Acoustic Unit Discovery (AUD) Models. Leda Sarı

Size: px
Start display at page:

Download "Acoustic Unit Discovery (AUD) Models. Leda Sarı"

Transcription

1 Acoustic Unit Discovery (AUD) Models Leda Sarı Lucas Ondel and Lukáš Burget A summary of AUD experiments from JHU Frederick Jelinek Summer Workshop 2016 lsari2@illinois.edu November 07, / 23

2 The goal of the workshop 1 Building Speech Recognition System from Untranscribed Data 1 building-speech-recognition-system-from-untranscribed-data/ 2 / 23

3 Acoustic Unit Discovery (AUD) A kind of clustering of audio Segment Cluster Model the acoustics of each cluster What if you do not know The phone set The phone identities The number of units 3 / 23

4 Some solutions Use a Bayesian generative model Use Dirichlet Process prior on the mixture of HMMs 4 / 23

5 Beta and Dirichlet distributions Beta(x; α, β) = Γ(α + β) Γ(α)Γ(β) xα 1 (1 x) β 1 Dirichlet is a multivariate generalization of Beta distribution 2 Dir(x, α) = Γ( K i=1 α i) K i=1 Γ(α i) K i=1 x α i 1 i where K x i = 1 and x i (0, 1) i=1 2 Figure is taken from Wikipedia/Beta distribution 5 / 23

6 Dirichlet Process Given a base distribution H and a concentration parameter α 1 As a generative process ( Rich gets richer ) Sample X 1 H For n 1, { X n H w/probability α X n = x 2 Stick-breaking process w/probability α+n 1 n x α+n 1 where n x = n 1 j=1 I[X j = x] {x k } k=1 H f(x) = β k δ xk (x) k=1 k 1 where β k = β k (1 β i) and β k Beta(1, α) i=1 f(x) DP(H, α) Note that the samples of the process is a distribution itself 6 / 23

7 Previous Studies Lee and Glass 2012: θ 0 θ c γ π c j,k s t m t x t d j,k α b b t d j,k T j, k = g q + 1, g q+1; 0 q < L 7 / 23

8 Previous Studies Lee and Glass 2012 Segment definition is based on boundary variables Arbitrary initialization Gibbs sampling is used for inference Slow convergence Not suitable for large datasets Hyperparameters are chosen to impose weak priors 8 / 23

9 Previous Studies Ondel et al. 2016: Get rid of the boundary variables Use infinitely many units Figure : AUD phone loop model with infinite number of units 9 / 23

10 Previous Studies Ondel et al. 2016: θ 0 θ k γ π k c i s i,j m i,j x i,j k = 1,, j = 1,, L i i = 1,, N Hidden variables: c i, s i,j, m i,j Observations: x i,j 10 / 23

11 Previous Studies Ondel et al ν k Beta(1, γ) k 1 π k (ν) = ν k (1 ν j ) (Stick-breaking) j=1 θ c = (A, b, ω) x i,j m i,j N (µ, Σ) Σ = diag(λ) µ, λ N (µ 0, (κ 0 λ 1 ))Gamma(α 0, β 0 ) π Dir(η gmm 0 ) A(r, :) Dir(η hmm,r 0 ) Using conjugate priors and variational Bayes Hyperparameters of the priors: γ, µ 0, κ 0, α 0, β 0, η 0 gmm, η 0 hmm,r 11 / 23

12 Training the model Variational Bayesian (VB) inference Assume independence between the hidden variables and parameters Use conjugate priors to get posteriors in closed form Approximations: Truncate the infinite mixture 12 / 23

13 VB Training Assume a simpler distribution q(c, S, M, Θ) and maximize the lower bound on the log evidence of the observations p(c, S, M, Θ X) q(c, S, M, Θ) and min KL(q p) (1) log p(x) E q [log p(x, c, S, M, Θ Φ 0 )] E q [log q(c, S, M, Θ)] (2) q(c, S, M, Θ) = q(c, S, M)q(Θ) (3) log q (c, s, M) = E q(θ) [log p(x, c, S, M, Θ Φ 0 )] + K 1 (4) log q (Θ) = E q(c,s,m) [log p(x, c, S, M, Θ Φ 0 )] + K 2 (5) k 1 Set v T = 1 in π k (ν) = ν k (1 ν j ) (truncated Dirichlet) (6) j=1 13 / 23

14 Bigram Hierarchical Pitman Yor Language Model Generalization of the Dirichlet distribution Pitman Yor (PY) LM X t+1 G 0 X t+1 = x where Hierarchy (Teh 2006): w/probability θ+dt θ+c w/probability cx d θ+c c x = t j=1 I[X j = x] G 1 P Y (G 0, γ 0, d 0 ) G 2,i P Y (G 1, γ 1, d 1 ) c t G 2,ct 1 Then sample HMM with parameters θ ct Figure : HPYLM for AUD 14 / 23

15 AUD Evaluation Frame or segment level comparison of acoustic units and the true phonetic unites Normalized mutual information X: True labels, Y : Units NMI = I(X; Y ) H(X) (7) Other measures Number of discovered units Performance on different tasks (e.g. topic identification) 15 / 23

16 Multilingual AUD Motivation Assume a universal phone set A common generative model Transfer knowledge from resourceful languages to resource-less languages 16 / 23

17 Multilingual AUD Methods 1 Fully unsupervised: use only audio Direct use of a mismatched model Set the priors using the posterior estimates of the parameters of another AUD model 2 Use supervision on multilingual data Train multilingual bottleneck (BN) networks Extract BN features for the target data 17 / 23

18 Multilingual AUD Unsupervised Figure : Direct use Figure : Posteriors to priors 18 / 23

19 Multilingual Bottleneck Features 19 / 23

20 Results - Unsupervised Multilingual dataset: 7 languages from GlobalPhone dataset Target dataset: English (Wall Street Journal) Direct use Posterior to prior Language NMI # of units NMI # of units English (WSJ) Czech German Portuguese Russian Spanish Turkish Vietnamese languages / 23

21 Results - Supervised Supervision through BNF Feature LM NMI # units MFCC Unigram BNF Unigram BNF Bigram / 23

22 Conclusions Unsupervised approaches did not help much Using BNF as the input improves the NMI by 8% (absolute) 22 / 23

23 Thanks for listening. 23 / 23

24 References 1. Lee and Glass 2012: A non-parametric Bayesian Approach to Acoustic Model Discovery, Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers-Volume 1, pp Ondel et al. 2016: Variational Inference for Acoustic Unit Discovery, Procedia Computer Science, vol. 81, pp Teh 2006: A hierarchical Bayesian language model based on Pitman-Yor processes, Proceedings of the 21st International Conference on Computational Linguistics and the 44th annual meeting of the Association for Computational Linguistics, pp / 23

Non-Parametric Bayes

Non-Parametric Bayes Non-Parametric Bayes Mark Schmidt UBC Machine Learning Reading Group January 2016 Current Hot Topics in Machine Learning Bayesian learning includes: Gaussian processes. Approximate inference. Bayesian

More information

Latent Variable Models Probabilistic Models in the Study of Language Day 4

Latent Variable Models Probabilistic Models in the Study of Language Day 4 Latent Variable Models Probabilistic Models in the Study of Language Day 4 Roger Levy UC San Diego Department of Linguistics Preamble: plate notation for graphical models Here is the kind of hierarchical

More information

Unsupervised Activity Perception in Crowded and Complicated Scenes Using Hierarchical Bayesian Models

Unsupervised Activity Perception in Crowded and Complicated Scenes Using Hierarchical Bayesian Models SUBMISSION TO IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1 Unsupervised Activity Perception in Crowded and Complicated Scenes Using Hierarchical Bayesian Models Xiaogang Wang, Xiaoxu Ma,

More information

Unsupervised Activity Perception in Crowded and Complicated Scenes Using Hierarchical Bayesian Models

Unsupervised Activity Perception in Crowded and Complicated Scenes Using Hierarchical Bayesian Models SUBMISSION TO IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1 Unsupervised Activity Perception in Crowded and Complicated Scenes Using Hierarchical Bayesian Models Xiaogang Wang, Xiaoxu Ma,

More information

Collapsed Variational Bayesian Inference for Hidden Markov Models

Collapsed Variational Bayesian Inference for Hidden Markov Models Collapsed Variational Bayesian Inference for Hidden Markov Models Pengyu Wang, Phil Blunsom Department of Computer Science, University of Oxford International Conference on Artificial Intelligence and

More information

Chapter 8 PROBABILISTIC MODELS FOR TEXT MINING. Yizhou Sun Department of Computer Science University of Illinois at Urbana-Champaign

Chapter 8 PROBABILISTIC MODELS FOR TEXT MINING. Yizhou Sun Department of Computer Science University of Illinois at Urbana-Champaign Chapter 8 PROBABILISTIC MODELS FOR TEXT MINING Yizhou Sun Department of Computer Science University of Illinois at Urbana-Champaign sun22@illinois.edu Hongbo Deng Department of Computer Science University

More information

CS Lecture 18. Topic Models and LDA

CS Lecture 18. Topic Models and LDA CS 6347 Lecture 18 Topic Models and LDA (some slides by David Blei) Generative vs. Discriminative Models Recall that, in Bayesian networks, there could be many different, but equivalent models of the same

More information

Augmented Statistical Models for Speech Recognition

Augmented Statistical Models for Speech Recognition Augmented Statistical Models for Speech Recognition Mark Gales & Martin Layton 31 August 2005 Trajectory Models For Speech Processing Workshop Overview Dependency Modelling in Speech Recognition: latent

More information

A NONPARAMETRIC BAYESIAN APPROACH FOR SPOKEN TERM DETECTION BY EXAMPLE QUERY

A NONPARAMETRIC BAYESIAN APPROACH FOR SPOKEN TERM DETECTION BY EXAMPLE QUERY A NONPARAMETRIC BAYESIAN APPROACH FOR SPOKEN TERM DETECTION BY EXAMPLE QUERY Amir Hossein Harati Nead Torbati and Joseph Picone College of Engineering, Temple University Philadelphia, Pennsylvania, USA

More information

CSCI 5822 Probabilistic Model of Human and Machine Learning. Mike Mozer University of Colorado

CSCI 5822 Probabilistic Model of Human and Machine Learning. Mike Mozer University of Colorado CSCI 5822 Probabilistic Model of Human and Machine Learning Mike Mozer University of Colorado Topics Language modeling Hierarchical processes Pitman-Yor processes Based on work of Teh (2006), A hierarchical

More information

Bayesian Hidden Markov Models and Extensions

Bayesian Hidden Markov Models and Extensions Bayesian Hidden Markov Models and Extensions Zoubin Ghahramani Department of Engineering University of Cambridge joint work with Matt Beal, Jurgen van Gael, Yunus Saatci, Tom Stepleton, Yee Whye Teh Modeling

More information

Bayesian Nonparametrics

Bayesian Nonparametrics Bayesian Nonparametrics Peter Orbanz Columbia University PARAMETERS AND PATTERNS Parameters P(X θ) = Probability[data pattern] 3 2 1 0 1 2 3 5 0 5 Inference idea data = underlying pattern + independent

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Bayesian Model Comparison Zoubin Ghahramani zoubin@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc in Intelligent Systems, Dept Computer Science University College

More information

Bayesian non parametric approaches: an introduction

Bayesian non parametric approaches: an introduction Introduction Latent class models Latent feature models Conclusion & Perspectives Bayesian non parametric approaches: an introduction Pierre CHAINAIS Bordeaux - nov. 2012 Trajectory 1 Bayesian non parametric

More information

STAT Advanced Bayesian Inference

STAT Advanced Bayesian Inference 1 / 32 STAT 625 - Advanced Bayesian Inference Meng Li Department of Statistics Jan 23, 218 The Dirichlet distribution 2 / 32 θ Dirichlet(a 1,...,a k ) with density p(θ 1,θ 2,...,θ k ) = k j=1 Γ(a j) Γ(

More information

Spatial Bayesian Nonparametrics for Natural Image Segmentation

Spatial Bayesian Nonparametrics for Natural Image Segmentation Spatial Bayesian Nonparametrics for Natural Image Segmentation Erik Sudderth Brown University Joint work with Michael Jordan University of California Soumya Ghosh Brown University Parsing Visual Scenes

More information

Clustering using Mixture Models

Clustering using Mixture Models Clustering using Mixture Models The full posterior of the Gaussian Mixture Model is p(x, Z, µ,, ) =p(x Z, µ, )p(z )p( )p(µ, ) data likelihood (Gaussian) correspondence prob. (Multinomial) mixture prior

More information

Latent Dirichlet Allocation Introduction/Overview

Latent Dirichlet Allocation Introduction/Overview Latent Dirichlet Allocation Introduction/Overview David Meyer 03.10.2016 David Meyer http://www.1-4-5.net/~dmm/ml/lda_intro.pdf 03.10.2016 Agenda What is Topic Modeling? Parametric vs. Non-Parametric Models

More information

Shared Segmentation of Natural Scenes. Dependent Pitman-Yor Processes

Shared Segmentation of Natural Scenes. Dependent Pitman-Yor Processes Shared Segmentation of Natural Scenes using Dependent Pitman-Yor Processes Erik Sudderth & Michael Jordan University of California, Berkeley Parsing Visual Scenes sky skyscraper sky dome buildings trees

More information

Hierarchical Bayesian Languge Model Based on Pitman-Yor Processes. Yee Whye Teh

Hierarchical Bayesian Languge Model Based on Pitman-Yor Processes. Yee Whye Teh Hierarchical Bayesian Languge Model Based on Pitman-Yor Processes Yee Whye Teh Probabilistic model of language n-gram model Utility i-1 P(word i word i-n+1 ) Typically, trigram model (n=3) e.g., speech,

More information

A Brief Overview of Nonparametric Bayesian Models

A Brief Overview of Nonparametric Bayesian Models A Brief Overview of Nonparametric Bayesian Models Eurandom Zoubin Ghahramani Department of Engineering University of Cambridge, UK zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin Also at Machine

More information

Brief Introduction of Machine Learning Techniques for Content Analysis

Brief Introduction of Machine Learning Techniques for Content Analysis 1 Brief Introduction of Machine Learning Techniques for Content Analysis Wei-Ta Chu 2008/11/20 Outline 2 Overview Gaussian Mixture Model (GMM) Hidden Markov Model (HMM) Support Vector Machine (SVM) Overview

More information

Independent Component Analysis and Unsupervised Learning

Independent Component Analysis and Unsupervised Learning Independent Component Analysis and Unsupervised Learning Jen-Tzung Chien National Cheng Kung University TABLE OF CONTENTS 1. Independent Component Analysis 2. Case Study I: Speech Recognition Independent

More information

Gentle Introduction to Infinite Gaussian Mixture Modeling

Gentle Introduction to Infinite Gaussian Mixture Modeling Gentle Introduction to Infinite Gaussian Mixture Modeling with an application in neuroscience By Frank Wood Rasmussen, NIPS 1999 Neuroscience Application: Spike Sorting Important in neuroscience and for

More information

Hidden Markov Models in Language Processing

Hidden Markov Models in Language Processing Hidden Markov Models in Language Processing Dustin Hillard Lecture notes courtesy of Prof. Mari Ostendorf Outline Review of Markov models What is an HMM? Examples General idea of hidden variables: implications

More information

Non-parametric Clustering with Dirichlet Processes

Non-parametric Clustering with Dirichlet Processes Non-parametric Clustering with Dirichlet Processes Timothy Burns SUNY at Buffalo Mar. 31 2009 T. Burns (SUNY at Buffalo) Non-parametric Clustering with Dirichlet Processes Mar. 31 2009 1 / 24 Introduction

More information

Bayesian Nonparametrics: Dirichlet Process

Bayesian Nonparametrics: Dirichlet Process Bayesian Nonparametrics: Dirichlet Process Yee Whye Teh Gatsby Computational Neuroscience Unit, UCL http://www.gatsby.ucl.ac.uk/~ywteh/teaching/npbayes2012 Dirichlet Process Cornerstone of modern Bayesian

More information

Computer Vision Group Prof. Daniel Cremers. 14. Clustering

Computer Vision Group Prof. Daniel Cremers. 14. Clustering Group Prof. Daniel Cremers 14. Clustering Motivation Supervised learning is good for interaction with humans, but labels from a supervisor are hard to obtain Clustering is unsupervised learning, i.e. it

More information

Independent Component Analysis and Unsupervised Learning. Jen-Tzung Chien

Independent Component Analysis and Unsupervised Learning. Jen-Tzung Chien Independent Component Analysis and Unsupervised Learning Jen-Tzung Chien TABLE OF CONTENTS 1. Independent Component Analysis 2. Case Study I: Speech Recognition Independent voices Nonparametric likelihood

More information

More on HMMs and other sequence models. Intro to NLP - ETHZ - 18/03/2013

More on HMMs and other sequence models. Intro to NLP - ETHZ - 18/03/2013 More on HMMs and other sequence models Intro to NLP - ETHZ - 18/03/2013 Summary Parts of speech tagging HMMs: Unsupervised parameter estimation Forward Backward algorithm Bayesian variants Discriminative

More information

Bayesian Models in Machine Learning

Bayesian Models in Machine Learning Bayesian Models in Machine Learning Lukáš Burget Escuela de Ciencias Informáticas 2017 Buenos Aires, July 24-29 2017 Frequentist vs. Bayesian Frequentist point of view: Probability is the frequency of

More information

Bayesian Hierarchical Modeling for Music and Audio Processing at LabROSA

Bayesian Hierarchical Modeling for Music and Audio Processing at LabROSA Bayesian Hierarchical Modeling for Music and Audio Processing at LabROSA Dawen Liang (LabROSA) Joint work with: Dan Ellis (LabROSA), Matt Hoffman (Adobe Research), Gautham Mysore (Adobe Research) 1. Bayesian

More information

Bayesian Nonparametrics for Speech and Signal Processing

Bayesian Nonparametrics for Speech and Signal Processing Bayesian Nonparametrics for Speech and Signal Processing Michael I. Jordan University of California, Berkeley June 28, 2011 Acknowledgments: Emily Fox, Erik Sudderth, Yee Whye Teh, and Romain Thibaux Computer

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

The Infinite Markov Model

The Infinite Markov Model The Infinite Markov Model Daichi Mochihashi NTT Communication Science Laboratories, Japan daichi@cslab.kecl.ntt.co.jp NIPS 2007 The Infinite Markov Model (NIPS 2007) p.1/20 Overview ɛ ɛ is of will is of

More information

Inference in Explicit Duration Hidden Markov Models

Inference in Explicit Duration Hidden Markov Models Inference in Explicit Duration Hidden Markov Models Frank Wood Joint work with Chris Wiggins, Mike Dewar Columbia University November, 2011 Wood (Columbia University) EDHMM Inference November, 2011 1 /

More information

Bayesian Nonparametric Models

Bayesian Nonparametric Models Bayesian Nonparametric Models David M. Blei Columbia University December 15, 2015 Introduction We have been looking at models that posit latent structure in high dimensional data. We use the posterior

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Nonparametric Bayesian Models --Learning/Reasoning in Open Possible Worlds Eric Xing Lecture 7, August 4, 2009 Reading: Eric Xing Eric Xing @ CMU, 2006-2009 Clustering Eric Xing

More information

The Noisy Channel Model. Statistical NLP Spring Mel Freq. Cepstral Coefficients. Frame Extraction ... Lecture 10: Acoustic Models

The Noisy Channel Model. Statistical NLP Spring Mel Freq. Cepstral Coefficients. Frame Extraction ... Lecture 10: Acoustic Models Statistical NLP Spring 2009 The Noisy Channel Model Lecture 10: Acoustic Models Dan Klein UC Berkeley Search through space of all possible sentences. Pick the one that is most probable given the waveform.

More information

Statistical NLP Spring The Noisy Channel Model

Statistical NLP Spring The Noisy Channel Model Statistical NLP Spring 2009 Lecture 10: Acoustic Models Dan Klein UC Berkeley The Noisy Channel Model Search through space of all possible sentences. Pick the one that is most probable given the waveform.

More information

Graphical Models for Collaborative Filtering

Graphical Models for Collaborative Filtering Graphical Models for Collaborative Filtering Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Sequence modeling HMM, Kalman Filter, etc.: Similarity: the same graphical model topology,

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

The Noisy Channel Model. Statistical NLP Spring Mel Freq. Cepstral Coefficients. Frame Extraction ... Lecture 9: Acoustic Models

The Noisy Channel Model. Statistical NLP Spring Mel Freq. Cepstral Coefficients. Frame Extraction ... Lecture 9: Acoustic Models Statistical NLP Spring 2010 The Noisy Channel Model Lecture 9: Acoustic Models Dan Klein UC Berkeley Acoustic model: HMMs over word positions with mixtures of Gaussians as emissions Language model: Distributions

More information

Experiments with a Gaussian Merging-Splitting Algorithm for HMM Training for Speech Recognition

Experiments with a Gaussian Merging-Splitting Algorithm for HMM Training for Speech Recognition Experiments with a Gaussian Merging-Splitting Algorithm for HMM Training for Speech Recognition ABSTRACT It is well known that the expectation-maximization (EM) algorithm, commonly used to estimate hidden

More information

Hierarchical Bayesian Nonparametrics

Hierarchical Bayesian Nonparametrics Hierarchical Bayesian Nonparametrics Micha Elsner April 11, 2013 2 For next time We ll tackle a paper: Green, de Marneffe, Bauer and Manning: Multiword Expression Identification with Tree Substitution

More information

Machine Learning for natural language processing

Machine Learning for natural language processing Machine Learning for natural language processing Hidden Markov Models Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Summer 2016 1 / 33 Introduction So far, we have classified texts/observations

More information

Probabilistic Time Series Classification

Probabilistic Time Series Classification Probabilistic Time Series Classification Y. Cem Sübakan Boğaziçi University 25.06.2013 Y. Cem Sübakan (Boğaziçi University) M.Sc. Thesis Defense 25.06.2013 1 / 54 Problem Statement The goal is to assign

More information

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework HT5: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Maximum Likelihood Principle A generative model for

More information

Forward algorithm vs. particle filtering

Forward algorithm vs. particle filtering Particle Filtering ØSometimes X is too big to use exact inference X may be too big to even store B(X) E.g. X is continuous X 2 may be too big to do updates ØSolution: approximate inference Track samples

More information

Dirichlet Processes: Tutorial and Practical Course

Dirichlet Processes: Tutorial and Practical Course Dirichlet Processes: Tutorial and Practical Course (updated) Yee Whye Teh Gatsby Computational Neuroscience Unit University College London August 2007 / MLSS Yee Whye Teh (Gatsby) DP August 2007 / MLSS

More information

p(d θ ) l(θ ) 1.2 x x x

p(d θ ) l(θ ) 1.2 x x x p(d θ ).2 x 0-7 0.8 x 0-7 0.4 x 0-7 l(θ ) -20-40 -60-80 -00 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ θ x FIGURE 3.. The top graph shows several training points in one dimension, known or assumed to

More information

Lecture 3a: Dirichlet processes

Lecture 3a: Dirichlet processes Lecture 3a: Dirichlet processes Cédric Archambeau Centre for Computational Statistics and Machine Learning Department of Computer Science University College London c.archambeau@cs.ucl.ac.uk Advanced Topics

More information

The Noisy Channel Model. CS 294-5: Statistical Natural Language Processing. Speech Recognition Architecture. Digitizing Speech

The Noisy Channel Model. CS 294-5: Statistical Natural Language Processing. Speech Recognition Architecture. Digitizing Speech CS 294-5: Statistical Natural Language Processing The Noisy Channel Model Speech Recognition II Lecture 21: 11/29/05 Search through space of all possible sentences. Pick the one that is most probable given

More information

Graphical models for part of speech tagging

Graphical models for part of speech tagging Indian Institute of Technology, Bombay and Research Division, India Research Lab Graphical models for part of speech tagging Different Models for POS tagging HMM Maximum Entropy Markov Models Conditional

More information

Deep Learning for Speech Recognition. Hung-yi Lee

Deep Learning for Speech Recognition. Hung-yi Lee Deep Learning for Speech Recognition Hung-yi Lee Outline Conventional Speech Recognition How to use Deep Learning in acoustic modeling? Why Deep Learning? Speaker Adaptation Multi-task Deep Learning New

More information

Bayesian non-parametric model to longitudinally predict churn

Bayesian non-parametric model to longitudinally predict churn Bayesian non-parametric model to longitudinally predict churn Bruno Scarpa Università di Padova Conference of European Statistics Stakeholders Methodologists, Producers and Users of European Statistics

More information

Bayesian Structure Modeling. SPFLODD December 1, 2011

Bayesian Structure Modeling. SPFLODD December 1, 2011 Bayesian Structure Modeling SPFLODD December 1, 2011 Outline Defining Bayesian Parametric Bayesian models Latent Dirichlet allocabon (Blei et al., 2003) Bayesian HMM (Goldwater and Griffiths, 2007) A limle

More information

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Chapter 1. Introduction Shuai Huang April 21, 2014 Outline 1 What is Machine Learning? 2 Curve Fitting 3 Probability Theory 4 Model Selection 5 The curse of dimensionality

More information

Lecture 2: Priors and Conjugacy

Lecture 2: Priors and Conjugacy Lecture 2: Priors and Conjugacy Melih Kandemir melih.kandemir@iwr.uni-heidelberg.de May 6, 2014 Some nice courses Fred A. Hamprecht (Heidelberg U.) https://www.youtube.com/watch?v=j66rrnzzkow Michael I.

More information

Template-Based Representations. Sargur Srihari

Template-Based Representations. Sargur Srihari Template-Based Representations Sargur srihari@cedar.buffalo.edu 1 Topics Variable-based vs Template-based Temporal Models Basic Assumptions Dynamic Bayesian Networks Hidden Markov Models Linear Dynamical

More information

The infinite HMM for unsupervised PoS tagging

The infinite HMM for unsupervised PoS tagging The infinite HMM for unsupervised PoS tagging Jurgen Van Gael Department of Engineering University of Cambridge jv249@cam.ac.uk Andreas Vlachos Computer Laboratory University of Cambridge av308@cl.cam.ac.uk

More information

Lecture 3: Machine learning, classification, and generative models

Lecture 3: Machine learning, classification, and generative models EE E6820: Speech & Audio Processing & Recognition Lecture 3: Machine learning, classification, and generative models 1 Classification 2 Generative models 3 Gaussian models Michael Mandel

More information

Bayesian Nonparametrics

Bayesian Nonparametrics Bayesian Nonparametrics Lorenzo Rosasco 9.520 Class 18 April 11, 2011 About this class Goal To give an overview of some of the basic concepts in Bayesian Nonparametrics. In particular, to discuss Dirichelet

More information

Statistical NLP Spring Digitizing Speech

Statistical NLP Spring Digitizing Speech Statistical NLP Spring 2008 Lecture 10: Acoustic Models Dan Klein UC Berkeley Digitizing Speech 1 Frame Extraction A frame (25 ms wide) extracted every 10 ms 25 ms 10ms... a 1 a 2 a 3 Figure from Simon

More information

Digitizing Speech. Statistical NLP Spring Frame Extraction. Gaussian Emissions. Vector Quantization. HMMs for Continuous Observations? ...

Digitizing Speech. Statistical NLP Spring Frame Extraction. Gaussian Emissions. Vector Quantization. HMMs for Continuous Observations? ... Statistical NLP Spring 2008 Digitizing Speech Lecture 10: Acoustic Models Dan Klein UC Berkeley Frame Extraction A frame (25 ms wide extracted every 10 ms 25 ms 10ms... a 1 a 2 a 3 Figure from Simon Arnfield

More information

Document and Topic Models: plsa and LDA

Document and Topic Models: plsa and LDA Document and Topic Models: plsa and LDA Andrew Levandoski and Jonathan Lobo CS 3750 Advanced Topics in Machine Learning 2 October 2018 Outline Topic Models plsa LSA Model Fitting via EM phits: link analysis

More information

More Spectral Clustering and an Introduction to Conjugacy

More Spectral Clustering and an Introduction to Conjugacy CS8B/Stat4B: Advanced Topics in Learning & Decision Making More Spectral Clustering and an Introduction to Conjugacy Lecturer: Michael I. Jordan Scribe: Marco Barreno Monday, April 5, 004. Back to spectral

More information

Expectation Maximization (EM)

Expectation Maximization (EM) Expectation Maximization (EM) The Expectation Maximization (EM) algorithm is one approach to unsupervised, semi-supervised, or lightly supervised learning. In this kind of learning either no labels are

More information

ECE521 W17 Tutorial 6. Min Bai and Yuhuai (Tony) Wu

ECE521 W17 Tutorial 6. Min Bai and Yuhuai (Tony) Wu ECE521 W17 Tutorial 6 Min Bai and Yuhuai (Tony) Wu Agenda knn and PCA Bayesian Inference k-means Technique for clustering Unsupervised pattern and grouping discovery Class prediction Outlier detection

More information

Mixed Membership Models for Time Series

Mixed Membership Models for Time Series 20 Mixed Membership Models for Time Series Emily B. Fox Department of Statistics, University of Washington, Seattle, WA 98195, USA Michael I. Jordan Computer Science Division and Department of Statistics,

More information

Bayesian nonparametrics

Bayesian nonparametrics Bayesian nonparametrics 1 Some preliminaries 1.1 de Finetti s theorem We will start our discussion with this foundational theorem. We will assume throughout all variables are defined on the probability

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2016 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Learning Bayesian network : Given structure and completely observed data

Learning Bayesian network : Given structure and completely observed data Learning Bayesian network : Given structure and completely observed data Probabilistic Graphical Models Sharif University of Technology Spring 2017 Soleymani Learning problem Target: true distribution

More information

Low development cost, high quality speech recognition for new languages and domains. Cheap ASR

Low development cost, high quality speech recognition for new languages and domains. Cheap ASR Low development cost, high quality speech recognition for new languages and domains Cheap ASR Participants: Senior members : Lukas Burget, Nagendra Kumar Goel, Daniel Povey, Richard Rose Graduate students:

More information

Latent Dirichlet Allocation

Latent Dirichlet Allocation Latent Dirichlet Allocation 1 Directed Graphical Models William W. Cohen Machine Learning 10-601 2 DGMs: The Burglar Alarm example Node ~ random variable Burglar Earthquake Arcs define form of probability

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 20: Expectation Maximization Algorithm EM for Mixture Models Many figures courtesy Kevin Murphy s

More information

Hidden Markov models: from the beginning to the state of the art

Hidden Markov models: from the beginning to the state of the art Hidden Markov models: from the beginning to the state of the art Frank Wood Columbia University November, 2011 Wood (Columbia University) HMMs November, 2011 1 / 44 Outline Overview of hidden Markov models

More information

Basic math for biology

Basic math for biology Basic math for biology Lei Li Florida State University, Feb 6, 2002 The EM algorithm: setup Parametric models: {P θ }. Data: full data (Y, X); partial data Y. Missing data: X. Likelihood and maximum likelihood

More information

Statistical Methods for NLP

Statistical Methods for NLP Statistical Methods for NLP Sequence Models Joakim Nivre Uppsala University Department of Linguistics and Philology joakim.nivre@lingfil.uu.se Statistical Methods for NLP 1(21) Introduction Structured

More information

Detection-Based Speech Recognition with Sparse Point Process Models

Detection-Based Speech Recognition with Sparse Point Process Models Detection-Based Speech Recognition with Sparse Point Process Models Aren Jansen Partha Niyogi Human Language Technology Center of Excellence Departments of Computer Science and Statistics ICASSP 2010 Dallas,

More information

Geoffrey Zweig May 7, 2009

Geoffrey Zweig May 7, 2009 Geoffrey Zweig May 7, 2009 Taxonomy of LID Techniques LID Acoustic Scores Derived LM Vector space model GMM GMM Tokenization Parallel Phone Rec + LM Vectors of phone LM stats [Carrasquillo et. al. 02],

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 11 CRFs, Exponential Family CS/CNS/EE 155 Andreas Krause Announcements Homework 2 due today Project milestones due next Monday (Nov 9) About half the work should

More information

Unsupervised Model Adaptation using Information-Theoretic Criterion

Unsupervised Model Adaptation using Information-Theoretic Criterion Unsupervised Model Adaptation using Information-Theoretic Criterion Ariya Rastrow 1, Frederick Jelinek 1, Abhinav Sethy 2 and Bhuvana Ramabhadran 2 1 Human Language Technology Center of Excellence, and

More information

Present and Future of Text Modeling

Present and Future of Text Modeling Present and Future of Text Modeling Daichi Mochihashi NTT Communication Science Laboratories daichi@cslab.kecl.ntt.co.jp T-FaNT2, University of Tokyo 2008-2-13 (Wed) Present and Future of Text Modeling

More information

Crouching Dirichlet, Hidden Markov Model: Unsupervised POS Tagging with Context Local Tag Generation

Crouching Dirichlet, Hidden Markov Model: Unsupervised POS Tagging with Context Local Tag Generation Crouching Dirichlet, Hidden Markov Model: Unsupervised POS Tagging with Context Local Tag Generation Taesun Moon Katrin Erk and Jason Baldridge Department of Linguistics University of Texas at Austin 1

More information

Colouring and breaking sticks, pairwise coincidence losses, and clustering expression profiles

Colouring and breaking sticks, pairwise coincidence losses, and clustering expression profiles Colouring and breaking sticks, pairwise coincidence losses, and clustering expression profiles Peter Green and John Lau University of Bristol P.J.Green@bristol.ac.uk Isaac Newton Institute, 11 December

More information

A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement

A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement Simon Leglaive 1 Laurent Girin 1,2 Radu Horaud 1 1: Inria Grenoble Rhône-Alpes 2: Univ. Grenoble Alpes, Grenoble INP,

More information

Lecture 3: Pattern Classification

Lecture 3: Pattern Classification EE E6820: Speech & Audio Processing & Recognition Lecture 3: Pattern Classification 1 2 3 4 5 The problem of classification Linear and nonlinear classifiers Probabilistic classification Gaussians, mixtures

More information

Bayesian Learning. Two Roles for Bayesian Methods. Bayes Theorem. Choosing Hypotheses

Bayesian Learning. Two Roles for Bayesian Methods. Bayes Theorem. Choosing Hypotheses Bayesian Learning Two Roles for Bayesian Methods Probabilistic approach to inference. Quantities of interest are governed by prob. dist. and optimal decisions can be made by reasoning about these prob.

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 12 Dynamical Models CS/CNS/EE 155 Andreas Krause Homework 3 out tonight Start early!! Announcements Project milestones due today Please email to TAs 2 Parameter learning

More information

Bayesian Inference for Dirichlet-Multinomials

Bayesian Inference for Dirichlet-Multinomials Bayesian Inference for Dirichlet-Multinomials Mark Johnson Macquarie University Sydney, Australia MLSS Summer School 1 / 50 Random variables and distributed according to notation A probability distribution

More information

Singer Identification using MFCC and LPC and its comparison for ANN and Naïve Bayes Classifiers

Singer Identification using MFCC and LPC and its comparison for ANN and Naïve Bayes Classifiers Singer Identification using MFCC and LPC and its comparison for ANN and Naïve Bayes Classifiers Kumari Rambha Ranjan, Kartik Mahto, Dipti Kumari,S.S.Solanki Dept. of Electronics and Communication Birla

More information

Topic Modeling: Beyond Bag-of-Words

Topic Modeling: Beyond Bag-of-Words University of Cambridge hmw26@cam.ac.uk June 26, 2006 Generative Probabilistic Models of Text Used in text compression, predictive text entry, information retrieval Estimate probability of a word in a

More information

Generative Clustering, Topic Modeling, & Bayesian Inference

Generative Clustering, Topic Modeling, & Bayesian Inference Generative Clustering, Topic Modeling, & Bayesian Inference INFO-4604, Applied Machine Learning University of Colorado Boulder December 12-14, 2017 Prof. Michael Paul Unsupervised Naïve Bayes Last week

More information

Image segmentation combining Markov Random Fields and Dirichlet Processes

Image segmentation combining Markov Random Fields and Dirichlet Processes Image segmentation combining Markov Random Fields and Dirichlet Processes Jessica SODJO IMS, Groupe Signal Image, Talence Encadrants : A. Giremus, J.-F. Giovannelli, F. Caron, N. Dobigeon Jessica SODJO

More information

Lecture 3: ASR: HMMs, Forward, Viterbi

Lecture 3: ASR: HMMs, Forward, Viterbi Original slides by Dan Jurafsky CS 224S / LINGUIST 285 Spoken Language Processing Andrew Maas Stanford University Spring 2017 Lecture 3: ASR: HMMs, Forward, Viterbi Fun informative read on phonetics The

More information

Introduction to Probabilistic Machine Learning

Introduction to Probabilistic Machine Learning Introduction to Probabilistic Machine Learning Piyush Rai Dept. of CSE, IIT Kanpur (Mini-course 1) Nov 03, 2015 Piyush Rai (IIT Kanpur) Introduction to Probabilistic Machine Learning 1 Machine Learning

More information

Clustering K-means. Clustering images. Machine Learning CSE546 Carlos Guestrin University of Washington. November 4, 2014.

Clustering K-means. Clustering images. Machine Learning CSE546 Carlos Guestrin University of Washington. November 4, 2014. Clustering K-means Machine Learning CSE546 Carlos Guestrin University of Washington November 4, 2014 1 Clustering images Set of Images [Goldberger et al.] 2 1 K-means Randomly initialize k centers µ (0)

More information

HMM part 1. Dr Philip Jackson

HMM part 1. Dr Philip Jackson Centre for Vision Speech & Signal Processing University of Surrey, Guildford GU2 7XH. HMM part 1 Dr Philip Jackson Probability fundamentals Markov models State topology diagrams Hidden Markov models -

More information

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them HMM, MEMM and CRF 40-957 Special opics in Artificial Intelligence: Probabilistic Graphical Models Sharif University of echnology Soleymani Spring 2014 Sequence labeling aking collective a set of interrelated

More information