Supplementary information

Size: px
Start display at page:

Download "Supplementary information"

Transcription

1 Supplementary information Theoretic approach of magnetic aerosol drug targeting. The following assumptions were made for computer-aided simulation of inhaled SPION aerosol trajectories: (1) Structure of an aerosol droplet It is assumed that an aerosol droplet is of spherical shape and the average geometric mean diameter is of 3.5 µm. The aerosol droplet comprises SPIONs of 80 nm hydrodynamic diameter with a 50 nm core diameter comprising 5 nm single domain magnetite nanoparticles with a packaging density of 30% and an adsorbed 15 nm PEI 25 kda layer dispersed in water. It is assumed that 2930 SPIONs are loaded into an aerosol droplet. (2) Gravity force acting on a SPION aerosol droplet The density of the SPION is ρ=1.56 g/cm -3 which results in a mass of a SPION (NP) m NP =10-19 kg. The mass of an aerosol droplet is the sum of all of the SPIONs per droplet m NP,droplet = kg and the additional water, which amounts to m H2O = kg. Thus the water dominates the complete mass of an aerosol droplet () which is m, NP = kg and the gravity of an aerosol droplet is G= N. (3) Magnetic moment of a SPION aerosol droplet If direct particle-particle attractions of the core particles are neglected the maximal magnetic moment of a 50 nm SPION multi core particle can be calculated according to μ NP = M SAT V (1) 1

2 where µ NP is the magnetic moment of a SPION, M SAT is the saturation magnetization of magnetite (480 ka/m), and V is the total volume of magnetite within the core of the SPION assuming that the particles are magnetically saturated which is only valid for sufficiently high magnetic field intensity. Thus, the magnetic moment of a single SPION particle can be calculated to µ NP = Am 2 and the maximal magnetic moment of an aerosol droplet can be estimated at µ = Am 2 when particle-particle interactions within an aerosol droplet are neglected. In principle, such particle-particle interactions would result in an increase of the magnetic moment. Therefore, the calculations rather underestimate the magnetic moment of the aerosol droplet (22). Assuming that all of the magnetizable vectors are in parallel orientation to the external field, i.e. the particle is magnetically saturated; the force acting on a magnetizable particle in an external magnetic field can be calculated according to F M, = µ B where µ is the magnetic moment of the SPION aerosol droplet and B (2) is the magnetic flux gradient. For this reason, successful capture of the aerosol droplet will require an inhomogenous magnetic field. The electromagnet used in this study results in a magnetic flux gradient of >100 T/m in close proximity of the tip (Figure 1c). Therefore, the magnetic forces are approximately F M, 3x10-12 N which is about one order of magnitude higher than gravity. Anatomical model of the mouse trachea and computer-aided simulation of inhaled SPION aerosol droplet trajectories The following calculations are based on the geometry of the first generation of the respiratory tract of mice ((23) see Supplementary figure S1). Site-specific enrichment of 2

3 inhaled SPION droplets within the lungs primarily consists of two processes (i) transport of the aerosol droplets from the center of the airway to the airway wall and (ii) capture on its surface. Once the aerosol droplets are deposited on the airway surface the viscous drag forces which act on the particles are negligible as the air flow velocity approaches zero at the airway surface. The transport of the aerosol droplets to the airway surface is facilitated because (i) the airflow velocity is zero for a short period of time between inspiration and expiration, and (ii) the aerosol droplets have to pass the same way during expiration as after inspiration, i.e. have to pass the magnetic field twice. However, latter two aspects are not considered for computer-aided simulations and the trajectories are calculated for only one passage through the airway model. The airflow profile at the main bifurcation was calculated with a finite-element program (Comsol Multiphysics) which completely resolves the Navier-Stokes-equations. The calculations were performed for only the inhalation process. The geometric parameters for the simulation model are given in Supplementary figure S1. In addition the distance between the magnet s tip and the lung lobe was estimated based on the experimental set up. For the computer-aided simulations airflow parameters of mice were assumed based on a breathing frequency of 120/min (2/s) and a tidal volume of 200 µl which resulted in a volume flow of 800 µl/s ( m 3 /s). Assuming a diameter of the trachea of 1.4 mm, the inflow velocity is V/A=0.52 m/s. For the mathematical approach to calculate the particle trajectories the assumption was made that the particles are evenly distributed over the cross section area and the inflow profile is laminar of average velocity of 0.52 m/s. This assumption is justified because the length of the ventilation tube is high compared with its diameter (critical inflow length). The maximal particle velocity is approximately v max ~1.04 m/s. The viscosity of air was assumed to be η air =17 µpas. 3

4 The magnetic force field was approximated through a rotation-symmetric configuration of similar intensities because the magnet s tip was located very close to the target area. Based on this model, the calculations can be performed much faster than by using the original slightly asymmetric data set. The magnetic and the aerodynamic field which are required for the simulation of the aerosol droplet trajectories are shown in Supplementary figure S3 both in horizontal (x-direction) and vertical (y-direction) orientation to the flow direction. The tool for calculating the particle trajectories in dependence of the magnetic field gradient was programmed using MATLAB according to the Nassi-Shneiderman diagram displayed in Supplementary figure S4. Starting from the initial values, the magnetic flux density as well as the magnetic force, the viscous drag force, and gravity are calculated for every point of space within the anatomical model. All values were stored and then plotted. (4) Calculation of the "magnetic" velocity In addition to the flow velocity caused by viscous drag forces and gravity, the velocity due to the magnetic force must be considered to be able to calculate the trajectories of the particles. The force acting on a particle with the magnetic dipole moment μ inhomogeneous static magnetic flux density field B is (24). F ( B) within an external M, = μ (3) If we assume that all magnetic moments of the particles are aligned to the external magnetic field the vector of the magnetic moment is defined by: μ μ = B B (4) 4

5 where μ = μ and B = B. Combining (3) and (4) the magnetic force on a particle with the scalar magnetic moment m can be expressed by: F M, μ μ 2 = B B = B = μ B B B (5) Assuming that the air flow is laminar during entry and exit after inspiration and expiration, the viscous drag forces can be calculated as F 6πηr v A, = A (6) where η is the viscosity of air (η air =17 µpas), r is the radius of the SPION aerosol droplet, and v A is the air flow velocity. The "magnetic" velocity can be calculated using (7). v M, = 1 μ FM, = 6πη r 6πη r B (7) where r denotes the radius diameter of the particle and η the viscosity of the air. The resulting velocity v res of the aerosol droplet can be calculated using (8) v res μ B v = + A, 6πη r + v G (8) where v A, is the flow velocity and v G is the sedimentation velocity. 5

6 Supporting Figures Figure S1 6

7 Figure S2 7

8 Figure S3 8

9 Figure S4 9

10 Figure S5 10

11 Figure S6 11

12 12 Figure legends supplementary information Figure S1 Geometry of the mouse trachea and the main bifurcation. Schematic representation of the dimensions of the mouse trachea and the main bifurcation and their branching angle. This model was used for the computer-aided simulations. Figure S2 Magnetic flux density and air flow velocity profile. Shown is the magnetic flux density in the same (a) or perpendicular (b) orientation to the flow direction according to the rotation-symmetric tip model and the air flow velocity profile at the main bifurcation in the same (c) or perpendicular (d) orientation to the flow direction. For the computer-aided simulation a laminar flow of the air-aerosol mixture was assumed. Figure S3 Representation of the field gradients acting on a SPION aerosol droplet in the same (a) or perpendicular (b) orientation to the flow direction. Figure S4 Simplified flow chart of the simulation tool. 12

13 13 Figure S5 Computer-based simulations of SPION deflection in a magnetic gradient field. In this simulation the magnetic moment was set to 9.4x10-18 Am² which corresponds to a single magnetic nanoparticle. The magnet s tip was placed at x = 13 mm, y = 0.8 mm and z = 2.5 mm (above the left airway). None of the droplets were deposited during inspiration on the surface of each of the airways. Twenty-five trajectories were calculated in the simulation. Figure S6 Schematic representation of an improvement of the site-specificity of magnetic lung drug targeting: The magnetic field of a by-pass-magnet positioned near the mainbifurcation could direct the major part of the particles to the desired lung lobe. A second field of a target magnet could retain the particles in the target area as described. 22. Huke, B.M., Thesis, "Einfluss der Teilchen-Wechselwirkung auf die Magnetisierung in Ferrofluiden" (Universität des Saarlandes, Saarbrücken, 2002). 23. Oldham, M.J. & Phalen, R.F. Dosimetry implications of upper tracheobronchial airway anatomy in two mouse varieties. Anat. Rec. 268, (2002). 24. Lominadze, D., Mchedlishvilli, G. Red blood cell behavior at low flow rate in microvesseles. Microvasuclar. Research 56, (1999). 13

Modeling Airflow and Particle Deposition in the Lung Bahman Asgharian

Modeling Airflow and Particle Deposition in the Lung Bahman Asgharian Modeling Airflow and Particle Deposition in the Lung Bahman Asgharian Health Effects and Medical Response Applied Research Associates Raleigh, NC U.S.A. Lung Deposition Modeling Develop models based on

More information

The effect of Cartilaginous rings on Deposition by Convection, Brownian Diffusion and Electrostatics.

The effect of Cartilaginous rings on Deposition by Convection, Brownian Diffusion and Electrostatics. Excerpt from the Proceedings of the COMSOL Conference 21 Paris The effect of Cartilaginous rings on Deposition by Convection, Brownian Diffusion and Electrostatics. H.O. Åkerstedt Department of Applied

More information

Denver, CO. Send inquires to:

Denver, CO. Send inquires to: ILASS Americas, 24 rd Annual Conference on Liquid Atomization and Spray Systems, San Antonio, Texas, May 2012 Optimal Parameters for Pulmonary Particle Deposition as Function of Age R. Worden, L. Weber

More information

Analysis of particle trajectories for magnetic drug targeting

Analysis of particle trajectories for magnetic drug targeting Presented at the COMSOL Conference 2010 Paris Analysis of particle trajectories for magnetic drug targeting Alexandra Heidsieck, Bernhard Gleich Overview 1 Introduction 2 Simulation Comsol Matlab 3 Results

More information

Supplementary Methods

Supplementary Methods Supplementary Methods Modeling of magnetic field In this study, the magnetic field was generated with N52 grade nickel-plated neodymium block magnets (K&J Magnetics). The residual flux density of the magnets

More information

What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube

What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube PHYS 101 Lecture 29x - Viscosity 29x - 1 Lecture 29x Viscosity (extended version) What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube Viscosity We introduced

More information

Planar Geometry Ferrofluid Flows in Spatially Uniform Sinusoidally Time-varying Magnetic Fields

Planar Geometry Ferrofluid Flows in Spatially Uniform Sinusoidally Time-varying Magnetic Fields Presented at the 11 COMSOL Conference in Boston Planar Geometry Ferrofluid Flows in Spatially Uniform Sinusoidally Time-varying Magnetic Fields Shahriar Khushrushahi, Alexander Weddemann, Young Sun Kim

More information

Quantification of the magnetic dust deposition in the magnetopneumographic diagnostic of the human respiratory tract

Quantification of the magnetic dust deposition in the magnetopneumographic diagnostic of the human respiratory tract Quantification of the magnetic dust deposition in the magnetopneumographic diagnostic of the human respiratory tract I. Šimáček, F. Martinická, P. Jurdák Laboratory of Magnetometry, Institute of Measurement

More information

COMSOL Conference 2010

COMSOL Conference 2010 Presented at the COMSOL Conference 2010 Boston COMSOL Conference 2010 Understanding Ferrofluid Spin-Up Flows in Rotating Uniform Magnetic Fields Shahriar Khushrushahi, Prof. Markus Zahn Massachusetts Institute

More information

Unsteady Flow Of A Dust Particles Through Human Airways: Effects Of Uniform Magnet

Unsteady Flow Of A Dust Particles Through Human Airways: Effects Of Uniform Magnet Unsteady Flow Of A Dust Particles Through Human Airways: Effects Of Uniform Magnet M.Chitra, Radhakrishnan.S Abstract: The unsteady unidirectional laminar flow of Newtonian, viscous, compressible fluid

More information

8.6 Drag Forces in Fluids

8.6 Drag Forces in Fluids 86 Drag Forces in Fluids When a solid object moves through a fluid it will experience a resistive force, called the drag force, opposing its motion The fluid may be a liquid or a gas This force is a very

More information

Inertial Deposition of Particles in the Human Upper Airway Bifurcations

Inertial Deposition of Particles in the Human Upper Airway Bifurcations ISSN: 0278-6826 (Print) 1521-7388 (Online) Journal homepage: https://www.tandfonline.com/loi/uast20 Inertial Deposition of Particles in the Human Upper Airway Bifurcations Lei Zhang, Bahman Asgharian &

More information

Q1 Give answers to all of the following questions (5 marks each):

Q1 Give answers to all of the following questions (5 marks each): FLUID MECHANICS First Year Exam Solutions 03 Q Give answers to all of the following questions (5 marks each): (a) A cylinder of m in diameter is made with material of relative density 0.5. It is moored

More information

2 Navier-Stokes Equations

2 Navier-Stokes Equations 1 Integral analysis 1. Water enters a pipe bend horizontally with a uniform velocity, u 1 = 5 m/s. The pipe is bended at 90 so that the water leaves it vertically downwards. The input diameter d 1 = 0.1

More information

Magnetic Drug Targeting in Cancer Therapy

Magnetic Drug Targeting in Cancer Therapy Magnetic Drug Targeting in Cancer Therapy SOLVED WITH COMSOL MULTIPHYSICS 3.5a COPYRIGHT 2008. All right reserved. No part of this documentation may be photocopied or reproduced in any form without prior

More information

Phys102 Second Major-161 Zero Version Coordinator: Dr. Naqvi Monday, December 12, 2016 Page: 1

Phys102 Second Major-161 Zero Version Coordinator: Dr. Naqvi Monday, December 12, 2016 Page: 1 Coordinator: Dr. Naqvi Monday, December 12, 2016 Page: 1 Q1. Two point charges, with charges q1 and q2, are placed a distance r apart. Which of the following statements is TRUE if the electric field due

More information

Supporting Information. Railing Cells along 3D Microelectrode Tracks for a. Continuous-Flow Dielectrophoretic Sorting

Supporting Information. Railing Cells along 3D Microelectrode Tracks for a. Continuous-Flow Dielectrophoretic Sorting Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is The Royal Society of Chemistry 2018 Supporting Information Railing Cells along 3D Microelectrode Tracks for a Continuous-Flow

More information

Transport of Sub-micron Aerosols in Bifurcations

Transport of Sub-micron Aerosols in Bifurcations Transport of Sub-micron Aerosols in Bifurcations Fong Yew Leong a, Kenneth A. Smith a,b, hi-hwa Wang a,c a Singapore-MIT Alliance, b Massachusetts Institute of Technology, c National University of Singapore

More information

1. Draw in the magnetic field inside each box that would be capable of deflecting the particle along the path shown in each diagram.

1. Draw in the magnetic field inside each box that would be capable of deflecting the particle along the path shown in each diagram. Charged Particles in Magnetic Fields 1. Draw in the magnetic field inside each box that would be capable of deflecting the particle along the path shown in each diagram. a b c d 2. a. Three particles with

More information

SIMULATION IN MAGNETIC FIELD ENHANCED CENTRIFUGATION

SIMULATION IN MAGNETIC FIELD ENHANCED CENTRIFUGATION SIMULATION IN MAGNETIC FIELD ENHANCED CENTRIFUGATION Dipl.-Ing. Johannes Lindner*, Dipl.-Ing. Katharina Menzel, Prof. Dr.-Ing. Hermann Nirschl Institute of Mechanical Process Engineering and Mechanics

More information

Prediction of particle deposition in the respiratory track using 3D 1D modeling

Prediction of particle deposition in the respiratory track using 3D 1D modeling Scientia Iranica B (2012) 19 (6), 1479 1486 Sharif University of Technology Scientia Iranica Transactions B: Mechanical Engineering www.sciencedirect.com Prediction of particle deposition in the respiratory

More information

Modeling of Humidification in Comsol Multiphysics 4.4

Modeling of Humidification in Comsol Multiphysics 4.4 Modeling of Humidification in Comsol Multiphysics 4.4 Indrajit Wadgaonkar *1 and Suresh Arikapudi 1 1 Tata Motors Ltd. Pimpri, Pune, India, 411018. *Corresponding author: Indrajit Wadgaonkar, Tata Motors

More information

Supporting Information. Three-Dimensional Super-Resolution Imaging of Single Nanoparticle Delivered by Pipettes

Supporting Information. Three-Dimensional Super-Resolution Imaging of Single Nanoparticle Delivered by Pipettes Supporting Information Three-Dimensional Super-Resolution Imaging of Single Nanoparticle Delivered by Pipettes Yun Yu,, Vignesh Sundaresan,, Sabyasachi Bandyopadhyay, Yulun Zhang, Martin A. Edwards, Kim

More information

Optimizing Magnetic Levitation:

Optimizing Magnetic Levitation: Optimizing Magnetic Levitation: How to Tune Parameters for Best Results Overview Magnetic levitation is dependent on many aspects of gravitational force. Because the residual gravitational system and assay

More information

Elec Eng 3BA3: Structure of Biological Materials

Elec Eng 3BA3: Structure of Biological Materials Elec Eng 3BA3: Structure of Biological Materials Page 1 of 12 Day Class Instructor: Dr. I. C. BRUCE Duration of Examination: 3 Hours McMaster University Final Examination December 5, 2008 This examination

More information

Lecture 9 Laminar Diffusion Flame Configurations

Lecture 9 Laminar Diffusion Flame Configurations Lecture 9 Laminar Diffusion Flame Configurations 9.-1 Different Flame Geometries and Single Droplet Burning Solutions for the velocities and the mixture fraction fields for some typical laminar flame configurations.

More information

Kinematic and dynamic pair collision statistics of sedimenting inertial particles relevant to warm rain initiation

Kinematic and dynamic pair collision statistics of sedimenting inertial particles relevant to warm rain initiation Kinematic and dynamic pair collision statistics of sedimenting inertial particles relevant to warm rain initiation Bogdan Rosa 1, Hossein Parishani 2, Orlando Ayala 2, Lian-Ping Wang 2 & Wojciech W. Grabowski

More information

Initiation of rain in nonfreezing clouds

Initiation of rain in nonfreezing clouds Collision-coalescence Topics: Initiation of rain in nonfreezing clouds ( warm rain process) Droplet terminal fall speed Collision efficiency Growth equations Initiation of rain in nonfreezing clouds We

More information

Modelling the effectiveness of magnets in particle extraction

Modelling the effectiveness of magnets in particle extraction ANZIAM J. 57 (MINZ215) pp.m332 M352, 217 M332 Modelling the effectiveness of magnets in particle extraction H. Cooper 1 J. Denier 2 A. Ali 3 V. Chopovda 4 A. Gulley 5 (Received 19 April 217; revised 11

More information

Impact of Magnetic Field Strength on Magnetic Fluid Flow through a Channel

Impact of Magnetic Field Strength on Magnetic Fluid Flow through a Channel ISSN: 2278-8 Vol. 2 Issue 7, July - 23 Impact of Magnetic Field Strength on Magnetic Fluid Flow through a Channel S. Saha, S. Chakrabarti 2 Dept. of Mechanical Engineering, Dr. Sudhir Chandra Sur Degree

More information

SRI LANKAN PHYSICS OLYMPIAD COMPETITION 2007

SRI LANKAN PHYSICS OLYMPIAD COMPETITION 2007 SRI LANKAN PHYSICS OLYMPIAD COMPETITION 007 Time Allocated : 0 Hours Calculators are not allowed to use. Date of Examination : 07 07 007 Index No. :. Time : 9.00 a.m. - 11.00 a.m. INSTRUCTIONS Answer all

More information

Regional deposition of particles in an image-based airway model: Cfd simulation and left-right lung ventilation asymmetry

Regional deposition of particles in an image-based airway model: Cfd simulation and left-right lung ventilation asymmetry University of Iowa Iowa Research Online Theses and Dissertations Spring 2010 Regional deposition of particles in an image-based airway model: Cfd simulation and left-right lung ventilation asymmetry Andrew

More information

The steady propagation of a surfactant-laden liquid plug in a two-dimensional channel

The steady propagation of a surfactant-laden liquid plug in a two-dimensional channel PHYSICS OF FLUIDS 17, 082102 2005 The steady propagation of a surfactant-laden liquid plug in a two-dimensional channel Hideki Fujioka and James B. Grotberg a Department of Biomedical Engineering, The

More information

INFLUENCE OF THERMODIFFUSIVE PARTICLE TRANSPORT ON THERMOMAGNETIC CONVECTION IN MAGNETIC FLUIDS

INFLUENCE OF THERMODIFFUSIVE PARTICLE TRANSPORT ON THERMOMAGNETIC CONVECTION IN MAGNETIC FLUIDS MAGNETOHYDRODYNAMICS Vol. 49 (2013), No. 3-4, pp. 473 478 INFLUENCE OF THERMODIFFUSIVE PARTICLE TRANSPORT ON THERMOMAGNETIC CONVECTION IN MAGNETIC FLUIDS TU Dresden, Chair of Magnetofluiddynamics, Measuring

More information

The effect of cartilaginous rings on particle deposition by convection and Brownian diffusion

The effect of cartilaginous rings on particle deposition by convection and Brownian diffusion Vol, No7, 769-779 () http://ddoiorg/46/ns797 Natural Science The effect of cartilaginous rings on particle deposition by convection and Brownian diffusion Hans O Åkerstedt, Sofie M Högberg, T Staffan Lundström,

More information

Wet Collectors. Type 1: Spray Chamber Scrubber 10/30/2013. EVE 402 Air Pollution Generation and Control. Chapter #5 Lectures (Part 5)

Wet Collectors. Type 1: Spray Chamber Scrubber 10/30/2013. EVE 402 Air Pollution Generation and Control. Chapter #5 Lectures (Part 5) EVE 40 Air Pollution eneration and Control Chapter #5 Lectures (Part 5) Wet Collectors Water is used to either capture particulate or increase aerosol size Hygroscopic particles (those that attract and

More information

Nicholas J. Giordano. Chapter 10 Fluids

Nicholas J. Giordano.  Chapter 10 Fluids Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 10 Fluids Fluids A fluid may be either a liquid or a gas Some characteristics of a fluid Flows from one place to another Shape varies according

More information

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics REE 307 - Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics 1. Is the following flows physically possible, that is, satisfy the continuity equation? Substitute the expressions for

More information

Multiphysics Analysis of Electromagnetic Flow Valve

Multiphysics Analysis of Electromagnetic Flow Valve Multiphysics Analysis of Electromagnetic Flow Valve Jeffrey S. Crompton *, Kyle C. Koppenhoefer, and Sergei Yushanov AltaSim Technologies, LLC *Corresponding author: 13 E. Wilson Bridge Road, Suite 14,

More information

Simulation of CMOS compatible sensor structures for dielectrophoretic biomolecule immobilization

Simulation of CMOS compatible sensor structures for dielectrophoretic biomolecule immobilization Simulation of CMOS compatible sensor structures for dielectrophoretic biomolecule immobilization Honeyeh Matbaechi Ettehad *, Subhajit Guha, Christian Wenger IHP, Im Technologiepark 25, 15236 Frankfurt

More information

NUMERICAL PREDICTIONS OF DEPOSTION WITH A PARTICLE CLOUD TRACKING TECHNIQUE

NUMERICAL PREDICTIONS OF DEPOSTION WITH A PARTICLE CLOUD TRACKING TECHNIQUE Committed Individuals Solving Challenging Problems NUMERICAL PREDICTIONS OF DEPOSTION WITH A PARTICLE CLOUD TRACKING TECHNIQUE by James R. Valentine Reaction Engineering International Philip J. Smith Department

More information

Measuring S using an analytical ultracentrifuge. Moving boundary

Measuring S using an analytical ultracentrifuge. Moving boundary Measuring S using an analytical ultracentrifuge Moving boundary [C] t = 0 t 1 t 2 0 top r bottom 1 dr b r b (t) r b ω 2 = S ln = ω 2 S (t-t dt r b (t o ) o ) r b = boundary position velocity = dr b dt

More information

Transport Properties: Momentum Transport, Viscosity

Transport Properties: Momentum Transport, Viscosity Transport Properties: Momentum Transport, Viscosity 13th February 2011 1 Introduction Much as mass(material) is transported within luids (gases and liquids), linear momentum is also associated with transport,

More information

MODELLING PARTICLE DEPOSITION ON GAS TURBINE BLADE SURFACES

MODELLING PARTICLE DEPOSITION ON GAS TURBINE BLADE SURFACES MODELLING PARTICLE DEPOSITION ON GAS TURBINE BLADE SURFACES MS. Hesham El-Batsh Institute of Thermal Turbomachines and Power Plants Vienna University of Technology Getreidemarkt 9/313, A-1060 Wien Tel:

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 1. Millikan determined the charge on individual oil droplets using an arrangement as represented in the diagram. The plate voltage necessary to hold a charged droplet stationary

More information

Fluid Dynamics for Ocean and Environmental Engineering Homework #2 Viscous Flow

Fluid Dynamics for Ocean and Environmental Engineering Homework #2 Viscous Flow OCEN 678-600 Fluid Dynamics for Ocean and Environmental Engineering Homework #2 Viscous Flow Date distributed : 9.18.2005 Date due : 9.29.2005 at 5:00 pm Return your solution either in class or in my mail

More information

An assessment of time changes of the health risk of PM10 based on GRIMM analyzer data and respiratory deposition model

An assessment of time changes of the health risk of PM10 based on GRIMM analyzer data and respiratory deposition model J. Keder / Landbauforschung Völkenrode Special Issue 38 57 An assessment of time changes of the health risk of PM based on GRIMM analyzer data and respiratory deposition model J. Keder Abstract PM particles

More information

SPRING 2011 Phys 450 Solution set 2

SPRING 2011 Phys 450 Solution set 2 SPRING 011 Phys 450 Solution set Problem 1 (a) Estimate the diameter of a ater molecule from its self-diffusion coefficient, and using the Stokes-Einstein relation, assuming that it is a spherical molecule.

More information

free space (vacuum) permittivity [ F/m]

free space (vacuum) permittivity [ F/m] Electrostatic Fields Electrostatic fields are static (time-invariant) electric fields produced by static (stationary) charge distributions. The mathematical definition of the electrostatic field is derived

More information

List of symbols. Latin symbols. Symbol Property Unit

List of symbols. Latin symbols. Symbol Property Unit Abstract Aircraft icing continues to be a threat for modern day aircraft. Icing occurs when supercooled large droplets (SLD s) impinge on the body of the aircraft. These droplets can bounce off, freeze

More information

Mechanims of Aerosol Particle Deposition in the Oro-Pharynx Under Non-Steady Airflow

Mechanims of Aerosol Particle Deposition in the Oro-Pharynx Under Non-Steady Airflow Ann. Occup. Hyg., Vol. 51, No. 1, pp. 19 25, 2007 # The Author 2006. Published by Oxford University Press on behalf of the British Occupational Hygiene Society doi:10.1093/annhyg/mel072 Mechanims of Aerosol

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 Q1. (a) The diagram below shows a narrow beam of electrons produced by attracting electrons emitted from a filament wire to a metal plate which has a small hole in it. (i) Why

More information

Slanted Functional Gradient Micropillars for Optimal Bioinspired Dry

Slanted Functional Gradient Micropillars for Optimal Bioinspired Dry Supporting Information for Slanted Functional Gradient Micropillars for Optimal Bioinspired Dry Adhesion Zhengzhi Wang * Department of Engineering Mechanics, School of Civil Engineering, Wuhan University,

More information

MOLECULAR SIMULATION OF THE MICROREGION

MOLECULAR SIMULATION OF THE MICROREGION GASMEMS2010-HT01 MOLECULAR SIMULATION OF THE MICROREGION E.A.T. van den Akker 1, A.J.H. Frijns 1, P.A.J. Hilbers 1, P. Stephan 2 and A.A. van Steenhoven 1 1 Eindhoven University of Technology, Eindhoven,

More information

Flow Focusing Droplet Generation Using Linear Vibration

Flow Focusing Droplet Generation Using Linear Vibration Flow Focusing Droplet Generation Using Linear Vibration A. Salari, C. Dalton Department of Electrical & Computer Engineering, University of Calgary, Calgary, AB, Canada Abstract: Flow focusing microchannels

More information

ME 331 Homework Assignment #6

ME 331 Homework Assignment #6 ME 33 Homework Assignment #6 Problem Statement: ater at 30 o C flows through a long.85 cm diameter tube at a mass flow rate of 0.020 kg/s. Find: The mean velocity (u m ), maximum velocity (u MAX ), and

More information

Chapter 10. Solids and Fluids

Chapter 10. Solids and Fluids Chapter 10 Solids and Fluids Surface Tension Net force on molecule A is zero Pulled equally in all directions Net force on B is not zero No molecules above to act on it Pulled toward the center of the

More information

MR Advance Techniques. Flow Phenomena. Class I

MR Advance Techniques. Flow Phenomena. Class I MR Advance Techniques Flow Phenomena Class I Flow Phenomena In this class we will explore different phenomenona produced from nuclei that move during the acquisition of data. Flowing nuclei exhibit different

More information

Numerical Investigation on The Convective Heat Transfer Enhancement in Coiled Tubes

Numerical Investigation on The Convective Heat Transfer Enhancement in Coiled Tubes Numerical Investigation on The Convective Heat Transfer Enhancement in Coiled Tubes Luca Cattani Department of Industrial Engineering - University of Parma Excerpt from the Proceedings of the 2012 COMSOL

More information

Forces and movement of small water droplets in oil due to applied electric field

Forces and movement of small water droplets in oil due to applied electric field Nordic Insulation Symposium Tampere, June 3, 23 Forces and movement of small water droplets in oil due to applied electric field A. Pedersen E. Ildstad A. Nysveen Norwegian University of Norwegian University

More information

Design Of An Anisokinetic Probe For Sampling RadioactiveParticles From Ducts Of Nuclear Facilities

Design Of An Anisokinetic Probe For Sampling RadioactiveParticles From Ducts Of Nuclear Facilities Design Of An Anisokinetic Probe For Sampling RadioactiveParticles From Ducts Of Nuclear Facilities Author P. Geraldini 1 1 Sogin Spa Via Marsala 51C, 00185 Rome Italy, geraldini@sogin.it Abstract: The

More information

Particle removal in linear shear flow: model prediction and experimental validation

Particle removal in linear shear flow: model prediction and experimental validation Particle removal in linear shear flow: model prediction and experimental validation M.L. Zoeteweij, J.C.J. van der Donck and R. Versluis TNO Science and Industry, P.O. Box 155, 600 AD Delft, The Netherlands

More information

Simulation of a Pressure Driven Droplet Generator

Simulation of a Pressure Driven Droplet Generator Simulation of a Pressure Driven Droplet Generator V. Mamet* 1, P. Namy 2, N. Berri 1, L. Tatoulian 1, P. Ehouarn 1, V. Briday 1, P. Clémenceau 1 and B. Dupont 1 1 DBV Technologies, 2 SIMTEC *84 rue des

More information

Practical Analysis Of Turbulent Flow In A Pipe Using Computational Fluid Dynamics

Practical Analysis Of Turbulent Flow In A Pipe Using Computational Fluid Dynamics International Journal of Engineering Inventions e-issn: 2278-7461, p-issn: 2319-6491 Volume 3, Issue 12 [December. 2014] PP: 77-81 Practical Analysis Of Turbulent Flow In A Pipe Using Computational Fluid

More information

Momentum (Newton s 2nd Law of Motion)

Momentum (Newton s 2nd Law of Motion) Dr. Nikos J. Mourtos AE 160 / ME 111 Momentum (Newton s nd Law of Motion) Case 3 Airfoil Drag A very important application of Momentum in aerodynamics and hydrodynamics is the calculation of the drag of

More information

Integrated microfluidic platforms for magnetic separation, mixing, trapping and counting

Integrated microfluidic platforms for magnetic separation, mixing, trapping and counting Integrated microfluidic platforms for magnetic separation, mixing, trapping and counting Andreia Sofia de Lemos Barroso andreia.sofia@ist.utl.pt Instituto Superior Técnico, Lisboa, Portugal April 2016

More information

CFD SIMULATIONS OF FLOW, HEAT AND MASS TRANSFER IN THIN-FILM EVAPORATOR

CFD SIMULATIONS OF FLOW, HEAT AND MASS TRANSFER IN THIN-FILM EVAPORATOR Distillation Absorption 2010 A.B. de Haan, H. Kooijman and A. Górak (Editors) All rights reserved by authors as per DA2010 copyright notice CFD SIMULATIONS OF FLOW, HEAT AND MASS TRANSFER IN THIN-FILM

More information

Masters in Mechanical Engineering Aerodynamics 1 st Semester 2015/16

Masters in Mechanical Engineering Aerodynamics 1 st Semester 2015/16 Masters in Mechanical Engineering Aerodynamics st Semester 05/6 Exam st season, 8 January 06 Name : Time : 8:30 Number: Duration : 3 hours st Part : No textbooks/notes allowed nd Part : Textbooks allowed

More information

3. FORMS OF GOVERNING EQUATIONS IN CFD

3. FORMS OF GOVERNING EQUATIONS IN CFD 3. FORMS OF GOVERNING EQUATIONS IN CFD 3.1. Governing and model equations in CFD Fluid flows are governed by the Navier-Stokes equations (N-S), which simpler, inviscid, form is the Euler equations. For

More information

Answers to examination-style questions

Answers to examination-style questions 1 (a) Diagram/description of electric wave and magnetic wave in phase. Diagram/description/statement that electric wave is at 90º to the magnetic wave. Diagram/description/statement that direction of propagation/travel

More information

Particle interactions in dry and suspension based formulations

Particle interactions in dry and suspension based formulations Finnish Society of Physical Pharmacy, 9 th Feb 2012 Particle interactions in dry and suspension based formulations Pharmaceutical Surface Science Research Group, Department of Pharmacy and Pharmacology,

More information

1. Fluid Dynamics Around Airfoils

1. Fluid Dynamics Around Airfoils 1. Fluid Dynamics Around Airfoils Two-dimensional flow around a streamlined shape Foces on an airfoil Distribution of pressue coefficient over an airfoil The variation of the lift coefficient with the

More information

Predictive Models for Deposition of Diesel Exhaust Particulates in Human and Rat Lungs

Predictive Models for Deposition of Diesel Exhaust Particulates in Human and Rat Lungs Aerosol Science and Technology ISSN: 0278-6826 (Print) 1521-7388 (Online) Journal homepage: http://www.tandfonline.com/loi/uast20 Predictive Models for Deposition of Diesel Exhaust Particulates in Human

More information

Supplementary Information. for

Supplementary Information. for Supplementary Information for Discrete Element Model for Suppression of Coffee-Ring Effect Ting Xu, 1 Miu Ling Lam, 2,3,4 and Ting-Hsuan Chen 1,2,3,4 1 Department of Mechanical and Biomedical Engineering,

More information

A-level PHYSICS (7408/3BD)

A-level PHYSICS (7408/3BD) SPECIMEN MATERIAL A-level PHYSICS (7408/3BD) Paper 3 Section B (Turning points in Physics) Specimen 2014 Morning Time allowed: 2 hours Materials For this paper you must have: a pencil a ruler a calculator

More information

Millikan Oil Drop Experiment

Millikan Oil Drop Experiment Millikan Oil Drop Experiment Introduction The electronic charge, or electrical charge carried by an electron, is a fundamental constant in physics. During the years 1909 to 1913, R.A. Millikan used the

More information

Drop friction on liquid-infused materials

Drop friction on liquid-infused materials Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 207 Drop friction on liquid-infused materials Armelle Gas,2, Ludovic Keiser,3, Christophe Clanet,2

More information

Modeling a Catalytic Converter in Comsol Multiphysics

Modeling a Catalytic Converter in Comsol Multiphysics Modeling a Catalytic Converter in Comsol Multiphysics By Jacob Harding December 10 th, 2007 Chem E 499 Problem The goal of this project was to develop a model of a catalytic converter in Comsol Multiphysics.

More information

2. NUMERICAL INVESTIGATION OF HYPERSONIC INVISCID AND VISCOUS FLOW DECELERATION BY MAGNETIC FIELD

2. NUMERICAL INVESTIGATION OF HYPERSONIC INVISCID AND VISCOUS FLOW DECELERATION BY MAGNETIC FIELD 2. NUMERICAL INVESTIGATION OF HYPERSONIC INVISCID AND VISCOUS FLOW DECELERATION BY MAGNETIC FIELD A.B. Vatazhin O.V. Gouskov V.I. Kopchenov (Central Institute f Aviation Motors Moscow Russia) Abstract.

More information

Numerical Simulation of Mucus Clearance Inside Lung Airways

Numerical Simulation of Mucus Clearance Inside Lung Airways Numerical Simulation of Mucus Clearance Inside Lung Airways Jyoti Kori and Dr. Pratibha, Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 47667, India Corresponding

More information

Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen

Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen Department of Chemical and Biomolecular Engineering Clarkson University Outline

More information

Fluid Mechanics. Spring 2009

Fluid Mechanics. Spring 2009 Instructor: Dr. Yang-Cheng Shih Department of Energy and Refrigerating Air-Conditioning Engineering National Taipei University of Technology Spring 2009 Chapter 1 Introduction 1-1 General Remarks 1-2 Scope

More information

Azimuthal eddy currents in a wire

Azimuthal eddy currents in a wire Problem 1. Azimuthal eddy currents in a wire A longitudinal AC magnetic field B(t) = ẑb o cos(ωt) is driven through the interior of a (solid) ohmic tube with length L and radius R L, drawn rather schematically

More information

Optimization of DPF Structures with a 3D-Unit Cell Model

Optimization of DPF Structures with a 3D-Unit Cell Model Optimization of DPF Structures with a 3D-Unit Cell Model Wieland Beckert, Marcel Dannowski, Lisabeth Wagner, Jörg Adler, Lars Mammitzsch Fraunhofer IKTS, Dresden, Germany *Corresponding author: FhG IKTS,

More information

Shell Balances in Fluid Mechanics

Shell Balances in Fluid Mechanics Shell Balances in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University When fluid flow occurs in a single direction everywhere in a system, shell

More information

Effect of Particle Size on Thermal Conductivity and Viscosity of Magnetite Nanofluids

Effect of Particle Size on Thermal Conductivity and Viscosity of Magnetite Nanofluids Chapter VII Effect of Particle Size on Thermal Conductivity and Viscosity of Magnetite Nanofluids 7.1 Introduction 7.2 Effect of Particle Size on Thermal Conductivity of Magnetite Nanofluids 7.3 Effect

More information

PAPER 345 ENVIRONMENTAL FLUID DYNAMICS

PAPER 345 ENVIRONMENTAL FLUID DYNAMICS MATHEMATICAL TRIPOS Part III Monday, 11 June, 2018 9:00 am to 12:00 pm PAPER 345 ENVIRONMENTAL FLUID DYNAMICS Attempt no more than THREE questions. There are FOUR questions in total. The questions carry

More information

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

INFLUENCE OF THE SPRAY RETROACTION ON THE AIRFLOW

INFLUENCE OF THE SPRAY RETROACTION ON THE AIRFLOW Author manuscript, published in "ESAIM: Proceedings 3 (21) 153-165" DOI : 1.151/proc/2112 ESAIM: PROCEEDINGS, Vol.?, 29, 1-1 Editors: Will be set by the publisher INFLUENCE OF THE SPRAY RETROACTION ON

More information

Cumulative weight retained

Cumulative weight retained A sample of 1000 g of soil from a site was performed sieve analysis. The weights of soil collected on each sieve are presented in the tabular entry. Find effective diameter, D 30, D 60 and coefficients

More information

Sound Attenuation by Hearing Aid Earmold Tubing

Sound Attenuation by Hearing Aid Earmold Tubing Excerpt from the Proceedings of the COMSOL Conference 2008 Hannover Sound Attenuation by Hearing Aid Earmold Tubing Mads J. Herring Jensen Widex A/S Ny Vestergaardsvej 19, DK-3500 Vaerloese, Denmark, mjj@widex.dk

More information

Microscopic Momentum Balance Equation (Navier-Stokes)

Microscopic Momentum Balance Equation (Navier-Stokes) CM3110 Transport I Part I: Fluid Mechanics Microscopic Momentum Balance Equation (Navier-Stokes) Professor Faith Morrison Department of Chemical Engineering Michigan Technological University 1 Microscopic

More information

Chapter 1 The discovery of the electron 1.1 Thermionic emission of electrons

Chapter 1 The discovery of the electron 1.1 Thermionic emission of electrons Chapter 1 The discovery of the electron 1.1 Thermionic emission of electrons Learning objectives: What are cathode rays and how were they discovered? Why does the gas in a discharge tube emit light of

More information

Contents. I Introduction 1. Preface. xiii

Contents. I Introduction 1. Preface. xiii Contents Preface xiii I Introduction 1 1 Continuous matter 3 1.1 Molecules................................ 4 1.2 The continuum approximation.................... 6 1.3 Newtonian mechanics.........................

More information

15. Physics of Sediment Transport William Wilcock

15. Physics of Sediment Transport William Wilcock 15. Physics of Sediment Transport William Wilcock (based in part on lectures by Jeff Parsons) OCEAN/ESS 410 Lecture/Lab Learning Goals Know how sediments are characteried (sie and shape) Know the definitions

More information

PHY 481/581. Some classical/quantum physics for the nanometer length scale.

PHY 481/581. Some classical/quantum physics for the nanometer length scale. PHY 481/581 Some classical/quantum physics for the nanometer length scale http://creativecommons.org/licenses/by-nc-sa/3.0/ 1 What is nano-science? the science of materials whose properties scale with

More information

Droplet behaviour in a Ranque-Hilsch vortex tube

Droplet behaviour in a Ranque-Hilsch vortex tube Journal of Physics: Conference Series Droplet behaviour in a Ranque-Hilsch vortex tube To cite this article: R Liew et al 2 J. Phys.: Conf. Ser. 38 523 View the article online for updates and enhancements.

More information

Chapter 6: Incompressible Inviscid Flow

Chapter 6: Incompressible Inviscid Flow Chapter 6: Incompressible Inviscid Flow 6-1 Introduction 6-2 Nondimensionalization of the NSE 6-3 Creeping Flow 6-4 Inviscid Regions of Flow 6-5 Irrotational Flow Approximation 6-6 Elementary Planar Irrotational

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A jeweler needs to electroplate gold (atomic mass 196.97 u) onto a bracelet. He knows

More information

Mass Transfer in a Stirred Batch Reactor

Mass Transfer in a Stirred Batch Reactor Mass Transfer in a Stirred Batch Reactor In many processes, efficient reactor usage goes hand in hand with efficient mixing. The ability to accurately examine the effects of impeller placement, speed,

More information