.5 The Posso Dsrbuo λ e λ rob. of oe chage erval legh h s h(/ f (, M ( e λ, µ λ, # of eves!` occurg a u erval, eves are occurg radoml a a mea rae of er u erval Q: P(<X<5P(X<5-P(X< P(X>-P(X<, P(X f( cus/hr, mea e. mea(flaws er u*legh 4. Radom Varables of Coous Te Prob. des. fuc. (.d.f.: f( sasfes: rob. of eve X ( e A s P( X A f ( d o S, elsewhere. [Cumlve[ dsrbuo fuco (c.d.f.: F( P( X f ( d, F (f(.d.f. P(Xb ad P(a<X<b a sg <+ F(b-F(a. µ E( X f ( d, Var( X E[( X ] ( f ( d, M ( e f ( d, h < < h π - (h ercele (area uder f( o he lef of π A π s : f ( d F( π (, Q: o fd Ds. Fuc, ake egral of f( f f ( {, oherwse, he F( {, (, < <, } fd c such ha f( was.d.f., se egral of f( from o c we usuall relace mus-f wh lower lm 4. The Uform ad Eoeal Dsrbuos Uform dsrbuo: F((-a/(b-a o a<b, o <a, o b,.d.f: f(/(b-a, ab sa, X s U(a,b b a a + b ( b a e e µ,, M (,, (selec a o a radom from [a,b] ( b a Eoeal dsrbuo: wag me for s arrval whe observg Posso rocess wh mea rae of chage(arrvals λ / θ : f ( e,, θ M (, <, µ θ, θ, M '(, θ θ θ θ ( θ θ / θ / θ M "(, F( { e o <,o <, meda m: m θ l(, P( X > e ( θ Q: U: P(X>8-P(X<8-F(8 (see s le P(<X<8F(8-F( cusomer arrves a cera wdow of me EXP: P(<X<F(-F(, P(X>-F(, P(X>4 X>P(X>-F( wag me ul s call arrves lamdacalls/mosso mea/legh

4 4. The Gamma ad Ch-Square Dsrbuos Gamma fuco: Γ ( e d, <, Γ ( (! Gamma dsrbuo: lke eoeal, bu wag ul h arrval. α / θ e f (, < <, α Γ( α θ α k λw M (, < ( λw e, ( θ α θ µ αθ, αθ, F( w k k! Ch-square dsrbuo w/ r degrees of freedom: gamma wh, / sum of squares of r deede (, r / / e varables. X s χ ( r. f (, <, M (, < r / / Γ( r / ( r, µ r, r, r / w/ w e dw, r, r / F( Γ( r / Q: Gamma ul h call arrves P(X<5F(5(use F(5 P(X>5- use ergral from 5 o + f f <5, use f o 5 or -P(X<5 (7 / e[ 7 /] (7 /[ e[ 7 /]] [e[ 7 /]] Ch-square use able f 5 observ., 4 degr. Freedom, fd rob. ha a mos of 5 obs. Eceed P(X< (able IV, so we have b(5,.9, add u for P(X+P(X+P(X+P(X 4.4 The ormal Dsrbuo Errors measuremes, heghs of chldre, breakg sreghs < µ <, <, M ( e( µ + /, µ E( X µ, Var( X, X s ( µ, w/ z e dw If Z s (,, Z has sadard orm. ds.: Φ ( z P( Z z, Φ( z Φ ( z π a X b b a P( a X b P( Φ( Φ ( b/c ( X / s (, If X s ( µ,, he V ( X / Z s χ ( e( ( u / f (, π 5. Dsrbuos of Two Radom Varables f(, P(X, Y jo.m.f. sasfes: f (, ad (, S P[( X, Y A] f (, (smlar for df, (, A ergrals from o + f Margal.m.f. of X: f( f (, P( X, S (same for Y X ad Y deede ff P(X, YP(XP(Y or f(,f(f(, oherwse deede (whe suor S s o recagular. Eeced value of u( X, X : E[ u( X, X ] u(, f (, E[ u ( X, X ] E( X µ, f ux varace of X s Hergeomerc dsrbuo for : Tromal dsrbuo: mea of X s (, S E[ u ( X, X ] E[( X ],, ( ( ( ( f (, (margal mf are regular hergeo. ds.! ( f (,!!(!, X s b(,, X s b(,, X & X deede

5 Q: Margals: of : (+/, of : (+/ P(X>Y(sum of all scearos where X>Y same for P(X+YP(X,Y+P(X, Y samle suor for hergeo (cards: S{(X,X <+<, <, <} romal: S{(, <, <7, +<7} ragular romal P(X<: use margal mf for X. 5. The Correlao Coeffce Covarace of X ad X: E[ u( X, X ] E[( X ( X ] Cov( X, X f Cov( X, X u( X, X ( X ( X Correlao coeffce of X ad X: ρ f sd. devs. > µ E( X f (, f (, f( Covarace: Cov( X, X E( X X µ ( ( f (, S Leas-squares regresso le: sloe ρ, he le s µ + ρ (, e. value of square s K b E Y b X, s m: K ( {[( µ ( µ ] } Samle Correlao Coeffce for Emercal Dsrbuo: r ( ρ ( ρ corr. coeff of wo de. varables s s, samle leas squares regresso le s ˆ + r ( s, E(XYsum of all combaos Q: Use boed formula for meas of ad ( f ( f ( of ad ad he fuco: **f(,+**f(,+**f(,+**f(, romal ds E(X ad E(Y: calculae f(, f(,, f(, f(,, he add o E(X ad E(Y resecvel, Var(X^*f(+..+^*f( mea-squared o ge corr. Coef. calc meas of ad, calculae E(XY, he Cov(X,Y, he lug he umbers 5. Codoal Dsrbuos codoal.m.f. of X, gve Y, s f (, g( f ( rovded f(> of Y, gve X, s f (, h( f ( cod. rob.: P( a < Y < b X h( cod. eecao: E[ u( Y X ] u( h( cod. mea { : a< < b} of Y, gve X, µ Y E( Y h( cod. var. of Y, Y E{[ Y E( Y ] } [ E( Y ] h(, also Y E( Y [ E( Y ] f E(Y s lear, he s E( Y µ + ρ ( (same as bes-f le For Tromal: X ad Y have margal bomal dsrbuos b(, ad b(, hus h( f (, (! f (!(!, hus codoal.m.f. of Y, gve X, s bomal b,, cod. meas E( Y ( ad E( X ( ρ ( ( Q: wegh of soa observed mes s b(,, so are ees of fl use E(X, Var(X(- formulas how dsrbued codoall fd h( or g( erms of or resecvell, f bomal, use formula o fd E(X^- XY+Y^, fd E(X, he E(Y, Var(X, Var(Y, E(X^E(X^+Var(X, calculae corr. coef. usg formula

6 seco, calculae E(XY, lug all #s. Le X have a dsr. ad le cod. dsr. of Y, gve X, be, he jo.d.f. s f(,h( *f(, samle E( X g( d (draw cs here 6. Ideede Radom Varables P(X ad XP(XP(Xf(f(jo.m.f. Eeced value of Yu(X, X: E[ u( X, X ] u(, f( f( g(, g(.m.f. of Y. S S S If X ad X de., e. value of roduc u(xu(x s roduc of e. Values of u(x ad u(x ad E[( X ( X ] E( X E( X If r.v. s.. have same.m.f., he we sa radom samle sze? from a dsrbuo w/.m.f. f( jo.m.f. s f(f(. Q: P(Xa,Xbf(af(b f P(X+Xa, sum he ossble combos,.e. P(X, X5+P(X,X4 f raged ad df, do ergrals each over rages f E( X X... f ( d f ( d E( X E( X f P(ma X < a P( X < a... P( X > a oa ob E( X µ + 6. Dsrbuos of Sums of Ideede Radom Varables Covoluo formula: g( P( Y f ( k f ( k k Thm: X, X, X de. r. v.s w/ jo mf f(*..*f( le Yu(X, X,..,X have mf g(, he E( Y g(... u(,,.., f ( f (... f ( (for co. e, egrals relace Sum Thm: If X, X, X de. r. v.s he E[ u ( X u( X... u( X ] E[ u ( X]... E[ u( X ] Thm: Mea ad Var. of Y a X where a,..a are real cosas, are µ a µ ad a X + X X Samle mea: X (he a/ Thm: If X, X X de. r. v.s wh M (, he m.g.f. of Y a X s Y Y X Y M ( M ( a Cor: If X, X.., X observaos of a radom samle wh m.g.f. M(, he (a he m.g.f. of Y X s ( [ ( ] M Y M (b m.g.f. of (/ X X s M ( [ M ( ] X Q: fd mea E(X he E(X^, lug Y-X+X, µ, µ 7, 9, 5, he E(Y-*+7 Var(Y(- ^*9+(^*5 o show whch dsr., comue M( usg heorem.

7 6. Radom Fucos Assocaed wh ormal Dsrbuos Thm: If X, X,..X are observaos of a radom samle of sze from he ormal dsrbuo ( µ,, he he dsrbuo of samle mea (/ X X s ( µ, / Thm: Le de. dsrbuos X, X X be χ ( r, he YX+ +X s χ ( r + r r Thm: Le de. Z, Z Z have sad. orm. ds. (,. The WZ^+..+Z^ s χ ( Thm: If X, X, X are observaos from a radom samle of sze from ormal dsr. ( µ,, (/ X X ad S (/ ( X X, he (a X ad S are deede (b W ds. ( S ( X X ( X X s ( µ, c c s χ (. OTE: samlg from orm. dsr. U ( X s χ ( Thm: If X, X X are muuall de. orm. var., he. oe: f YX-X, he Y s ( µ, + Y χ ( ad c X has orm. a X b b a Q: fgure ou mea ad var ad use P( a X b P( Φ( Φ ( Soa boes: X wegh of bo, X s (6.5,.4, 9 boes radom, how ma < 6.7? A: W. W s b (9,.5 ad ( ( ( P( W (.95 + (.5(.95 + (.5 (.95 Zs, Ws, radom samle do ch-square hm whe chsquare, fd whch of wo forms s, look u values able le S^ be samle varace of 9 weghs meas s χ (8 fd P(X>X: se YX-X, so P(Y>, use oe o ge values for orm. ds., he do as usual. 6.4 The Ceral Lm Theorem Mea X of a radom samle of sze from a dsr. wh mea µ ad var. > s a rad. var. wh: ( E X µ ad Var( X CLThm: If X s he mea of a radom samle X, X X, of sze from a dsrbuo wh X a fe mea µ ad a fe varace >, he he dsrbuo of W / as. So, P( W w Φ ( w ad X s ar. (, / µ ad Y s ar. ( µ, Q: fd mea E(X ad E(X^ use mea or sum formula as arorae YX+ +X s X s (, he lm χ (

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Probabilistic methods: overview

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Probabilistic methods: overview Probably 1/19/ CS 53 Probablsc mehods: overvew Yashwa K. Malaya Colorado Sae Uversy 1 Probablsc Mehods: Overvew Cocree umbers presece of uceray Probably Dsjo eves Sascal depedece Radom varables ad dsrbuos

More information

The Poisson Process Properties of the Poisson Process

The Poisson Process Properties of the Poisson Process Posso Processes Summary The Posso Process Properes of he Posso Process Ierarrval mes Memoryless propery ad he resdual lfeme paradox Superposo of Posso processes Radom seleco of Posso Pos Bulk Arrvals ad

More information

14. Poisson Processes

14. Poisson Processes 4. Posso Processes I Lecure 4 we roduced Posso arrvals as he lmg behavor of Bomal radom varables. Refer o Posso approxmao of Bomal radom varables. From he dscusso here see 4-6-4-8 Lecure 4 " arrvals occur

More information

8. Queueing systems lect08.ppt S Introduction to Teletraffic Theory - Fall

8. Queueing systems lect08.ppt S Introduction to Teletraffic Theory - Fall 8. Queueg sysems lec8. S-38.45 - Iroduco o Teleraffc Theory - Fall 8. Queueg sysems Coes Refresher: Smle eleraffc model M/M/ server wag laces M/M/ servers wag laces 8. Queueg sysems Smle eleraffc model

More information

Density estimation. Density estimations. CS 2750 Machine Learning. Lecture 5. Milos Hauskrecht 5329 Sennott Square

Density estimation. Density estimations. CS 2750 Machine Learning. Lecture 5. Milos Hauskrecht 5329 Sennott Square Lecure 5 esy esmao Mlos Hauskrec mlos@cs..edu 539 Seo Square esy esmaos ocs: esy esmao: Mamum lkelood ML Bayesa arameer esmaes M Beroull dsrbuo. Bomal dsrbuo Mulomal dsrbuo Normal dsrbuo Eoeal famly Noaramerc

More information

The Linear Regression Of Weighted Segments

The Linear Regression Of Weighted Segments The Lear Regresso Of Weghed Segmes George Dael Maeescu Absrac. We proposed a regresso model where he depede varable s made o up of pos bu segmes. Ths suao correspods o he markes hroughou he da are observed

More information

Density estimation III.

Density estimation III. Lecure 6 esy esmao III. Mlos Hausrec mlos@cs..eu 539 Seo Square Oule Oule: esy esmao: Bomal srbuo Mulomal srbuo ormal srbuo Eoeal famly aa: esy esmao {.. } a vecor of arbue values Objecve: ry o esmae e

More information

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters Leas Squares Fg LSQF wh a complcaed fuco Theeampleswehavelookedasofarhavebeelearheparameers ha we have bee rg o deerme e.g. slope, ercep. For he case where he fuco s lear he parameers we ca fd a aalc soluo

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

Chapter 8. Simple Linear Regression

Chapter 8. Simple Linear Regression Chaper 8. Smple Lear Regresso Regresso aalyss: regresso aalyss s a sascal mehodology o esmae he relaoshp of a respose varable o a se of predcor varable. whe here s jus oe predcor varable, we wll use smple

More information

Continuous Time Markov Chains

Continuous Time Markov Chains Couous me Markov chas have seay sae probably soluos f a oly f hey are ergoc, us lke scree me Markov chas. Fg he seay sae probably vecor for a couous me Markov cha s o more ffcul ha s he scree me case,

More information

Statistics: Part 1 Parameter Estimation

Statistics: Part 1 Parameter Estimation Hery Sar ad Joh W. Woods, robably, Sascs, ad Radom ables for geers, h ed., earso ducao Ic., 0. ISBN: 978-0-3-33-6 Chaer 6 Sascs: ar arameer smao Secos 6. Iroduco 30 Ideede, Idecally Dsrbued (..d.) Observaos

More information

AML710 CAD LECTURE 12 CUBIC SPLINE CURVES. Cubic Splines Matrix formulation Normalised cubic splines Alternate end conditions Parabolic blending

AML710 CAD LECTURE 12 CUBIC SPLINE CURVES. Cubic Splines Matrix formulation Normalised cubic splines Alternate end conditions Parabolic blending CUIC SLINE CURVES Cubc Sples Marx formulao Normalsed cubc sples Alerae ed codos arabolc bledg AML7 CAD LECTURE CUIC SLINE The ame sple comes from he physcal srume sple drafsme use o produce curves A geeral

More information

Solution. The straightforward approach is surprisingly difficult because one has to be careful about the limits.

Solution. The straightforward approach is surprisingly difficult because one has to be careful about the limits. ose ad Varably Homewor # (8), aswers Q: Power spera of some smple oses A Posso ose A Posso ose () s a sequee of dela-fuo pulses, eah ourrg depedely, a some rae r (More formally, s a sum of pulses of wdh

More information

Comparison of the Bayesian and Maximum Likelihood Estimation for Weibull Distribution

Comparison of the Bayesian and Maximum Likelihood Estimation for Weibull Distribution Joural of Mahemacs ad Sascs 6 (2): 1-14, 21 ISSN 1549-3644 21 Scece Publcaos Comarso of he Bayesa ad Maxmum Lkelhood Esmao for Webull Dsrbuo Al Omar Mohammed Ahmed, Hadeel Salm Al-Kuub ad Noor Akma Ibrahm

More information

(1) Cov(, ) E[( E( ))( E( ))]

(1) Cov(, ) E[( E( ))( E( ))] Impac of Auocorrelao o OLS Esmaes ECON 3033/Evas Cosder a smple bvarae me-seres model of he form: y 0 x The four key assumpos abou ε hs model are ) E(ε ) = E[ε x ]=0 ) Var(ε ) =Var(ε x ) = ) Cov(ε, ε )

More information

Real-Time Systems. Example: scheduling using EDF. Feasibility analysis for EDF. Example: scheduling using EDF

Real-Time Systems. Example: scheduling using EDF. Feasibility analysis for EDF. Example: scheduling using EDF EDA/DIT6 Real-Tme Sysems, Chalmers/GU, 0/0 ecure # Updaed February, 0 Real-Tme Sysems Specfcao Problem: Assume a sysem wh asks accordg o he fgure below The mg properes of he asks are gve he able Ivesgae

More information

Probability and Statistics. What is probability? What is statistics?

Probability and Statistics. What is probability? What is statistics? robablt ad Statstcs What s robablt? What s statstcs? robablt ad Statstcs robablt Formall defed usg a set of aoms Seeks to determe the lkelhood that a gve evet or observato or measuremet wll or has haeed

More information

Brownian Motion and Stochastic Calculus. Brownian Motion and Stochastic Calculus

Brownian Motion and Stochastic Calculus. Brownian Motion and Stochastic Calculus Browa Moo Sochasc Calculus Xogzh Che Uversy of Hawa a Maoa earme of Mahemacs Seember, 8 Absrac Ths oe s abou oob decomoso he bascs of Suare egrable margales Coes oob-meyer ecomoso Suare Iegrable Margales

More information

Density estimation III.

Density estimation III. Lecure 4 esy esmao III. Mlos Hauskrec mlos@cs..edu 539 Seo Square Oule Oule: esy esmao: Mamum lkelood ML Bayesa arameer esmaes MP Beroull dsrbuo. Bomal dsrbuo Mulomal dsrbuo Normal dsrbuo Eoeal famly Eoeal

More information

Solution set Stat 471/Spring 06. Homework 2

Solution set Stat 471/Spring 06. Homework 2 oluo se a 47/prg 06 Homework a Whe he upper ragular elemes are suppressed due o smmer b Le Y Y Y Y A weep o he frs colum o oba: A ˆ b chagg he oao eg ad ec YY weep o he secod colum o oba: Aˆ YY weep o

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

Random Variables and Probability Distributions

Random Variables and Probability Distributions Radom Varables ad Probablty Dstrbutos * If X : S R s a dscrete radom varable wth rage {x, x, x 3,. } the r = P (X = xr ) = * Let X : S R be a dscrete radom varable wth rage {x, x, x 3,.}.If x r P(X = x

More information

Moment Generating Function

Moment Generating Function 1 Mome Geeraig Fucio m h mome m m m E[ ] x f ( x) dx m h ceral mome m m m E[( ) ] ( ) ( x ) f ( x) dx Mome Geeraig Fucio For a real, M () E[ e ] e k x k e p ( x ) discree x k e f ( x) dx coiuous Example

More information

Lecture 3 Topic 2: Distributions, hypothesis testing, and sample size determination

Lecture 3 Topic 2: Distributions, hypothesis testing, and sample size determination Lecure 3 Topc : Drbuo, hypohe eg, ad ample ze deermao The Sude - drbuo Coder a repeaed drawg of ample of ze from a ormal drbuo of mea. For each ample, compue,,, ad aoher ac,, where: The ac he devao of

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 3 o BST 63: Statstcal Theory I Ku Zhag, /6/006 Revew for the revous lecture Cocets: radom samle, samle mea, samle varace Theorems: roertes of a radom samle, samle mea, samle varace Examles: how

More information

Law of Large Numbers

Law of Large Numbers Toss a co tmes. Law of Large Numbers Suppose 0 f f th th toss came up H toss came up T s are Beroull radom varables wth p ½ ad E( ) ½. The proporto of heads s. Itutvely approaches ½ as. week 2 Markov s

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

Module 7. Lecture 7: Statistical parameter estimation

Module 7. Lecture 7: Statistical parameter estimation Lecture 7: Statstcal parameter estmato Parameter Estmato Methods of Parameter Estmato 1) Method of Matchg Pots ) Method of Momets 3) Mamum Lkelhood method Populato Parameter Sample Parameter Ubased estmato

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Lear Regresso Lear Regresso h Shrkage Iroduco Regresso meas predcg a couous (usuall scalar oupu from a vecor of couous pus (feaures x. Example: Predcg vehcle fuel effcec (mpg from 8 arbues: Lear Regresso

More information

COMPARISON OF ESTIMATORS OF PARAMETERS FOR THE RAYLEIGH DISTRIBUTION

COMPARISON OF ESTIMATORS OF PARAMETERS FOR THE RAYLEIGH DISTRIBUTION COMPARISON OF ESTIMATORS OF PARAMETERS FOR THE RAYLEIGH DISTRIBUTION Eldesoky E. Affy. Faculy of Eg. Shbee El kom Meoufa Uv. Key word : Raylegh dsrbuo, leas squares mehod, relave leas squares, leas absolue

More information

Parameter, Statistic and Random Samples

Parameter, Statistic and Random Samples Parameter, Statstc ad Radom Samples A parameter s a umber that descrbes the populato. It s a fxed umber, but practce we do ot kow ts value. A statstc s a fucto of the sample data,.e., t s a quatty whose

More information

Final Exam Applied Econometrics

Final Exam Applied Econometrics Fal Eam Appled Ecoomercs. 0 Sppose we have he followg regresso resl: Depede Varable: SAT Sample: 437 Iclded observaos: 437 Whe heeroskedasc-cosse sadard errors & covarace Varable Coeffce Sd. Error -Sasc

More information

Geometric Modeling

Geometric Modeling Geomerc Modelg 9.58. Crves coed Cc Bezer ad B-Sle Crves Far Chaers 4-5 8 Moreso Chaers 4 5 4 Tycal Tyes of Paramerc Crves Corol os flece crve shae. Ierolag Crve asses hrogh all corol os. Herme Defed y

More information

Key words: Fractional difference equation, oscillatory solutions,

Key words: Fractional difference equation, oscillatory solutions, OSCILLATION PROPERTIES OF SOLUTIONS OF FRACTIONAL DIFFERENCE EQUATIONS Musafa BAYRAM * ad Ayd SECER * Deparme of Compuer Egeerg, Isabul Gelsm Uversy Deparme of Mahemacal Egeerg, Yldz Techcal Uversy * Correspodg

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

The expected value of a sum of random variables,, is the sum of the expected values:

The expected value of a sum of random variables,, is the sum of the expected values: Sums of Radom Varables xpected Values ad Varaces of Sums ad Averages of Radom Varables The expected value of a sum of radom varables, say S, s the sum of the expected values: ( ) ( ) S Ths s always true

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

Chapter 8: Statistical Analysis of Simulated Data

Chapter 8: Statistical Analysis of Simulated Data Marquette Uversty MSCS600 Chapter 8: Statstcal Aalyss of Smulated Data Dael B. Rowe, Ph.D. Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 08 by Marquette Uversty MSCS600 Ageda 8. The Sample

More information

The Mean Residual Lifetime of (n k + 1)-out-of-n Systems in Discrete Setting

The Mean Residual Lifetime of (n k + 1)-out-of-n Systems in Discrete Setting Appled Mahemacs 4 5 466-477 Publshed Ole February 4 (hp//wwwscrporg/oural/am hp//dxdoorg/436/am45346 The Mea Resdual Lfeme of ( + -ou-of- Sysems Dscree Seg Maryam Torab Sahboom Deparme of Sascs Scece ad

More information

BASIC PRINCIPLES OF STATISTICS

BASIC PRINCIPLES OF STATISTICS BASIC PRINCIPLES OF STATISTICS PROBABILITY DENSITY DISTRIBUTIONS DISCRETE VARIABLES BINOMIAL DISTRIBUTION ~ B 0 0 umber of successes trals Pr E [ ] Var[ ] ; BINOMIAL DISTRIBUTION B7 0. B30 0.3 B50 0.5

More information

Density estimation III. Linear regression.

Density estimation III. Linear regression. Lecure 6 Mlos Hauskrec mlos@cs.p.eu 539 Seo Square Des esmao III. Lear regresso. Daa: Des esmao D { D D.. D} D a vecor of arbue values Obecve: r o esmae e uerlg rue probabl srbuo over varables X px usg

More information

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 THE ROYAL STATISTICAL SOCIETY 06 EAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 The Socety s provdg these solutos to assst cadtes preparg for the examatos 07. The solutos are teded as learg ads ad should

More information

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x)

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x) 1 Trasform Techiques h m m m m mome : E[ ] x f ( x) dx h m m m m ceral mome : E[( ) ] ( ) ( x) f ( x) dx A coveie wa of fidig he momes of a radom variable is he mome geeraig fucio (MGF). Oher rasform echiques

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

QR factorization. Let P 1, P 2, P n-1, be matrices such that Pn 1Pn 2... PPA

QR factorization. Let P 1, P 2, P n-1, be matrices such that Pn 1Pn 2... PPA QR facorzao Ay x real marx ca be wre as AQR, where Q s orhogoal ad R s upper ragular. To oba Q ad R, we use he Householder rasformao as follows: Le P, P, P -, be marces such ha P P... PPA ( R s upper ragular.

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA THE ROYAL STATISTICAL SOCIETY 3 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA PAPER I STATISTICAL THEORY & METHODS The Socety provdes these solutos to assst caddates preparg for the examatos future years ad

More information

-distributed random variables consisting of n samples each. Determine the asymptotic confidence intervals for

-distributed random variables consisting of n samples each. Determine the asymptotic confidence intervals for Assgme Sepha Brumme Ocober 8h, 003 9 h semeser, 70544 PREFACE I 004, I ed o sped wo semesers o a sudy abroad as a posgraduae exchage sude a he Uversy of Techology Sydey, Ausrala. Each opporuy o ehace my

More information

θ = θ Π Π Parametric counting process models θ θ θ Log-likelihood: Consider counting processes: Score functions:

θ = θ Π Π Parametric counting process models θ θ θ Log-likelihood: Consider counting processes: Score functions: Paramerc coug process models Cosder coug processes: N,,..., ha cou he occurreces of a eve of eres for dvduals Iesy processes: Lelhood λ ( ;,,..., N { } λ < Log-lelhood: l( log L( Score fucos: U ( l( log

More information

Continuous Distributions

Continuous Distributions 7//3 Cotuous Dstrbutos Radom Varables of the Cotuous Type Desty Curve Percet Desty fucto, f (x) A smooth curve that ft the dstrbuto 3 4 5 6 7 8 9 Test scores Desty Curve Percet Probablty Desty Fucto, f

More information

STK3100 and STK4100 Autumn 2017

STK3100 and STK4100 Autumn 2017 SK3 ad SK4 Autum 7 Geeralzed lear models Part III Covers the followg materal from chaters 4 ad 5: Sectos 4..5, 4.3.5, 4.3.6, 4.4., 4.4., ad 4.4.3 Sectos 5.., 5.., ad 5.5. Ørulf Borga Deartmet of Mathematcs

More information

Institute of Actuaries of India

Institute of Actuaries of India Isiue of cuaries of Idia Subjec CT3-robabiliy ad Mahemaical Saisics May 008 Eamiaio INDICTIVE SOLUTION Iroducio The idicaive soluio has bee wrie by he Eamiers wih he aim of helig cadidaes. The soluios

More information

Chapter 14 Logistic Regression Models

Chapter 14 Logistic Regression Models Chapter 4 Logstc Regresso Models I the lear regresso model X β + ε, there are two types of varables explaatory varables X, X,, X k ad study varable y These varables ca be measured o a cotuous scale as

More information

Random Variables. ECE 313 Probability with Engineering Applications Lecture 8 Professor Ravi K. Iyer University of Illinois

Random Variables. ECE 313 Probability with Engineering Applications Lecture 8 Professor Ravi K. Iyer University of Illinois Radom Varables ECE 313 Probablty wth Egeerg Alcatos Lecture 8 Professor Rav K. Iyer Uversty of Illos Iyer - Lecture 8 ECE 313 Fall 013 Today s Tocs Revew o Radom Varables Cumulatve Dstrbuto Fucto (CDF

More information

Section 2 Notes. Elizabeth Stone and Charles Wang. January 15, Expectation and Conditional Expectation of a Random Variable.

Section 2 Notes. Elizabeth Stone and Charles Wang. January 15, Expectation and Conditional Expectation of a Random Variable. Secto Notes Elzabeth Stoe ad Charles Wag Jauar 5, 9 Jot, Margal, ad Codtoal Probablt Useful Rules/Propertes. P ( x) P P ( x; ) or R f (x; ) d. P ( xj ) P (x; ) P ( ) 3. P ( x; ) P ( xj ) P ( ) 4. Baes

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

Asymptotic Behavior of Solutions of Nonlinear Delay Differential Equations With Impulse

Asymptotic Behavior of Solutions of Nonlinear Delay Differential Equations With Impulse P a g e Vol Issue7Ver,oveber Global Joural of Scece Froer Research Asypoc Behavor of Soluos of olear Delay Dffereal Equaos Wh Ipulse Zhag xog GJSFR Classfcao - F FOR 3 Absrac Ths paper sudes he asypoc

More information

22 Nonparametric Methods.

22 Nonparametric Methods. 22 oparametrc Methods. I parametrc models oe assumes apror that the dstrbutos have a specfc form wth oe or more ukow parameters ad oe tres to fd the best or atleast reasoably effcet procedures that aswer

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

Determination of Antoine Equation Parameters. December 4, 2012 PreFEED Corporation Yoshio Kumagae. Introduction

Determination of Antoine Equation Parameters. December 4, 2012 PreFEED Corporation Yoshio Kumagae. Introduction refeed Soluos for R&D o Desg Deermao of oe Equao arameers Soluos for R&D o Desg December 4, 0 refeed orporao Yosho Kumagae refeed Iroduco hyscal propery daa s exremely mpora for performg process desg ad

More information

FALL HOMEWORK NO. 6 - SOLUTION Problem 1.: Use the Storage-Indication Method to route the Input hydrograph tabulated below.

FALL HOMEWORK NO. 6 - SOLUTION Problem 1.: Use the Storage-Indication Method to route the Input hydrograph tabulated below. Jorge A. Ramírez HOMEWORK NO. 6 - SOLUTION Problem 1.: Use he Sorage-Idcao Mehod o roue he Ipu hydrograph abulaed below. Tme (h) Ipu Hydrograph (m 3 /s) Tme (h) Ipu Hydrograph (m 3 /s) 0 0 90 450 6 50

More information

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables Joural of Sceces Islamc epublc of Ira 6(: 63-67 (005 Uvers of ehra ISSN 06-04 hp://scecesuacr Some Probabl Iequales for Quadrac Forms of Negavel Depede Subgaussa adom Varables M Am A ozorga ad H Zare 3

More information

CS 2750 Machine Learning Lecture 5. Density estimation. Density estimation

CS 2750 Machine Learning Lecture 5. Density estimation. Density estimation CS 750 Mache Learg Lecture 5 esty estmato Mlos Hausrecht mlos@tt.edu 539 Seott Square esty estmato esty estmato: s a usuervsed learg roblem Goal: Lear a model that rereset the relatos amog attrbutes the

More information

Lecture 9. Some Useful Discrete Distributions. Some Useful Discrete Distributions. The observations generated by different experiments have

Lecture 9. Some Useful Discrete Distributions. Some Useful Discrete Distributions. The observations generated by different experiments have NM 7 Lecture 9 Some Useful Dscrete Dstrbutos Some Useful Dscrete Dstrbutos The observatos geerated by dfferet eermets have the same geeral tye of behavor. Cosequetly, radom varables assocated wth these

More information

Least squares and motion. Nuno Vasconcelos ECE Department, UCSD

Least squares and motion. Nuno Vasconcelos ECE Department, UCSD Leas squares ad moo uo Vascocelos ECE Deparme UCSD Pla for oda oda we wll dscuss moo esmao hs s eresg wo was moo s ver useful as a cue for recogo segmeao compresso ec. s a grea eample of leas squares problem

More information

Learning of Graphical Models Parameter Estimation and Structure Learning

Learning of Graphical Models Parameter Estimation and Structure Learning Learg of Grahal Models Parameer Esmao ad Sruure Learg e Fukumzu he Isue of Sasal Mahemas Comuaoal Mehodology Sasal Iferee II Work wh Grahal Models Deermg sruure Sruure gve by modelg d e.g. Mxure model

More information

Math Tricks. Basic Probability. x k. (Combination - number of ways to group r of n objects, order not important) (a is constant, 0 < r < 1)

Math Tricks. Basic Probability. x k. (Combination - number of ways to group r of n objects, order not important) (a is constant, 0 < r < 1) Math Trcks r! Combato - umbr o was to group r o objcts, ordr ot mportat r! r! ar 0 a r a s costat, 0 < r < k k! k 0 EX E[XX-] + EX Basc Probablt 0 or d Pr[X > ] - Pr[X ] Pr[ X ] Pr[X ] - Pr[X ] Proprts

More information

STK3100 and STK4100 Autumn 2018

STK3100 and STK4100 Autumn 2018 SK3 ad SK4 Autum 8 Geeralzed lear models Part III Covers the followg materal from chaters 4 ad 5: Cofdece tervals by vertg tests Cosder a model wth a sgle arameter β We may obta a ( α% cofdece terval for

More information

Cyclone. Anti-cyclone

Cyclone. Anti-cyclone Adveco Cycloe A-cycloe Lorez (963) Low dmesoal aracors. Uclear f hey are a good aalogy o he rue clmae sysem, bu hey have some appealg characerscs. Dscusso Is he al codo balaced? Is here a al adjusme

More information

Axiomatic Definition of Probability. Problems: Relative Frequency. Event. Sample Space Examples

Axiomatic Definition of Probability. Problems: Relative Frequency. Event. Sample Space Examples Rado Sgals robabl & Rado Varables: Revew M. Sa Fadal roessor o lecrcal geerg Uvers o evada Reo Soe phscal sgals ose cao be epressed as a eplc aheacal orla. These sgals s be descrbed probablsc ers. ose

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

Training Sample Model: Given n observations, [[( Yi, x i the sample model can be expressed as (1) where, zero and variance σ

Training Sample Model: Given n observations, [[( Yi, x i the sample model can be expressed as (1) where, zero and variance σ Stat 74 Estmato for Geeral Lear Model Prof. Goel Broad Outle Geeral Lear Model (GLM): Trag Samle Model: Gve observatos, [[( Y, x ), x = ( x,, xr )], =,,, the samle model ca be exressed as Y = µ ( x, x,,

More information

Quantum Mechanics II Lecture 11 Time-dependent perturbation theory. Time-dependent perturbation theory (degenerate or non-degenerate starting state)

Quantum Mechanics II Lecture 11 Time-dependent perturbation theory. Time-dependent perturbation theory (degenerate or non-degenerate starting state) Pro. O. B. Wrgh, Auum Quaum Mechacs II Lecure Tme-depede perurbao heory Tme-depede perurbao heory (degeerae or o-degeerae sarg sae) Cosder a sgle parcle whch, s uperurbed codo wh Hamloa H, ca exs a superposo

More information

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1)

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1) Aoucemes Reags o E-reserves Proec roosal ue oay Parameer Esmao Bomercs CSE 9-a Lecure 6 CSE9a Fall 6 CSE9a Fall 6 Paer Classfcao Chaer 3: Mamum-Lelhoo & Bayesa Parameer Esmao ar All maerals hese sles were

More information

KEY EQUATIONS. ES = max (EF times of all activities immediately preceding activity)

KEY EQUATIONS. ES = max (EF times of all activities immediately preceding activity) KEY EQUATIONS CHATER : Oeraos as a Comeve Weao. roduvy s he rao of ouu o u, or roduv y Ouu Iu SULEMENT A: Deso Makg. Break-eve volume: Q F. Evaluag roess, make-or-buy dfferee quay: Q F m b F b m CHATER

More information

Simulation Output Analysis

Simulation Output Analysis Smulato Output Aalyss Summary Examples Parameter Estmato Sample Mea ad Varace Pot ad Iterval Estmato ermatg ad o-ermatg Smulato Mea Square Errors Example: Sgle Server Queueg System x(t) S 4 S 4 S 3 S 5

More information

Real-time Classification of Large Data Sets using Binary Knapsack

Real-time Classification of Large Data Sets using Binary Knapsack Real-me Classfcao of Large Daa Ses usg Bary Kapsack Reao Bru bru@ds.uroma. Uversy of Roma La Sapeza AIRO 004-35h ANNUAL CONFERENCE OF THE ITALIAN OPERATIONS RESEARCH Sepember 7-0, 004, Lecce, Ialy Oule

More information

Partial Molar Properties of solutions

Partial Molar Properties of solutions Paral Molar Properes of soluos A soluo s a homogeeous mxure; ha s, a soluo s a oephase sysem wh more ha oe compoe. A homogeeous mxures of wo or more compoes he gas, lqud or sold phase The properes of a

More information

CHAPTER 6. d. With success = observation greater than 10, x = # of successes = 4, and

CHAPTER 6. d. With success = observation greater than 10, x = # of successes = 4, and CHAPTR 6 Secto 6.. a. We use the samle mea, to estmate the oulato mea µ. Σ 9.80 µ 8.407 7 ~ 7. b. We use the samle meda, 7 (the mddle observato whe arraged ascedg order. c. We use the samle stadard devato,

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Aalyss of Varace ad Desg of Exermets-I MODULE II LECTURE - GENERAL LINEAR HYPOTHESIS AND ANALYSIS OF VARIANCE Dr Shalabh Deartmet of Mathematcs ad Statstcs Ida Isttute of Techology Kaur Tukey s rocedure

More information

Moments of Order Statistics from Nonidentically Distributed Three Parameters Beta typei and Erlang Truncated Exponential Variables

Moments of Order Statistics from Nonidentically Distributed Three Parameters Beta typei and Erlang Truncated Exponential Variables Joural of Mahemacs ad Sascs 6 (4): 442-448, 200 SSN 549-3644 200 Scece Publcaos Momes of Order Sascs from Nodecally Dsrbued Three Parameers Bea ype ad Erlag Trucaed Expoeal Varables A.A. Jamoom ad Z.A.

More information

Other Topics in Kernel Method Statistical Inference with Reproducing Kernel Hilbert Space

Other Topics in Kernel Method Statistical Inference with Reproducing Kernel Hilbert Space Oher Topcs Kerel Mehod Sascal Iferece wh Reproducg Kerel Hlber Space Kej Fukumzu Isue of Sascal Mahemacs, ROIS Deparme of Sascal Scece, Graduae Uversy for Advaced Sudes Sepember 6, 008 / Sascal Learg Theory

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

Review of Probability. CS1538: Introduction to Simulations

Review of Probability. CS1538: Introduction to Simulations Review of Probability CS1538: Introduction to Simulations Probability and Statistics in Simulation Why do we need probability and statistics in simulation? Needed to validate the simulation model Needed

More information

Assessing Normality. Assessing Normality. Assessing Normality. Assessing Normality. Normal Probability Plot for Normal Distribution.

Assessing Normality. Assessing Normality. Assessing Normality. Assessing Normality. Normal Probability Plot for Normal Distribution. Assessg Normaly No All Couous Radom Varables are Normally Dsrbued I s Impora o Evaluae how Well he Daa Se Seems o be Adequaely Approxmaed by a Normal Dsrbuo Cosruc Chars Assessg Normaly For small- or moderae-szed

More information

ε. Therefore, the estimate

ε. Therefore, the estimate Suggested Aswers, Problem Set 3 ECON 333 Da Hugerma. Ths s ot a very good dea. We kow from the secod FOC problem b) that ( ) SSE / = y x x = ( ) Whch ca be reduced to read y x x = ε x = ( ) The OLS model

More information

International Journal Of Engineering And Computer Science ISSN: Volume 5 Issue 12 Dec. 2016, Page No.

International Journal Of Engineering And Computer Science ISSN: Volume 5 Issue 12 Dec. 2016, Page No. www.jecs. Ieraoal Joural Of Egeerg Ad Compuer Scece ISSN: 19-74 Volume 5 Issue 1 Dec. 16, Page No. 196-1974 Sofware Relably Model whe mulple errors occur a a me cludg a faul correco process K. Harshchadra

More information

Midterm Exam. Tuesday, September hour, 15 minutes

Midterm Exam. Tuesday, September hour, 15 minutes Ecoomcs of Growh, ECON560 Sa Fracsco Sae Uvers Mchael Bar Fall 203 Mderm Exam Tuesda, Sepember 24 hour, 5 mues Name: Isrucos. Ths s closed boo, closed oes exam. 2. No calculaors of a d are allowed. 3.

More information

The ray paths and travel times for multiple layers can be computed using ray-tracing, as demonstrated in Lab 3.

The ray paths and travel times for multiple layers can be computed using ray-tracing, as demonstrated in Lab 3. C. Trael me cures for mulple reflecors The ray pahs ad rael mes for mulple layers ca be compued usg ray-racg, as demosraed Lab. MATLAB scrp reflec_layers_.m performs smple ray racg. (m) ref(ms) ref(ms)

More information

Sampling Theory MODULE X LECTURE - 35 TWO STAGE SAMPLING (SUB SAMPLING)

Sampling Theory MODULE X LECTURE - 35 TWO STAGE SAMPLING (SUB SAMPLING) Samplg Theory ODULE X LECTURE - 35 TWO STAGE SAPLIG (SUB SAPLIG) DR SHALABH DEPARTET OF ATHEATICS AD STATISTICS IDIA ISTITUTE OF TECHOLOG KAPUR Two stage samplg wth uequal frst stage uts: Cosder two stage

More information

JORIND 9(2) December, ISSN

JORIND 9(2) December, ISSN JORIND 9() December, 011. ISSN 1596 8308. www.rascampus.org., www.ajol.o/jourals/jord THE EXONENTIAL DISTRIBUTION AND THE ALICATION TO MARKOV MODELS Usma Yusu Abubakar Deparme o Mahemacs/Sascs Federal

More information

Available online Journal of Scientific and Engineering Research, 2014, 1(1): Research Article

Available online  Journal of Scientific and Engineering Research, 2014, 1(1): Research Article Avalable ole wwwjsaercom Joural o Scec ad Egeerg Research, 0, ():0-9 Research Arcle ISSN: 39-630 CODEN(USA): JSERBR NEW INFORMATION INEUALITIES ON DIFFERENCE OF GENERALIZED DIVERGENCES AND ITS APPLICATION

More information

2SLS Estimates ECON In this case, begin with the assumption that E[ i

2SLS Estimates ECON In this case, begin with the assumption that E[ i SLS Estmates ECON 3033 Bll Evas Fall 05 Two-Stage Least Squares (SLS Cosder a stadard lear bvarate regresso model y 0 x. I ths case, beg wth the assumto that E[ x] 0 whch meas that OLS estmates of wll

More information

Outline. Queuing Theory Framework. Delay Models. Fundamentals of Computer Networking: Introduction to Queuing Theory. Delay Models.

Outline. Queuing Theory Framework. Delay Models. Fundamentals of Computer Networking: Introduction to Queuing Theory. Delay Models. Oule Fudaeals of Couer Neworg: Iroduco o ueug Theory eadg: Texboo chaer 3. Guevara Noubr CSG5, lecure 3 Delay Models Lle s Theore The M/M/ queug syse The M/G/ queug syse F3, CSG5 Fudaeals of Couer Neworg

More information

Simple Linear Regression and Correlation.

Simple Linear Regression and Correlation. Smple Lear Regresso ad Correlato. Correspods to Chapter 0 Tamhae ad Dulop Sldes prepared b Elzabeth Newto (MIT) wth some sldes b Jacquele Telford (Johs Hopks Uverst) Smple lear regresso aalss estmates

More information

4. THE DENSITY MATRIX

4. THE DENSITY MATRIX 4. THE DENSTY MATRX The desy marx or desy operaor s a alerae represeao of he sae of a quaum sysem for whch we have prevously used he wavefuco. Alhough descrbg a quaum sysem wh he desy marx s equvale o

More information

Upper Bound For Matrix Operators On Some Sequence Spaces

Upper Bound For Matrix Operators On Some Sequence Spaces Suama Uer Bou formar Oeraors Uer Bou For Mar Oeraors O Some Sequece Saces Suama Dearme of Mahemacs Gaah Maa Uersy Yogyaara 558 INDONESIA Emal: suama@ugmac masomo@yahoocom Isar D alam aer aa susa masalah

More information

z is the upper tail critical value from the normal distribution

z is the upper tail critical value from the normal distribution Statistical Iferece drawig coclusios about a populatio parameter, based o a sample estimate. Populatio: GRE results for a ew eam format o the quatitative sectio Sample: =30 test scores Populatio Samplig

More information

= p x (1 p) 1 x. Var (X) =p(1 p) M X (t) =1+p(e t 1).

= p x (1 p) 1 x. Var (X) =p(1 p) M X (t) =1+p(e t 1). Prob. fuctio:, =1 () = 1, =0 = (1 ) 1 E(X) = Var (X) =(1 ) M X (t) =1+(e t 1). 1.1.2 Biomial distributio Parameter: 0 1; >0; MGF: M X (t) ={1+(e t 1)}. Cosider a sequece of ideedet Ber() trials. If X =

More information