ftdt. We often drop the parentheses and write Tf instead of Tf. We could also write in this example Tfx 0

Size: px
Start display at page:

Download "ftdt. We often drop the parentheses and write Tf instead of Tf. We could also write in this example Tfx 0"

Transcription

1 Linear algebra: The study of linear transformations on vector spaces. Q: What s a linear transformation? What s a vector space? Linear transformations and matrices: We first discuss linear transformations and how they lead to matrices when transforming n dimensional vectors to m dimensional vectors. Here we develop matrices through the idea of a linear function, or transformation, or mapping. These words are used synonymously. We all know what a function is: there is a domain, the function acts on an element of the domain and the result is an element of the range. Sometimes we write y fx, giving names to x in the domain, y in the range, and the function f that "turns" x into y. We sometimes express this sybolically as x f y. In this sense the element of the domain is "transformed" to an element of the range. You can see the usefulness of the word "transformation" when the domain consists of functions. So, for instance, if our domain D consists of continuous functions, we can consider the transformation T which acts on a function f via integration so that the result Tf is another function g Tf defined by gx x ftdt. We often drop the parentheses and write Tf instead of Tf. We could also write in this example Tfx x ftdt as our definition of the transformation T. Using the word "transformation" allows us to avoid the awkwardness of talking about a function of functions and instead talk about a transformation of functions as in this example. What makes a transformation linear? First, the domain has to be a vector space, things you can add and multiply by scalars. Otherwise, linearity doesn t make sense. Note that you can 3 add traditional vectors such as and multiply by scalars, e.g You can also add functions and multiplty them by scalars, such as px 3x 4, where we add the functions x and after multiplying by the scalars 3 and 4 respectively. On the other hand, if your domain is words (or, more precisely, finite strings of characters), then there is not an obvious way to add them and multiply by scalars. There are plenty of transformations you can define, however, on such a domain, e.g. if s is a string you can have Ts #s, the number of letters in the string, or Ts ss (the string s concatenated with itself), etc. But there is no such thing as a linear function on this domain (at least not without some more work...) Once our domain is a vector space we define a linear transformation this way: Definition: T is linear if for everyū, v in the domain, and every scalar c, we have Tū v Tū Tv and Tcū ctū. You can do this in one shot: T is linear if for everyū, v in the domain, and every choice of scalars a, b we have Taū bv atū btv. (the operation of T "distributes through" the linear combination) Linear transformations from R n to R m

2 Here we study transformations from the domain of n dimensional real vectors R n that result in an m dimensional vector in R m. A vector, let s call it x, in, let s say, R 3, is a vector with three real components, that you can write x,, x 3 or,, x 3 or. The idea of a vector in R 3 is that it is "an ordered three-tuple" of real numbers with addition and scalar multiplication defined in the usual way. How we write it is a matter of convention, but it will x 3 be convenient to denote vectors in R n using "column vectors" i.e. x. We assume the usual operations of vector addition and scalar multiplication as given. Now, what would a transformation froom R 3 to R 2 look like? Well here is one: We define the transformation T, with y Tx, by y 2 x 3 or y 2 x 3 y 2 x 3 y Tx. This transformation T is, however, not linear. How y 2 x 3 do you know?? Well, you could argue T T T so the required property of linearity is not satisfied. This next transformtion though, is linear: Tx T 4 3 x 3 x 3 While it s "pretty clear" that it s linear we ll have to carefully show that later. For now we just say: If T is a linear transformation from R n to R m that is linear, and we denote y Tx then the transformation must have the form: y a a 2...a n y 2 a 2 a 22...a 2n y m a m a m2...a mn where the coefficients a ij, i, 2,.., m, j, 2,.., n are fixed scalars. By convention we associate a ij as the coefficient of x j in the formula for y i. 2

3 As an example from R 3 to R 2 we might have y 3 2 5x 3 y 2 4 2x 3 Note that such a linear transformation is completely defined by the coefficients a ij. These coefficients form a "matrix", a rectangular array of scalars for which we will define certain operations. By convention, the system of equations y a a 2...a n y 2 a 2 a 22...a 2n y m a m a m2...a mn is written in vector/matrix form (or just matrix form) as y a a 2 a n y Ax where y y 2 a 2 a 22 a 2n Ax y m a m a m2 a mn This defines the operation of a matrix times a column vector. By convention we say that a matrix with m rows and n columns is mn (pronounced "m-by-n"). Given a matrix A, the element sitting in row i and column j is denoted by a ij, or A ij which is sometimes more convenient. This is consistent with the notation above. Mathematical formula for a linear transformation: If we look at y a a 2...a n y 2 a 2 a 22...a 2n y m a m a m2...a mn we can see that for a generic row i, we would have y i a i a i2...a in. This in turn can be written as a sum: n y i a ij x j, where the sum is over the index j and the index i is fixed. Mathematically, j sums are a more precise (and compact) way of defining expressions like this, as opposed to y i a i a i2...a in and you will often see such sums in the text. 3

4 Matrix times a vector: describing the operation ) The expression y i a i a i2...a in can be thought of as a dot product of two a i a i2 vectors y i row i x Here, we re not too concerned about a in the shape (row/column) of the vectors, because we re thinking of them as vectors. 2) The fundamental operation in matrix multiplication is a row times a column, namely a i a 2i a in a i a i2...a in y i so we usually think: If y Ax then y i is the (matrix) product of row i with x. 3) Ax as a linear combination of the columns : It s pretty easy to see (just check that everything is there) that a a 2...a n a a 2 a n y a 2 a 22...a 2n a 2 a a 2n a m a m2...a mn a m a m2 a mn col... Thus we say: Ax is a linear combination of the columns, with the components of x as coefficients. This last form is particularly useful and important. Here are several consequences: It is convenient for us to introduce in R n what we call the standard basis vectors: 4

5 ē,ē 2,...,ē n so thatē j has a "" in its j th component and is otherwise zero. In R 3 we use the standard namesē ī, ē 2 j andē 3 k for these vectors, and refer to them as "coordinate vectors". A mathematical definition of these standard basis vectors is ē i j for i j, if i j ) Confirmation of linearity: Aū v Aū Av, Acū caū We have Aū Av u col u 2...u n v col v 2...v n u v col u 2 v 2...u n v n Aū v The second result can be obtained similarly Acū cu col cu 2...cu n c u col u 2...u n caū 2) Aē col, Aē 2,..., Aē n and in general: Aē j col j 5

6 This is easy to see but one could just argue that Aē j is a linear combination of the columns, with all coefficients except for the coefficient of col j and the coefficient in that case is, so that Aē j... col j.... Looked at from another viewpoint, this result shows us that if you had an unknown transformation Tx Ax then the columns can be obtained, respectively, from the values Tē, Tē 2,.., Tē n 3) Every linear transformation from R n to R n is of the form Tx Ax for some matrix A. Suppose T is linear. Note first that in general x ē ē 2... ē n so that Tx T ē ē 2... ē n and by the assumption of linearity, Tx T ē ē 2... ē n Tē Tē 2... Tē n Tē Tē 2 Tē n Ax with A Tē Tē 2 Tē n. In words, the columns are the values of T on the standard basis vectors of R n. Systems of linear equations: A system of linear equations, with m equations in n unknowns, takes the form a a 2...a n b a 2 a 22...a 2n b 2 a m a m2...a mn b m This can be written in the more compact form Ax b. Our goal a bit later is to characterize solutions of a system in terms of properties of the matrix A. Matrix operations: We define the basic matrix operations - matrix addition, matrix multiplication, scalar multiplication - by thinking of a matrix as (defining) a transformation, or function. Matrix addition is defined through the sum of two functions; matrix multiplication is defined by thinking of the composition of two linear transformations; and likewise for scalar multiplication. Matrix addition: If we consider the tranformation Tx Ax Bx (where A and B are the same 6

7 size) then it is easy to see that T is a linear transformation, and hence can be written as Tx Cx for some matrix C. We define A B to be that matrix C, and it is easy to see that C ij A B ij A ij B ij and this defines A B from the entries in A and B. Note that from the very definition B we have Ax Bx A Bx Matrix multiplication: Suppose we have two transformations. If we consider the composition of the transformations Tx ABx (assuming the sizes are correct so that A acts on the result of Bx ) it is easy to see that this is a linear transformation either by imagining what happens to the components of x or by observing Tū v ABū v ABū Bv ABū ABv Tū Tv and similarly Tcū ABcū AcBū cabū ctū. Thus there is a single matrix C such that Tx Cx and we define the matrix product AB to be that matrix C, so that we have Tx Cx ABx ABx from the definition B. Now, what is that matrix C? We have ABx A col of B of B... of B A col of B A of B... A of B A col of B A of B A of B ABx So we observe: The j th column B is A col j of B. Now, what is AB ij. This element is the i th component of the j th column B and hence the i th component col j of B which in turn is row i col j of B. We should set this off: AB ij row i col j of B Let s give names to the sizes. If A is mn then B needs n rows so let s say B is then n p. Mathematically, thinking of the row*col above as a dot product, we can write the sum n n AB ij a ik b kj where the sum is over the index k. The elements a ik k are the elements k n of row i and the elements b kj k are the elements of column j of B and the sum multiplies corresponding entries and adds. Three ways to view matrix multiplication: Above we see the following a) The columns B are A times each columns of B, in turn. Each column B is a combination of columns. b) The i, j element B is row i times column j of B. c) The rows B are each row times B, in turn. Each row B is a linear combination of the rows of B. The viewpoint in c) is new - it is easy to see that each row B involves taking the corresponding row and multiplying by each column of B in turn. On the other hand, just as in the case of a matrix times a vector, here, a row times a matrix can also be written as a 7

8 linear combination of the rows of the matrix, with the coefficients the elements of the row. Here are the two viewpoints: or Scalar multiplication: Here we want to define ca. We consider the transformation Tx Acx Cx for a single matrix C that we define as ca. It is easy to see that C ij ca ij ca ij is how we must define C in order for this to work. We have defined all the matrix operations. We should note that a column vector x acts just like a column matrix whenever it interacts with other vectors or matrices and so a vector x can be considered as a matrix x whenever we want. So, for instance Ax is the same as Ax if we consider x as a matrix and use the definition of matrix multiplication to perform the second operation. All of the properties of matrix multiplication follow easily by considering the related transformations: ) ABC ABC the associative law Consider the transformation ABCx 8

9 ABCx ABCx from the definition of BC. ABCx ABCx from the definition B The fact that ABCx ABCx for all x means that BC ABC must hold 2) AB C AB AC the distributive law Consider the transformation AB Cx. We have AB Cx ABx Cx from the definition of B C ABx Cx ABx ACx from linearity of multiplication by A ABx ACx ABx ACx from the definition of matrix multiplication ABx ACx AB ACx from the definition of matrix addition Since AB Cx AB ACx for all x, the matrices multiplying x must be the same. The other laws for how matrix operations interact can be shown similarly. 9

Matrices: 2.1 Operations with Matrices

Matrices: 2.1 Operations with Matrices Goals In this chapter and section we study matrix operations: Define matrix addition Define multiplication of matrix by a scalar, to be called scalar multiplication. Define multiplication of two matrices,

More information

Topics. Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij

Topics. Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij Topics Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij or a ij lives in row i and column j Definition of a matrix

More information

Chapter 1 Vector Spaces

Chapter 1 Vector Spaces Chapter 1 Vector Spaces Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 110 Linear Algebra Vector Spaces Definition A vector space V over a field

More information

Math 4377/6308 Advanced Linear Algebra

Math 4377/6308 Advanced Linear Algebra 2.3 Composition Math 4377/6308 Advanced Linear Algebra 2.3 Composition of Linear Transformations Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math4377

More information

Linear Algebra and Matrix Inversion

Linear Algebra and Matrix Inversion Jim Lambers MAT 46/56 Spring Semester 29- Lecture 2 Notes These notes correspond to Section 63 in the text Linear Algebra and Matrix Inversion Vector Spaces and Linear Transformations Matrices are much

More information

ENGINEERING MATH 1 Fall 2009 VECTOR SPACES

ENGINEERING MATH 1 Fall 2009 VECTOR SPACES ENGINEERING MATH 1 Fall 2009 VECTOR SPACES A vector space, more specifically, a real vector space (as opposed to a complex one or some even stranger ones) is any set that is closed under an operation of

More information

ICS 6N Computational Linear Algebra Matrix Algebra

ICS 6N Computational Linear Algebra Matrix Algebra ICS 6N Computational Linear Algebra Matrix Algebra Xiaohui Xie University of California, Irvine xhx@uci.edu February 2, 2017 Xiaohui Xie (UCI) ICS 6N February 2, 2017 1 / 24 Matrix Consider an m n matrix

More information

[ Here 21 is the dot product of (3, 1, 2, 5) with (2, 3, 1, 2), and 31 is the dot product of

[ Here 21 is the dot product of (3, 1, 2, 5) with (2, 3, 1, 2), and 31 is the dot product of . Matrices A matrix is any rectangular array of numbers. For example 3 5 6 4 8 3 3 is 3 4 matrix, i.e. a rectangular array of numbers with three rows four columns. We usually use capital letters for matrices,

More information

Elementary maths for GMT

Elementary maths for GMT Elementary maths for GMT Linear Algebra Part 2: Matrices, Elimination and Determinant m n matrices The system of m linear equations in n variables x 1, x 2,, x n a 11 x 1 + a 12 x 2 + + a 1n x n = b 1

More information

Matrices. 1 a a2 1 b b 2 1 c c π

Matrices. 1 a a2 1 b b 2 1 c c π Matrices 2-3-207 A matrix is a rectangular array of numbers: 2 π 4 37 42 0 3 a a2 b b 2 c c 2 Actually, the entries can be more general than numbers, but you can think of the entries as numbers to start

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algera 1.4 THE MATRIX EQUATION A MATRIX EQUATION A mn Definition: If A is an matri, with columns a 1,, a n, and if is in R n, then the product of A and, denoted y A, is the

More information

Kevin James. MTHSC 3110 Section 2.1 Matrix Operations

Kevin James. MTHSC 3110 Section 2.1 Matrix Operations MTHSC 3110 Section 2.1 Matrix Operations Notation Let A be an m n matrix, that is, m rows and n columns. We ll refer to the entries of A by their row and column indices. The entry in the i th row and j

More information

Two matrices of the same size are added by adding their corresponding entries =.

Two matrices of the same size are added by adding their corresponding entries =. 2 Matrix algebra 2.1 Addition and scalar multiplication Two matrices of the same size are added by adding their corresponding entries. For instance, 1 2 3 2 5 6 3 7 9 +. 4 0 9 4 1 3 0 1 6 Addition of two

More information

Math113: Linear Algebra. Beifang Chen

Math113: Linear Algebra. Beifang Chen Math3: Linear Algebra Beifang Chen Spring 26 Contents Systems of Linear Equations 3 Systems of Linear Equations 3 Linear Systems 3 2 Geometric Interpretation 3 3 Matrices of Linear Systems 4 4 Elementary

More information

CS100: DISCRETE STRUCTURES. Lecture 3 Matrices Ch 3 Pages:

CS100: DISCRETE STRUCTURES. Lecture 3 Matrices Ch 3 Pages: CS100: DISCRETE STRUCTURES Lecture 3 Matrices Ch 3 Pages: 246-262 Matrices 2 Introduction DEFINITION 1: A matrix is a rectangular array of numbers. A matrix with m rows and n columns is called an m x n

More information

MATRICES. a m,1 a m,n A =

MATRICES. a m,1 a m,n A = MATRICES Matrices are rectangular arrays of real or complex numbers With them, we define arithmetic operations that are generalizations of those for real and complex numbers The general form a matrix of

More information

System of Linear Equations

System of Linear Equations Math 20F Linear Algebra Lecture 2 1 System of Linear Equations Slide 1 Definition 1 Fix a set of numbers a ij, b i, where i = 1,, m and j = 1,, n A system of m linear equations in n variables x j, is given

More information

Matrix Arithmetic. a 11 a. A + B = + a m1 a mn. + b. a 11 + b 11 a 1n + b 1n = a m1. b m1 b mn. and scalar multiplication for matrices via.

Matrix Arithmetic. a 11 a. A + B = + a m1 a mn. + b. a 11 + b 11 a 1n + b 1n = a m1. b m1 b mn. and scalar multiplication for matrices via. Matrix Arithmetic There is an arithmetic for matrices that can be viewed as extending the arithmetic we have developed for vectors to the more general setting of rectangular arrays: if A and B are m n

More information

Linear Algebra V = T = ( 4 3 ).

Linear Algebra V = T = ( 4 3 ). Linear Algebra Vectors A column vector is a list of numbers stored vertically The dimension of a column vector is the number of values in the vector W is a -dimensional column vector and V is a 5-dimensional

More information

A primer on matrices

A primer on matrices A primer on matrices Stephen Boyd August 4, 2007 These notes describe the notation of matrices, the mechanics of matrix manipulation, and how to use matrices to formulate and solve sets of simultaneous

More information

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Numerical Analysis Lecture Notes Peter J Olver 3 Review of Matrix Algebra Vectors and matrices are essential for modern analysis of systems of equations algebrai, differential, functional, etc In this

More information

Calculus II - Basic Matrix Operations

Calculus II - Basic Matrix Operations Calculus II - Basic Matrix Operations Ryan C Daileda Terminology A matrix is a rectangular array of numbers, for example 7,, 7 7 9, or / / /4 / / /4 / / /4 / /6 The numbers in any matrix are called its

More information

Chapter 1: Systems of Linear Equations

Chapter 1: Systems of Linear Equations Chapter : Systems of Linear Equations February, 9 Systems of linear equations Linear systems Lecture A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where

More information

Appendix C Vector and matrix algebra

Appendix C Vector and matrix algebra Appendix C Vector and matrix algebra Concepts Scalars Vectors, rows and columns, matrices Adding and subtracting vectors and matrices Multiplying them by scalars Products of vectors and matrices, scalar

More information

Matrix-Matrix Multiplication

Matrix-Matrix Multiplication Chapter Matrix-Matrix Multiplication In this chapter, we discuss matrix-matrix multiplication We start by motivating its definition Next, we discuss why its implementation inherently allows high performance

More information

Matrices. Math 240 Calculus III. Wednesday, July 10, Summer 2013, Session II. Matrices. Math 240. Definitions and Notation.

Matrices. Math 240 Calculus III. Wednesday, July 10, Summer 2013, Session II. Matrices. Math 240. Definitions and Notation. function Matrices Calculus III Summer 2013, Session II Wednesday, July 10, 2013 Agenda function 1. 2. function function Definition An m n matrix is a rectangular array of numbers arranged in m horizontal

More information

Phys 201. Matrices and Determinants

Phys 201. Matrices and Determinants Phys 201 Matrices and Determinants 1 1.1 Matrices 1.2 Operations of matrices 1.3 Types of matrices 1.4 Properties of matrices 1.5 Determinants 1.6 Inverse of a 3 3 matrix 2 1.1 Matrices A 2 3 7 =! " 1

More information

Getting Started with Communications Engineering. Rows first, columns second. Remember that. R then C. 1

Getting Started with Communications Engineering. Rows first, columns second. Remember that. R then C. 1 1 Rows first, columns second. Remember that. R then C. 1 A matrix is a set of real or complex numbers arranged in a rectangular array. They can be any size and shape (provided they are rectangular). A

More information

Chapter 1: Linear Equations

Chapter 1: Linear Equations Chapter : Linear Equations (Last Updated: September, 6) The material for these notes is derived primarily from Linear Algebra and its applications by David Lay (4ed).. Systems of Linear Equations Before

More information

A primer on matrices

A primer on matrices A primer on matrices Stephen Boyd August 4, 2007 These notes describe the notation of matrices, the mechanics of matrix manipulation, and how to use matrices to formulate and solve sets of simultaneous

More information

Algorithmic Game Theory and Applications. Lecture 4: 2-player zero-sum games, and the Minimax Theorem

Algorithmic Game Theory and Applications. Lecture 4: 2-player zero-sum games, and the Minimax Theorem Algorithmic Game Theory and Applications Lecture 4: 2-player zero-sum games, and the Minimax Theorem Kousha Etessami 2-person zero-sum games A finite 2-person zero-sum (2p-zs) strategic game Γ, is a strategic

More information

MATH 320, WEEK 7: Matrices, Matrix Operations

MATH 320, WEEK 7: Matrices, Matrix Operations MATH 320, WEEK 7: Matrices, Matrix Operations 1 Matrices We have introduced ourselves to the notion of the grid-like coefficient matrix as a short-hand coefficient place-keeper for performing Gaussian

More information

Math Linear algebra, Spring Semester Dan Abramovich

Math Linear algebra, Spring Semester Dan Abramovich Math 52 - Linear algebra, Spring Semester 22-23 Dan Abramovich Review We saw: an algorithm - row reduction, bringing to reduced echelon form - answers the questions: - consistency (no pivot on right) -

More information

Math 220 F11 Lecture Notes

Math 220 F11 Lecture Notes Math 22 F Lecture Notes William Chen November 4, 2. Lecture. Firstly, lets just get some notation out of the way. Notation. R, Q, C, Z, N,,,, {},, A B. Everyone in high school should have studied equations

More information

1 Matrices and matrix algebra

1 Matrices and matrix algebra 1 Matrices and matrix algebra 1.1 Examples of matrices A matrix is a rectangular array of numbers and/or variables. For instance 4 2 0 3 1 A = 5 1.2 0.7 x 3 π 3 4 6 27 is a matrix with 3 rows and 5 columns

More information

Chapter 1: Linear Equations

Chapter 1: Linear Equations Chapter : Linear Equations (Last Updated: September, 7) The material for these notes is derived primarily from Linear Algebra and its applications by David Lay (4ed).. Systems of Linear Equations Before

More information

Knowledge Discovery and Data Mining 1 (VO) ( )

Knowledge Discovery and Data Mining 1 (VO) ( ) Knowledge Discovery and Data Mining 1 (VO) (707.003) Review of Linear Algebra Denis Helic KTI, TU Graz Oct 9, 2014 Denis Helic (KTI, TU Graz) KDDM1 Oct 9, 2014 1 / 74 Big picture: KDDM Probability Theory

More information

Supplementary Material for MTH 299 Online Edition

Supplementary Material for MTH 299 Online Edition Supplementary Material for MTH 299 Online Edition Abstract This document contains supplementary material, such as definitions, explanations, examples, etc., to complement that of the text, How to Think

More information

Vectors and matrices: matrices (Version 2) This is a very brief summary of my lecture notes.

Vectors and matrices: matrices (Version 2) This is a very brief summary of my lecture notes. Vectors and matrices: matrices (Version 2) This is a very brief summary of my lecture notes Matrices and linear equations A matrix is an m-by-n array of numbers A = a 11 a 12 a 13 a 1n a 21 a 22 a 23 a

More information

Review Solutions for Exam 1

Review Solutions for Exam 1 Definitions Basic Theorems. Finish the definition: Review Solutions for Exam (a) A linear combination of vectors {v,..., v n } is: any vector of the form c v + c v + + c n v n (b) A set of vectors {v,...,

More information

Matrix Algebra 2.1 MATRIX OPERATIONS Pearson Education, Inc.

Matrix Algebra 2.1 MATRIX OPERATIONS Pearson Education, Inc. 2 Matrix Algebra 2.1 MATRIX OPERATIONS MATRIX OPERATIONS m n If A is an matrixthat is, a matrix with m rows and n columnsthen the scalar entry in the ith row and jth column of A is denoted by a ij and

More information

Linear transformations

Linear transformations Linear Algebra with Computer Science Application February 5, 208 Review. Review: linear combinations Given vectors v, v 2,..., v p in R n and scalars c, c 2,..., c p, the vector w defined by w = c v +

More information

n n matrices The system of m linear equations in n variables x 1, x 2,..., x n can be written as a matrix equation by Ax = b, or in full

n n matrices The system of m linear equations in n variables x 1, x 2,..., x n can be written as a matrix equation by Ax = b, or in full n n matrices Matrices Definitions Diagonal, Identity, and zero matrices Addition Multiplication Transpose and inverse The system of m linear equations in n variables x 1, x 2,..., x n a 11 x 1 + a 12 x

More information

Matrix operations Linear Algebra with Computer Science Application

Matrix operations Linear Algebra with Computer Science Application Linear Algebra with Computer Science Application February 14, 2018 1 Matrix operations 11 Matrix operations If A is an m n matrix that is, a matrix with m rows and n columns then the scalar entry in the

More information

(i) [7 points] Compute the determinant of the following matrix using cofactor expansion.

(i) [7 points] Compute the determinant of the following matrix using cofactor expansion. Question (i) 7 points] Compute the determinant of the following matrix using cofactor expansion 2 4 2 4 2 Solution: Expand down the second column, since it has the most zeros We get 2 4 determinant = +det

More information

Notes on vectors and matrices

Notes on vectors and matrices Notes on vectors and matrices EE103 Winter Quarter 2001-02 L Vandenberghe 1 Terminology and notation Matrices, vectors, and scalars A matrix is a rectangular array of numbers (also called scalars), written

More information

Several variables. x 1 x 2. x n

Several variables. x 1 x 2. x n Several variables Often we have not only one, but several variables in a problem The issues that come up are somewhat more complex than for one variable Let us first start with vector spaces and linear

More information

Definition 2.3. We define addition and multiplication of matrices as follows.

Definition 2.3. We define addition and multiplication of matrices as follows. 14 Chapter 2 Matrices In this chapter, we review matrix algebra from Linear Algebra I, consider row and column operations on matrices, and define the rank of a matrix. Along the way prove that the row

More information

v = ( 2)

v = ( 2) Chapter : Introduction to Vectors.. Vectors and linear combinations Let s begin by saying what vectors are: They are lists of numbers. If there are numbers in the list, there is a natural correspondence

More information

Lecture Notes in Linear Algebra

Lecture Notes in Linear Algebra Lecture Notes in Linear Algebra Dr. Abdullah Al-Azemi Mathematics Department Kuwait University February 4, 2017 Contents 1 Linear Equations and Matrices 1 1.2 Matrices............................................

More information

Math 54 HW 4 solutions

Math 54 HW 4 solutions Math 54 HW 4 solutions 2.2. Section 2.2 (a) False: Recall that performing a series of elementary row operations A is equivalent to multiplying A by a series of elementary matrices. Suppose that E,...,

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

Matrix Operations. Linear Combination Vector Algebra Angle Between Vectors Projections and Reflections Equality of matrices, Augmented Matrix

Matrix Operations. Linear Combination Vector Algebra Angle Between Vectors Projections and Reflections Equality of matrices, Augmented Matrix Linear Combination Vector Algebra Angle Between Vectors Projections and Reflections Equality of matrices, Augmented Matrix Matrix Operations Matrix Addition and Matrix Scalar Multiply Matrix Multiply Matrix

More information

CMU CS 462/662 (INTRO TO COMPUTER GRAPHICS) HOMEWORK 0.0 MATH REVIEW/PREVIEW LINEAR ALGEBRA

CMU CS 462/662 (INTRO TO COMPUTER GRAPHICS) HOMEWORK 0.0 MATH REVIEW/PREVIEW LINEAR ALGEBRA CMU CS 462/662 (INTRO TO COMPUTER GRAPHICS) HOMEWORK 0.0 MATH REVIEW/PREVIEW LINEAR ALGEBRA Andrew ID: ljelenak August 25, 2018 This assignment reviews basic mathematical tools you will use throughout

More information

Matrices MA1S1. Tristan McLoughlin. November 9, Anton & Rorres: Ch

Matrices MA1S1. Tristan McLoughlin. November 9, Anton & Rorres: Ch Matrices MA1S1 Tristan McLoughlin November 9, 2014 Anton & Rorres: Ch 1.3-1.8 Basic matrix notation We have studied matrices as a tool for solving systems of linear equations but now we want to study them

More information

Matrices BUSINESS MATHEMATICS

Matrices BUSINESS MATHEMATICS Matrices BUSINESS MATHEMATICS 1 CONTENTS Matrices Special matrices Operations with matrices Matrix multipication More operations with matrices Matrix transposition Symmetric matrices Old exam question

More information

MTH 35, SPRING 2017 NIKOS APOSTOLAKIS

MTH 35, SPRING 2017 NIKOS APOSTOLAKIS MTH 35, SPRING 2017 NIKOS APOSTOLAKIS 1. Linear transformations Definition 1. A function T : R n R m is called a linear transformation if, for any scalars λ,µ R and any vectors u,v R n we have: T(λu+µv)

More information

Matrices. Chapter Definitions and Notations

Matrices. Chapter Definitions and Notations Chapter 3 Matrices 3. Definitions and Notations Matrices are yet another mathematical object. Learning about matrices means learning what they are, how they are represented, the types of operations which

More information

INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATRICES

INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATRICES 1 CHAPTER 4 MATRICES 1 INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATRICES 1 Matrices Matrices are of fundamental importance in 2-dimensional and 3-dimensional graphics programming

More information

Usually, when we first formulate a problem in mathematics, we use the most familiar

Usually, when we first formulate a problem in mathematics, we use the most familiar Change of basis Usually, when we first formulate a problem in mathematics, we use the most familiar coordinates. In R, this means using the Cartesian coordinates x, y, and z. In vector terms, this is equivalent

More information

A = 3 B = A 1 1 matrix is the same as a number or scalar, 3 = [3].

A = 3 B = A 1 1 matrix is the same as a number or scalar, 3 = [3]. Appendix : A Very Brief Linear ALgebra Review Introduction Linear Algebra, also known as matrix theory, is an important element of all branches of mathematics Very often in this course we study the shapes

More information

Mathematics 13: Lecture 10

Mathematics 13: Lecture 10 Mathematics 13: Lecture 10 Matrices Dan Sloughter Furman University January 25, 2008 Dan Sloughter (Furman University) Mathematics 13: Lecture 10 January 25, 2008 1 / 19 Matrices Recall: A matrix is a

More information

Definition 1.2. Let p R n be a point and v R n be a non-zero vector. The line through p in direction v is the set

Definition 1.2. Let p R n be a point and v R n be a non-zero vector. The line through p in direction v is the set Important definitions and results 1. Algebra and geometry of vectors Definition 1.1. A linear combination of vectors v 1,..., v k R n is a vector of the form c 1 v 1 + + c k v k where c 1,..., c k R are

More information

Linear Algebra Tutorial for Math3315/CSE3365 Daniel R. Reynolds

Linear Algebra Tutorial for Math3315/CSE3365 Daniel R. Reynolds Linear Algebra Tutorial for Math3315/CSE3365 Daniel R. Reynolds These notes are meant to provide a brief introduction to the topics from Linear Algebra that will be useful in Math3315/CSE3365, Introduction

More information

Math 52: Course Summary

Math 52: Course Summary Math 52: Course Summary Rich Schwartz September 2, 2009 General Information: Math 52 is a first course in linear algebra. It is a transition between the lower level calculus courses and the upper level

More information

A VERY BRIEF LINEAR ALGEBRA REVIEW for MAP 5485 Introduction to Mathematical Biophysics Fall 2010

A VERY BRIEF LINEAR ALGEBRA REVIEW for MAP 5485 Introduction to Mathematical Biophysics Fall 2010 A VERY BRIEF LINEAR ALGEBRA REVIEW for MAP 5485 Introduction to Mathematical Biophysics Fall 00 Introduction Linear Algebra, also known as matrix theory, is an important element of all branches of mathematics

More information

Chapter 4 - MATRIX ALGEBRA. ... a 2j... a 2n. a i1 a i2... a ij... a in

Chapter 4 - MATRIX ALGEBRA. ... a 2j... a 2n. a i1 a i2... a ij... a in Chapter 4 - MATRIX ALGEBRA 4.1. Matrix Operations A a 11 a 12... a 1j... a 1n a 21. a 22.... a 2j... a 2n. a i1 a i2... a ij... a in... a m1 a m2... a mj... a mn The entry in the ith row and the jth column

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations Chapter 1: Systems of linear equations and matrices Section 1.1: Introduction to systems of linear equations Definition: A linear equation in n variables can be expressed in the form a 1 x 1 + a 2 x 2

More information

Worksheet 3: Matrix-Vector Products ( 1.3)

Worksheet 3: Matrix-Vector Products ( 1.3) Problem 1: Vectors and Matrices. Worksheet : Matrix-Vector Products ( 1.) (c)015 UM Math Dept licensed under a Creative Commons By-NC-SA.0 International License. Let us TEMPORARILY think of a vector as

More information

Review of linear algebra

Review of linear algebra Review of linear algebra 1 Vectors and matrices We will just touch very briefly on certain aspects of linear algebra, most of which should be familiar. Recall that we deal with vectors, i.e. elements of

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA DAVID MEREDITH These notes are about the application and computation of linear algebra objects in F n, where F is a field. I think everything here works over any field including

More information

Matrix Arithmetic. j=1

Matrix Arithmetic. j=1 An m n matrix is an array A = Matrix Arithmetic a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn of real numbers a ij An m n matrix has m rows and n columns a ij is the entry in the i-th row and j-th column

More information

1 Linear transformations; the basics

1 Linear transformations; the basics Linear Algebra Fall 2013 Linear Transformations 1 Linear transformations; the basics Definition 1 Let V, W be vector spaces over the same field F. A linear transformation (also known as linear map, or

More information

Vectors To begin, let us describe an element of the state space as a point with numerical coordinates, that is x 1. x 2. x =

Vectors To begin, let us describe an element of the state space as a point with numerical coordinates, that is x 1. x 2. x = Linear Algebra Review Vectors To begin, let us describe an element of the state space as a point with numerical coordinates, that is x 1 x x = 2. x n Vectors of up to three dimensions are easy to diagram.

More information

Math 360 Linear Algebra Fall Class Notes. a a a a a a. a a a

Math 360 Linear Algebra Fall Class Notes. a a a a a a. a a a Math 360 Linear Algebra Fall 2008 9-10-08 Class Notes Matrices As we have already seen, a matrix is a rectangular array of numbers. If a matrix A has m columns and n rows, we say that its dimensions are

More information

Linear Algebra March 16, 2019

Linear Algebra March 16, 2019 Linear Algebra March 16, 2019 2 Contents 0.1 Notation................................ 4 1 Systems of linear equations, and matrices 5 1.1 Systems of linear equations..................... 5 1.2 Augmented

More information

Matrix Basic Concepts

Matrix Basic Concepts Matrix Basic Concepts Topics: What is a matrix? Matrix terminology Elements or entries Diagonal entries Address/location of entries Rows and columns Size of a matrix A column matrix; vectors Special types

More information

1 Last time: inverses

1 Last time: inverses MATH Linear algebra (Fall 8) Lecture 8 Last time: inverses The following all mean the same thing for a function f : X Y : f is invertible f is one-to-one and onto 3 For each b Y there is exactly one a

More information

MATH 221: SOLUTIONS TO SELECTED HOMEWORK PROBLEMS

MATH 221: SOLUTIONS TO SELECTED HOMEWORK PROBLEMS MATH 221: SOLUTIONS TO SELECTED HOMEWORK PROBLEMS 1. HW 1: Due September 4 1.1.21. Suppose v, w R n and c is a scalar. Prove that Span(v + cw, w) = Span(v, w). We must prove two things: that every element

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.4 THE MATRIX EQUATION A = b MATRIX EQUATION A = b m n Definition: If A is an matri, with columns a 1, n, a n, and if is in, then the product of A and, denoted by

More information

. a m1 a mn. a 1 a 2 a = a n

. a m1 a mn. a 1 a 2 a = a n Biostat 140655, 2008: Matrix Algebra Review 1 Definition: An m n matrix, A m n, is a rectangular array of real numbers with m rows and n columns Element in the i th row and the j th column is denoted by

More information

A FIRST COURSE IN LINEAR ALGEBRA. An Open Text by Ken Kuttler. Matrix Arithmetic

A FIRST COURSE IN LINEAR ALGEBRA. An Open Text by Ken Kuttler. Matrix Arithmetic A FIRST COURSE IN LINEAR ALGEBRA An Open Text by Ken Kuttler Matrix Arithmetic Lecture Notes by Karen Seyffarth Adapted by LYRYX SERVICE COURSE SOLUTION Attribution-NonCommercial-ShareAlike (CC BY-NC-SA)

More information

Chapter 2: Matrices and Linear Systems

Chapter 2: Matrices and Linear Systems Chapter 2: Matrices and Linear Systems Paul Pearson Outline Matrices Linear systems Row operations Inverses Determinants Matrices Definition An m n matrix A = (a ij ) is a rectangular array of real numbers

More information

DM559 Linear and Integer Programming. Lecture 3 Matrix Operations. Marco Chiarandini

DM559 Linear and Integer Programming. Lecture 3 Matrix Operations. Marco Chiarandini DM559 Linear and Integer Programming Lecture 3 Matrix Operations Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline and 1 2 3 and 4 2 Outline and 1 2

More information

Image Registration Lecture 2: Vectors and Matrices

Image Registration Lecture 2: Vectors and Matrices Image Registration Lecture 2: Vectors and Matrices Prof. Charlene Tsai Lecture Overview Vectors Matrices Basics Orthogonal matrices Singular Value Decomposition (SVD) 2 1 Preliminary Comments Some of this

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.3 VECTOR EQUATIONS VECTOR EQUATIONS Vectors in 2 A matrix with only one column is called a column vector, or simply a vector. An example of a vector with two entries

More information

Lecture 3 Linear Algebra Background

Lecture 3 Linear Algebra Background Lecture 3 Linear Algebra Background Dan Sheldon September 17, 2012 Motivation Preview of next class: y (1) w 0 + w 1 x (1) 1 + w 2 x (1) 2 +... + w d x (1) d y (2) w 0 + w 1 x (2) 1 + w 2 x (2) 2 +...

More information

R b. x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 1 1, x h. , x p. x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9

R b. x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 1 1, x h. , x p. x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 The full solution of Ax b x x p x h : The general solution is the sum of any particular solution of the system Ax b plus the general solution of the corresponding homogeneous system Ax. ) Reduce A b to

More information

MATH 106 LINEAR ALGEBRA LECTURE NOTES

MATH 106 LINEAR ALGEBRA LECTURE NOTES MATH 6 LINEAR ALGEBRA LECTURE NOTES FALL - These Lecture Notes are not in a final form being still subject of improvement Contents Systems of linear equations and matrices 5 Introduction to systems of

More information

Matrix & Linear Algebra

Matrix & Linear Algebra Matrix & Linear Algebra Jamie Monogan University of Georgia For more information: http://monogan.myweb.uga.edu/teaching/mm/ Jamie Monogan (UGA) Matrix & Linear Algebra 1 / 84 Vectors Vectors Vector: A

More information

M. Matrices and Linear Algebra

M. Matrices and Linear Algebra M. Matrices and Linear Algebra. Matrix algebra. In section D we calculated the determinants of square arrays of numbers. Such arrays are important in mathematics and its applications; they are called matrices.

More information

Matrices Gaussian elimination Determinants. Graphics 2009/2010, period 1. Lecture 4: matrices

Matrices Gaussian elimination Determinants. Graphics 2009/2010, period 1. Lecture 4: matrices Graphics 2009/2010, period 1 Lecture 4 Matrices m n matrices Matrices Definitions Diagonal, Identity, and zero matrices Addition Multiplication Transpose and inverse The system of m linear equations in

More information

1111: Linear Algebra I

1111: Linear Algebra I 1111: Linear Algebra I Dr. Vladimir Dotsenko (Vlad) Michaelmas Term 2015 Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Michaelmas Term 2015 1 / 15 From equations to matrices For example, if we consider

More information

BASIC NOTIONS. x + y = 1 3, 3x 5y + z = A + 3B,C + 2D, DC are not defined. A + C =

BASIC NOTIONS. x + y = 1 3, 3x 5y + z = A + 3B,C + 2D, DC are not defined. A + C = CHAPTER I BASIC NOTIONS (a) 8666 and 8833 (b) a =6,a =4 will work in the first case, but there are no possible such weightings to produce the second case, since Student and Student 3 have to end up with

More information

LS.1 Review of Linear Algebra

LS.1 Review of Linear Algebra LS. LINEAR SYSTEMS LS.1 Review of Linear Algebra In these notes, we will investigate a way of handling a linear system of ODE s directly, instead of using elimination to reduce it to a single higher-order

More information

Systems of Algebraic Equations and Systems of Differential Equations

Systems of Algebraic Equations and Systems of Differential Equations Systems of Algebraic Equations and Systems of Differential Equations Topics: 2 by 2 systems of linear equations Matrix expression; Ax = b Solving 2 by 2 homogeneous systems Functions defined on matrices

More information

Mathematics for Graphics and Vision

Mathematics for Graphics and Vision Mathematics for Graphics and Vision Steven Mills March 3, 06 Contents Introduction 5 Scalars 6. Visualising Scalars........................ 6. Operations on Scalars...................... 6.3 A Note on

More information

Problem 1: (3 points) Recall that the dot product of two vectors in R 3 is

Problem 1: (3 points) Recall that the dot product of two vectors in R 3 is Linear Algebra, Spring 206 Homework 3 Name: Problem : (3 points) Recall that the dot product of two vectors in R 3 is a x b y = ax + by + cz, c z and this is essentially the same as the matrix multiplication

More information

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers.

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers. Linear Algebra - Test File - Spring Test # For problems - consider the following system of equations. x + y - z = x + y + 4z = x + y + 6z =.) Solve the system without using your calculator..) Find the

More information