The last form is the one that will be used in examinations.

Size: px
Start display at page:

Download "The last form is the one that will be used in examinations."

Transcription

1 Tables for Exam M

2 The reading material for Exam M includes a variety of textbooks. Each text has a set of probability distributions that are used in its readings. For those distributions used in more than one text, the choices of parameterization may not be the same in all of the books. This may be of educational value while you study, but could add a layer of uncertainty in the examination. For this latter reason, we have adopted one set of parameterizations to be used in examinations. -TI- is set will be based on Appendices A & B of Loss Models: From Data to Decisions by Klugman, Pa~jer and Willmot. A slightly revised version of these appendices is included in this note. A copy of this note will also be distributed to each candidate at the examination. As an example of this adopted notation, consider the family of singleparameter exponential distributions. The distribution with mean 2 would be identified in three of the textbooks as follows: Actuarial Mathematics the exponential distribution with P = 1/2 Probability Models the exponential distribution with h = % Loss Models the exponential distribution with 0 =2 The last form is the one that will be used in examinations. Another difference among the texts is the choice of generating functions for discrete distributions. Loss Models uses probability generating functions while Actuarial Mathematics and Probability Models use moment generating functions. The abridged tables from Loss Models will provide only the probability generating function for discrete distributions. Each text also has its own system of dedicated notation and terminology. Sometimes these may conflict. If alternative meanings could apply in an examination question, the symbols will be defined. In addition to the abridged table from Loss Models, an abridged version of.the Illustrative Life Table from Actuarial Mathematics and a set of values from the standard normal distribution will be available for use in examinations. These are also included in this note.

3 NORMAL DISTRIBUTION TABLE Entries represent the area under the standardized normal distribution from -m to z, Pr(Zcz) The value of z to the first decimal is given in the left column. The second decimal place is given in the top row. Values of z for selected values of Pr(Z<z) z Pr(Z<z)

4 Excerpts from the Appendices to Loss Models: Rom Data to Decisions, 2nd edition May 27, 2005

5 Appendix A An Inventory of Continuous Distributions A.l Introduction The incomplete gamma function is given by Also, define with r(a) = t"-i e -t dt, a > 0. 1" At times we will need this integral for nonpositive values of a. Integration by parts produces the relationship This can be repeated until the first argument of G is a + Ic, a positive number. Then it can be evaluated from G(a + Ic; x) = r(a + Ic)[l - r(a + Ic; x)]. The incomplete beta function is given by

6 APPENDIX A. AN INVENTORY OF CONTINUOUS DISTRIBUTIONS A. 2 Transformed beta family A.2.3 A Three-parameter distributions Generalized Pareto (beta of the second kind)-a, 0, T + T) eaxr-l x F(x)=/~(T,~;u), a=- x+o r((~ = r(~)r(~) (X + e)*+r E[x~] = ekr(~+ k)r(a - k) r(a)r(l-) 1-7<k<a + E[xk] = ek7(7 1)... + (T k - 1), if Ic is an integer (a- 1). *.(a- k) ekr(7 + E[(X A x )~] k )r(~ = - k) P(7 + k, a - k; u) + xk[l - F(x)], k > -7 r(a)r(~) 7-1 mode = 0- T > 1, else 0 a+ll A Burr (Burr Type XII, Singh-Madda1a)-a, 0, y A Inverse Burr (Dagum)+, 0, y

7 APPENDIX A. AN INVENTORY OF CONTINUOUS DISTRIBUTIONS A.2.4 Two-parameter distributions A Pareto (Pareto Type 11, Lomax)--a, 0 E[xk] = ek k! (a-l)...(a-k)' if k is an integer mode = 0 A Inverse Pareto--r, 0 E[xk] = ek(-k)! (T- 1)...(~+ k)' if k is a negative integer 7-1 mode = et, r > 1, else 0 A Loglogistic (Fisk)--y, 0 mode = 0 (s) 117, y > 1, else 0

8 APPENDIX A. AN INVENTORY OF CONTINUOUS DISTRIBUTIONS A Paralogistic-a, 0 This is a Burr distribution with y = a. mode = 0 (s) liu", a>1, else0 A Inverse paralogistic-t, 0 This is an inverse Burr distribution with 7 = T. E[(XAX)~] = ekr(t + k'r)r(l - k'r)p(~ + k/r, 1 - k/r; u) + xk[l - ut], k > -r2 r(7) mode = ( ~ - l ) r>l, ~, else0 A.3 Transformed gamma family A.3.2 Two-parameter distributions A Gamma--a, 0 E[x~] = ek(a + k - 1)... a, if k is an integer - + 1)...(a + k - i)ekr(~ + k; ~/e) + xk[i - r (~; mode = e(a-1), a>1, else0 x/e)], k an integer

9 APPENDIX A. AN INVENTORY OF CONTINUO US DISTRIBUTIONS A Inverse gamma (Vinci)-a, 0 E[xk] - k), k<a r(a) E[x~] = ok (a-l)...(a- k)' if k is an integer mode + 1), mode = i 0 ( ), ~ > 1, else0 A Inverse Weibull (log Gompertz)-0, T E[(X Ax)*] k /~){l - r[l - klr; (@/x)~]} + xk [l- e-('/")'] all k mode = 0 (-&) 11' A.3.3 One-parameter distributions A Exponential-@ M(t) = (1-@t)-l ~[~*]=@*~(k+l), k> -1 E[x*] = okk!, if k is an integer E[X AX] e-"1') E[(X AX)" + l)r(k + 1; x/@) + xke-"le, k > -1 = ~~k!i?(k + 1; x/@) + xkee-pe, k an integer mode = 0

10 APPENDIX A. AN INVENTORY OF CONTINUOUS DISTRIBUTIONS A Inverse exponential-6 A.4 Other distributions E[xk] = ekr(i - k), k < 1 E[(X A x )~] = - k; e /~) + Xk(l - e-e/~ ) all k mode = el2 A Lognormal-p,o (p can be negative) 1 Ins p f(x) = - exp(-z2/2) = q5(z)/(ux), z = - xofi u E[xk] = exp(kp + k202/2) F(x) E[(X A x)*] = exp(kp + k2u2/2)@ ( lnx - p - ku2 u mode = exp(p - u2) A Inverse Gaussian-p, 0 f(x) = (L) 2~~~ '"exp (-g), z = - x P P FIX) = a[z(8)'12] +exp(t)a[-y(~)'12], ( t ) = exp [i ) (1 - :E[X A XI = x - p;@ [z (8) '1 - ] ) + xk[l - F(x)].=- P X+P e, t < -, E[X] = p, Var[X] = p3/e 2p2 py exp (T) a [-y (8) 'I2] A log-t-r, p, u (p can be negative) Let Y have a t distribution with r degrees of freedom. Then X = exp(uy + p) has the log-t distribution. Positive moments do not exist for this distribution. Just as the t distribution has a heavier tail than the normal distribution, this distribution has a heavier tail than the lognormal distribution. F(x) = F, (%) with F,(t) the cdf of a t distribution with 7 d.f.,

11 APPENDIX A. AN INVENTORY OF CONTINUOUS DISTRIBUTIONS aek koa E[x~] = - k <a E[(XAx)]-a-k k (a-k)xa-k' x>e a-k' mode = 8 Note: Although there appears to be two parameters, only a is a true parameter. The value of 0 must be set in advance. A.5 Distributions with finite support aok For these two distributions, the scale parameter 0 is assumed known. A Generalized beta-a, b, 8, T E[(X A x )~] = + b)r(a k't)p(a + k/r, 6; u) + xk[l - ~ (a, b; u)] r(a)r(a + b + k /~) A beta-a, b, f (x) = -( r(a)r(b) x F(x) = P(a1 b;u) E[Xk] ekr(a + b)r(a + k) = > -a r(a)r(a+ b+ k) ' eka(a + 1)...(a + k - 1) E[x~] = o < x < o, (a+b)(a+b+l)-..(a+b+k-1)' u = ~ / e if k is an integer eka(a + 1)... (a + k - 1) E[(X A x )~] = (a+b)(a+b+l)...(a+b+k-1) P(a + k1 b; 21) +xk b; u)]

12 Appendix B An Inventory of Discrete Distributions B.2 The (a,b,o) class B Poisson-X E[N] = B, Var[N] =B(l+B) P(z) = [l - p(z - I)]-l. This is a special case of the negative binomial with T = 1. B Binomial-q, m, (0 < q < 1, m an integer) pr = (:)q*(l-q)m-k, t=0,1,..., m :E[N] = mq, Var[N] = mq(1 - q) P(z) = [I + q(z - I)]". B Negative binomial-b, T

13 Illustrative Life Table: Basic Functions and Single Benefit Premiums at i = 0.06

14 Illustrative Life Table: Basic Fun.ctions and Single Benefit Premiums at i =

15 Illustrative Life Table: Basic Functions and Sinale Benefit Premiums at i = 0.06 Lid96 are independent.

16 Illustrative Life Table: Basic Functions and Sinale Benefit Premiums at i = 0.06 Lives are independent.

17 Interest Functions i i I lnterest Functions at i = 0.06 d"" idd o~d'ml Special Note: Unless specified, the force of interest is constant in each question. I

Test Problems for Probability Theory ,

Test Problems for Probability Theory , 1 Test Problems for Probability Theory 01-06-16, 010-1-14 1. Write down the following probability density functions and compute their moment generating functions. (a) Binomial distribution with mean 30

More information

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679 APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared

More information

Discrete Distributions Chapter 6

Discrete Distributions Chapter 6 Discrete Distributions Chapter 6 Negative Binomial Distribution section 6.3 Consider k r, r +,... independent Bernoulli trials with probability of success in one trial being p. Let the random variable

More information

Probability Distributions Columns (a) through (d)

Probability Distributions Columns (a) through (d) Discrete Probability Distributions Columns (a) through (d) Probability Mass Distribution Description Notes Notation or Density Function --------------------(PMF or PDF)-------------------- (a) (b) (c)

More information

Probability Distributions for Continuous Variables. Probability Distributions for Continuous Variables

Probability Distributions for Continuous Variables. Probability Distributions for Continuous Variables Probability Distributions for Continuous Variables Probability Distributions for Continuous Variables Let X = lake depth at a randomly chosen point on lake surface If we draw the histogram so that the

More information

Severity Models - Special Families of Distributions

Severity Models - Special Families of Distributions Severity Models - Special Families of Distributions Sections 5.3-5.4 Stat 477 - Loss Models Sections 5.3-5.4 (Stat 477) Claim Severity Models Brian Hartman - BYU 1 / 1 Introduction Introduction Given that

More information

Continuous Distributions

Continuous Distributions A normal distribution and other density functions involving exponential forms play the most important role in probability and statistics. They are related in a certain way, as summarized in a diagram later

More information

Bell-shaped curves, variance

Bell-shaped curves, variance November 7, 2017 Pop-in lunch on Wednesday Pop-in lunch tomorrow, November 8, at high noon. Please join our group at the Faculty Club for lunch. Means If X is a random variable with PDF equal to f (x),

More information

Chapter Learning Objectives. Probability Distributions and Probability Density Functions. Continuous Random Variables

Chapter Learning Objectives. Probability Distributions and Probability Density Functions. Continuous Random Variables Chapter 4: Continuous Random Variables and Probability s 4-1 Continuous Random Variables 4-2 Probability s and Probability Density Functions 4-3 Cumulative Functions 4-4 Mean and Variance of a Continuous

More information

PROBABILITY THEORY LECTURE 3

PROBABILITY THEORY LECTURE 3 PROBABILITY THEORY LECTURE 3 Per Sidén Division of Statistics Dept. of Computer and Information Science Linköping University PER SIDÉN (STATISTICS, LIU) PROBABILITY THEORY - L3 1 / 15 OVERVIEW LECTURE

More information

Chapter 5. Chapter 5 sections

Chapter 5. Chapter 5 sections 1 / 43 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

Review for the previous lecture

Review for the previous lecture Lecture 1 and 13 on BST 631: Statistical Theory I Kui Zhang, 09/8/006 Review for the previous lecture Definition: Several discrete distributions, including discrete uniform, hypergeometric, Bernoulli,

More information

3 Continuous Random Variables

3 Continuous Random Variables Jinguo Lian Math437 Notes January 15, 016 3 Continuous Random Variables Remember that discrete random variables can take only a countable number of possible values. On the other hand, a continuous random

More information

THE QUEEN S UNIVERSITY OF BELFAST

THE QUEEN S UNIVERSITY OF BELFAST THE QUEEN S UNIVERSITY OF BELFAST 0SOR20 Level 2 Examination Statistics and Operational Research 20 Probability and Distribution Theory Wednesday 4 August 2002 2.30 pm 5.30 pm Examiners { Professor R M

More information

Applied Statistics and Probability for Engineers. Sixth Edition. Chapter 4 Continuous Random Variables and Probability Distributions.

Applied Statistics and Probability for Engineers. Sixth Edition. Chapter 4 Continuous Random Variables and Probability Distributions. Applied Statistics and Probability for Engineers Sixth Edition Douglas C. Montgomery George C. Runger Chapter 4 Continuous Random Variables and Probability Distributions 4 Continuous CHAPTER OUTLINE Random

More information

Chapter 4 Continuous Random Variables and Probability Distributions

Chapter 4 Continuous Random Variables and Probability Distributions Applied Statistics and Probability for Engineers Sixth Edition Douglas C. Montgomery George C. Runger Chapter 4 Continuous Random Variables and Probability Distributions 4 Continuous CHAPTER OUTLINE 4-1

More information

Method of Moments. which we usually denote by X or sometimes by X n to emphasize that there are n observations.

Method of Moments. which we usually denote by X or sometimes by X n to emphasize that there are n observations. Method of Moments Definition. If {X 1,..., X n } is a sample from a population, then the empirical k-th moment of this sample is defined to be X k 1 + + Xk n n Example. For a sample {X 1, X, X 3 } the

More information

Continuous Random Variables

Continuous Random Variables Continuous Random Variables Recall: For discrete random variables, only a finite or countably infinite number of possible values with positive probability. Often, there is interest in random variables

More information

Slides 8: Statistical Models in Simulation

Slides 8: Statistical Models in Simulation Slides 8: Statistical Models in Simulation Purpose and Overview The world the model-builder sees is probabilistic rather than deterministic: Some statistical model might well describe the variations. An

More information

Week 1 Quantitative Analysis of Financial Markets Distributions A

Week 1 Quantitative Analysis of Financial Markets Distributions A Week 1 Quantitative Analysis of Financial Markets Distributions A Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October

More information

Random Variables and Their Distributions

Random Variables and Their Distributions Chapter 3 Random Variables and Their Distributions A random variable (r.v.) is a function that assigns one and only one numerical value to each simple event in an experiment. We will denote r.vs by capital

More information

Probability and Distributions

Probability and Distributions Probability and Distributions What is a statistical model? A statistical model is a set of assumptions by which the hypothetical population distribution of data is inferred. It is typically postulated

More information

Chapter 5 continued. Chapter 5 sections

Chapter 5 continued. Chapter 5 sections Chapter 5 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

Appendix A. Math Reviews 03Jan2007. A.1 From Simple to Complex. Objectives. 1. Review tools that are needed for studying models for CLDVs.

Appendix A. Math Reviews 03Jan2007. A.1 From Simple to Complex. Objectives. 1. Review tools that are needed for studying models for CLDVs. Appendix A Math Reviews 03Jan007 Objectives. Review tools that are needed for studying models for CLDVs.. Get you used to the notation that will be used. Readings. Read this appendix before class.. Pay

More information

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text.

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text. TEST #3 STA 5326 December 4, 214 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. (You will have access to

More information

Math Spring Practice for the final Exam.

Math Spring Practice for the final Exam. Math 4 - Spring 8 - Practice for the final Exam.. Let X, Y, Z be three independnet random variables uniformly distributed on [, ]. Let W := X + Y. Compute P(W t) for t. Honors: Compute the CDF function

More information

A Few Special Distributions and Their Properties

A Few Special Distributions and Their Properties A Few Special Distributions and Their Properties Econ 690 Purdue University Justin L. Tobias (Purdue) Distributional Catalog 1 / 20 Special Distributions and Their Associated Properties 1 Uniform Distribution

More information

Mixture distributions in Exams MLC/3L and C/4

Mixture distributions in Exams MLC/3L and C/4 Making sense of... Mixture distributions in Exams MLC/3L and C/4 James W. Daniel Jim Daniel s Actuarial Seminars www.actuarialseminars.com February 1, 2012 c Copyright 2012 by James W. Daniel; reproduction

More information

CHAPTER 6. 1, if n =1, 2p(1 p), if n =2, n (1 p) n 1 n p + p n 1 (1 p), if n =3, 4, 5,... var(d) = 4var(R) =4np(1 p).

CHAPTER 6. 1, if n =1, 2p(1 p), if n =2, n (1 p) n 1 n p + p n 1 (1 p), if n =3, 4, 5,... var(d) = 4var(R) =4np(1 p). CHAPTER 6 Solution to Problem 6 (a) The random variable R is binomial with parameters p and n Hence, ( ) n p R(r) = ( p) n r p r, for r =0,,,,n, r E[R] = np, and var(r) = np( p) (b) Let A be the event

More information

ECE 302 Division 2 Exam 2 Solutions, 11/4/2009.

ECE 302 Division 2 Exam 2 Solutions, 11/4/2009. NAME: ECE 32 Division 2 Exam 2 Solutions, /4/29. You will be required to show your student ID during the exam. This is a closed-book exam. A formula sheet is provided. No calculators are allowed. Total

More information

Solutions to the Spring 2015 CAS Exam ST

Solutions to the Spring 2015 CAS Exam ST Solutions to the Spring 2015 CAS Exam ST (updated to include the CAS Final Answer Key of July 15) There were 25 questions in total, of equal value, on this 2.5 hour exam. There was a 10 minute reading

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 2016 MODULE 1 : Probability distributions Time allowed: Three hours Candidates should answer FIVE questions. All questions carry equal marks.

More information

Brief Review of Probability

Brief Review of Probability Maura Department of Economics and Finance Università Tor Vergata Outline 1 Distribution Functions Quantiles and Modes of a Distribution 2 Example 3 Example 4 Distributions Outline Distribution Functions

More information

Preface Introduction to Statistics and Data Analysis Overview: Statistical Inference, Samples, Populations, and Experimental Design The Role of

Preface Introduction to Statistics and Data Analysis Overview: Statistical Inference, Samples, Populations, and Experimental Design The Role of Preface Introduction to Statistics and Data Analysis Overview: Statistical Inference, Samples, Populations, and Experimental Design The Role of Probability Sampling Procedures Collection of Data Measures

More information

3 Modeling Process Quality

3 Modeling Process Quality 3 Modeling Process Quality 3.1 Introduction Section 3.1 contains basic numerical and graphical methods. familiar with these methods. It is assumed the student is Goal: Review several discrete and continuous

More information

Continuous Random Variables and Continuous Distributions

Continuous Random Variables and Continuous Distributions Continuous Random Variables and Continuous Distributions Continuous Random Variables and Continuous Distributions Expectation & Variance of Continuous Random Variables ( 5.2) The Uniform Random Variable

More information

Exam 3, Math Fall 2016 October 19, 2016

Exam 3, Math Fall 2016 October 19, 2016 Exam 3, Math 500- Fall 06 October 9, 06 This is a 50-minute exam. You may use your textbook, as well as a calculator, but your work must be completely yours. The exam is made of 5 questions in 5 pages,

More information

Statistics for scientists and engineers

Statistics for scientists and engineers Statistics for scientists and engineers February 0, 006 Contents Introduction. Motivation - why study statistics?................................... Examples..................................................3

More information

Confidence Intervals for the Sample Mean

Confidence Intervals for the Sample Mean Confidence Intervals for the Sample Mean As we saw before, parameter estimators are themselves random variables. If we are going to make decisions based on these uncertain estimators, we would benefit

More information

Chapter 3, 4 Random Variables ENCS Probability and Stochastic Processes. Concordia University

Chapter 3, 4 Random Variables ENCS Probability and Stochastic Processes. Concordia University Chapter 3, 4 Random Variables ENCS6161 - Probability and Stochastic Processes Concordia University ENCS6161 p.1/47 The Notion of a Random Variable A random variable X is a function that assigns a real

More information

Practice Exam 1. (A) (B) (C) (D) (E) You are given the following data on loss sizes:

Practice Exam 1. (A) (B) (C) (D) (E) You are given the following data on loss sizes: Practice Exam 1 1. Losses for an insurance coverage have the following cumulative distribution function: F(0) = 0 F(1,000) = 0.2 F(5,000) = 0.4 F(10,000) = 0.9 F(100,000) = 1 with linear interpolation

More information

Bayesian Predictive Modeling for Exponential-Pareto Composite Distribution

Bayesian Predictive Modeling for Exponential-Pareto Composite Distribution Bayesian Predictive Modeling for Exponential-Pareto Composite Distribution ABSTRCT Composite distributions have well-known applications in the insurance industry. In this article a composite Exponential-Pareto

More information

Modelling the risk process

Modelling the risk process Modelling the risk process Krzysztof Burnecki Hugo Steinhaus Center Wroc law University of Technology www.im.pwr.wroc.pl/ hugo Modelling the risk process 1 Risk process If (Ω, F, P) is a probability space

More information

Chapter 2 - Survival Models

Chapter 2 - Survival Models 2-1 Chapter 2 - Survival Models Section 2.2 - Future Lifetime Random Variable and the Survival Function Let T x = ( Future lifelength beyond age x of an individual who has survived to age x [measured in

More information

II. The Normal Distribution

II. The Normal Distribution II. The Normal Distribution The normal distribution (a.k.a., a the Gaussian distribution or bell curve ) is the by far the best known random distribution. It s discovery has had such a far-reaching impact

More information

Exam C Solutions Spring 2005

Exam C Solutions Spring 2005 Exam C Solutions Spring 005 Question # The CDF is F( x) = 4 ( + x) Observation (x) F(x) compare to: Maximum difference 0. 0.58 0, 0. 0.58 0.7 0.880 0., 0.4 0.680 0.9 0.93 0.4, 0.6 0.53. 0.949 0.6, 0.8

More information

Chapter 3 Common Families of Distributions

Chapter 3 Common Families of Distributions Lecture 9 on BST 631: Statistical Theory I Kui Zhang, 9/3/8 and 9/5/8 Review for the previous lecture Definition: Several commonly used discrete distributions, including discrete uniform, hypergeometric,

More information

Actuarial Science Exam 1/P

Actuarial Science Exam 1/P Actuarial Science Exam /P Ville A. Satopää December 5, 2009 Contents Review of Algebra and Calculus 2 2 Basic Probability Concepts 3 3 Conditional Probability and Independence 4 4 Combinatorial Principles,

More information

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems Review of Basic Probability The fundamentals, random variables, probability distributions Probability mass/density functions

More information

1 Uniform Distribution. 2 Gamma Distribution. 3 Inverse Gamma Distribution. 4 Multivariate Normal Distribution. 5 Multivariate Student-t Distribution

1 Uniform Distribution. 2 Gamma Distribution. 3 Inverse Gamma Distribution. 4 Multivariate Normal Distribution. 5 Multivariate Student-t Distribution A Few Special Distributions Their Properties Econ 675 Iowa State University November 1 006 Justin L Tobias (ISU Distributional Catalog November 1 006 1 / 0 Special Distributions Their Associated Properties

More information

CHAPTER 6 SOME CONTINUOUS PROBABILITY DISTRIBUTIONS. 6.2 Normal Distribution. 6.1 Continuous Uniform Distribution

CHAPTER 6 SOME CONTINUOUS PROBABILITY DISTRIBUTIONS. 6.2 Normal Distribution. 6.1 Continuous Uniform Distribution CHAPTER 6 SOME CONTINUOUS PROBABILITY DISTRIBUTIONS Recall that a continuous random variable X is a random variable that takes all values in an interval or a set of intervals. The distribution of a continuous

More information

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable Distributions of Functions of Random Variables 5.1 Functions of One Random Variable 5.2 Transformations of Two Random Variables 5.3 Several Random Variables 5.4 The Moment-Generating Function Technique

More information

Continuous Probability Spaces

Continuous Probability Spaces Continuous Probability Spaces Ω is not countable. Outcomes can be any real number or part of an interval of R, e.g. heights, weights and lifetimes. Can not assign probabilities to each outcome and add

More information

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models Fatih Cavdur fatihcavdur@uludag.edu.tr March 20, 2012 Introduction Introduction The world of the model-builder

More information

i=1 k i=1 g i (Y )] = k

i=1 k i=1 g i (Y )] = k Math 483 EXAM 2 covers 2.4, 2.5, 2.7, 2.8, 3.1, 3.2, 3.3, 3.4, 3.8, 3.9, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.9, 5.1, 5.2, and 5.3. The exam is on Thursday, Oct. 13. You are allowed THREE SHEETS OF NOTES and

More information

1 Review of Probability and Distributions

1 Review of Probability and Distributions Random variables. A numerically valued function X of an outcome ω from a sample space Ω X : Ω R : ω X(ω) is called a random variable (r.v.), and usually determined by an experiment. We conventionally denote

More information

Introduction to Probability and Statistics (Continued)

Introduction to Probability and Statistics (Continued) Introduction to Probability and Statistics (Continued) Prof. icholas Zabaras Center for Informatics and Computational Science https://cics.nd.edu/ University of otre Dame otre Dame, Indiana, USA Email:

More information

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text.

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text. TEST #3 STA 536 December, 00 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. You will have access to a copy

More information

Ching-Han Hsu, BMES, National Tsing Hua University c 2015 by Ching-Han Hsu, Ph.D., BMIR Lab. = a + b 2. b a. x a b a = 12

Ching-Han Hsu, BMES, National Tsing Hua University c 2015 by Ching-Han Hsu, Ph.D., BMIR Lab. = a + b 2. b a. x a b a = 12 Lecture 5 Continuous Random Variables BMIR Lecture Series in Probability and Statistics Ching-Han Hsu, BMES, National Tsing Hua University c 215 by Ching-Han Hsu, Ph.D., BMIR Lab 5.1 1 Uniform Distribution

More information

Parameter Estimation

Parameter Estimation Parameter Estimation Chapters 13-15 Stat 477 - Loss Models Chapters 13-15 (Stat 477) Parameter Estimation Brian Hartman - BYU 1 / 23 Methods for parameter estimation Methods for parameter estimation Methods

More information

Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011

Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011 Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011 Outline Ordinary Least Squares (OLS) Regression Generalized Linear Models

More information

GB2 Regression with Insurance Claim Severities

GB2 Regression with Insurance Claim Severities GB2 Regression with Insurance Claim Severities Mitchell Wills, University of New South Wales Emiliano A. Valdez, University of New South Wales Edward W. (Jed) Frees, University of Wisconsin - Madison UNSW

More information

Mark Scheme (Results) Summer 2009

Mark Scheme (Results) Summer 2009 Mark (Results) Summer 009 GCE GCE Mathematics (6684/01) June 009 6684 Statistics S Mark Q1 [ X ~ B(0,0.15) ] P(X 6), = 0.8474 awrt 0.847 Y ~ B(60,0.15) Po(9) for using Po(9) P(Y < 1), = 0.8758 awrt 0.876

More information

MAS223 Statistical Inference and Modelling Exercises

MAS223 Statistical Inference and Modelling Exercises MAS223 Statistical Inference and Modelling Exercises The exercises are grouped into sections, corresponding to chapters of the lecture notes Within each section exercises are divided into warm-up questions,

More information

Final Examination. STA 711: Probability & Measure Theory. Saturday, 2017 Dec 16, 7:00 10:00 pm

Final Examination. STA 711: Probability & Measure Theory. Saturday, 2017 Dec 16, 7:00 10:00 pm Final Examination STA 711: Probability & Measure Theory Saturday, 2017 Dec 16, 7:00 10:00 pm This is a closed-book exam. You may use a sheet of prepared notes, if you wish, but you may not share materials.

More information

STA2603/205/1/2014 /2014. ry II. Tutorial letter 205/1/

STA2603/205/1/2014 /2014. ry II. Tutorial letter 205/1/ STA263/25//24 Tutorial letter 25// /24 Distribution Theor ry II STA263 Semester Department of Statistics CONTENTS: Examination preparation tutorial letterr Solutions to Assignment 6 2 Dear Student, This

More information

Continuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( ) Chapter 4 4.

Continuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( ) Chapter 4 4. UCLA STAT 11 A Applied Probability & Statistics for Engineers Instructor: Ivo Dinov, Asst. Prof. In Statistics and Neurology Teaching Assistant: Christopher Barr University of California, Los Angeles,

More information

INVERTED KUMARASWAMY DISTRIBUTION: PROPERTIES AND ESTIMATION

INVERTED KUMARASWAMY DISTRIBUTION: PROPERTIES AND ESTIMATION Pak. J. Statist. 2017 Vol. 33(1), 37-61 INVERTED KUMARASWAMY DISTRIBUTION: PROPERTIES AND ESTIMATION A. M. Abd AL-Fattah, A.A. EL-Helbawy G.R. AL-Dayian Statistics Department, Faculty of Commerce, AL-Azhar

More information

Distribution Fitting (Censored Data)

Distribution Fitting (Censored Data) Distribution Fitting (Censored Data) Summary... 1 Data Input... 2 Analysis Summary... 3 Analysis Options... 4 Goodness-of-Fit Tests... 6 Frequency Histogram... 8 Comparison of Alternative Distributions...

More information

Lecture 5: Moment generating functions

Lecture 5: Moment generating functions Lecture 5: Moment generating functions Definition 2.3.6. The moment generating function (mgf) of a random variable X is { x e tx f M X (t) = E(e tx X (x) if X has a pmf ) = etx f X (x)dx if X has a pdf

More information

Chapter 3. Julian Chan. June 29, 2012

Chapter 3. Julian Chan. June 29, 2012 Chapter 3 Julian Chan June 29, 202 Continuous variables For a continuous random variable X there is an associated density function f(x). It satisifies many of the same properties of discrete random variables

More information

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes.

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. A Probability Primer A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. Are you holding all the cards?? Random Events A random event, E,

More information

Continuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( )

Continuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( ) UCLA STAT 35 Applied Computational and Interactive Probability Instructor: Ivo Dinov, Asst. Prof. In Statistics and Neurology Teaching Assistant: Chris Barr Continuous Random Variables and Probability

More information

TABLE OF CONTENTS CHAPTER 1 COMBINATORIAL PROBABILITY 1

TABLE OF CONTENTS CHAPTER 1 COMBINATORIAL PROBABILITY 1 TABLE OF CONTENTS CHAPTER 1 COMBINATORIAL PROBABILITY 1 1.1 The Probability Model...1 1.2 Finite Discrete Models with Equally Likely Outcomes...5 1.2.1 Tree Diagrams...6 1.2.2 The Multiplication Principle...8

More information

Model Fitting. Jean Yves Le Boudec

Model Fitting. Jean Yves Le Boudec Model Fitting Jean Yves Le Boudec 0 Contents 1. What is model fitting? 2. Linear Regression 3. Linear regression with norm minimization 4. Choosing a distribution 5. Heavy Tail 1 Virus Infection Data We

More information

Structural Reliability

Structural Reliability Structural Reliability Thuong Van DANG May 28, 2018 1 / 41 2 / 41 Introduction to Structural Reliability Concept of Limit State and Reliability Review of Probability Theory First Order Second Moment Method

More information

This exam contains 6 questions. The questions are of equal weight. Print your name at the top of this page in the upper right hand corner.

This exam contains 6 questions. The questions are of equal weight. Print your name at the top of this page in the upper right hand corner. GROUND RULES: This exam contains 6 questions. The questions are of equal weight. Print your name at the top of this page in the upper right hand corner. This exam is closed book and closed notes. Show

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Introduction to Probabilistic Methods Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB

More information

Lecture 2: Repetition of probability theory and statistics

Lecture 2: Repetition of probability theory and statistics Algorithms for Uncertainty Quantification SS8, IN2345 Tobias Neckel Scientific Computing in Computer Science TUM Lecture 2: Repetition of probability theory and statistics Concept of Building Block: Prerequisites:

More information

2 Random Variable Generation

2 Random Variable Generation 2 Random Variable Generation Most Monte Carlo computations require, as a starting point, a sequence of i.i.d. random variables with given marginal distribution. We describe here some of the basic methods

More information

Introduction to Machine Learning

Introduction to Machine Learning What does this mean? Outline Contents Introduction to Machine Learning Introduction to Probabilistic Methods Varun Chandola December 26, 2017 1 Introduction to Probability 1 2 Random Variables 3 3 Bayes

More information

Sampling Distributions

Sampling Distributions Sampling Distributions In statistics, a random sample is a collection of independent and identically distributed (iid) random variables, and a sampling distribution is the distribution of a function of

More information

Purdue University Study Guide for MA Credit Exam

Purdue University Study Guide for MA Credit Exam Purdue University Study Guide for MA 60 Credit Exam Students who pass the credit exam will gain credit in MA60. The credit exam is a twohour long exam with 5 multiple choice questions. No books or notes

More information

Probability distributions. Probability Distribution Functions. Probability distributions (contd.) Binomial distribution

Probability distributions. Probability Distribution Functions. Probability distributions (contd.) Binomial distribution Probability distributions Probability Distribution Functions G. Jogesh Babu Department of Statistics Penn State University September 27, 2011 http://en.wikipedia.org/wiki/probability_distribution We discuss

More information

Probability Distributions

Probability Distributions Department of Statistics The University of Auckland https://www.stat.auckland.ac.nz/ brewer/ Suppose a quantity X might be 1, 2, 3, 4, or 5, and we assign probabilities of 1 5 to each of those possible

More information

Joint p.d.f. and Independent Random Variables

Joint p.d.f. and Independent Random Variables 1 Joint p.d.f. and Independent Random Variables Let X and Y be two discrete r.v. s and let R be the corresponding space of X and Y. The joint p.d.f. of X = x and Y = y, denoted by f(x, y) = P(X = x, Y

More information

BMIR Lecture Series on Probability and Statistics Fall, 2015 Uniform Distribution

BMIR Lecture Series on Probability and Statistics Fall, 2015 Uniform Distribution Lecture #5 BMIR Lecture Series on Probability and Statistics Fall, 2015 Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University s 5.1 Definition ( ) A continuous random

More information

Statistics and data analyses

Statistics and data analyses Statistics and data analyses Designing experiments Measuring time Instrumental quality Precision Standard deviation depends on Number of measurements Detection quality Systematics and methology σ tot =

More information

Continuous RVs. 1. Suppose a random variable X has the following probability density function: π, zero otherwise. f ( x ) = sin x, 0 < x < 2

Continuous RVs. 1. Suppose a random variable X has the following probability density function: π, zero otherwise. f ( x ) = sin x, 0 < x < 2 STAT 4 Exam I Continuous RVs Fall 7 Practice. Suppose a random variable X has the following probability density function: f ( x ) = sin x, < x < π, zero otherwise. a) Find P ( X < 4 π ). b) Find µ = E

More information

This paper is not to be removed from the Examination Halls

This paper is not to be removed from the Examination Halls ~~ST104B ZA d0 This paper is not to be removed from the Examination Halls UNIVERSITY OF LONDON ST104B ZB BSc degrees and Diplomas for Graduates in Economics, Management, Finance and the Social Sciences,

More information

EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix)

EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix) 1 EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix) Taisuke Otsu London School of Economics Summer 2018 A.1. Summation operator (Wooldridge, App. A.1) 2 3 Summation operator For

More information

CHARACTERIZATIONS OF UNIFORM AND EXPONENTIAL DISTRIBUTIONS VIA MOMENTS OF THE kth RECORD VALUES RANDOMLY INDEXED

CHARACTERIZATIONS OF UNIFORM AND EXPONENTIAL DISTRIBUTIONS VIA MOMENTS OF THE kth RECORD VALUES RANDOMLY INDEXED APPLICATIONES MATHEMATICAE 24,3(1997), pp. 37 314 Z. GRUDZIEŃ and D. SZYNAL(Lublin) CHARACTERIZATIONS OF UNIFORM AND EXPONENTIAL DISTRIBUTIONS VIA MOMENTS OF THE kth RECORD VALUES RANDOMLY INDEXED Abstract.

More information

Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators.

Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators. IE 230 Seat # Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators. Score Exam #3a, Spring 2002 Schmeiser Closed book and notes. 60 minutes. 1. True or false. (for each,

More information

Math 151. Rumbos Fall Solutions to Review Problems for Exam 2. Pr(X = 1) = ) = Pr(X = 2) = Pr(X = 3) = p X. (k) =

Math 151. Rumbos Fall Solutions to Review Problems for Exam 2. Pr(X = 1) = ) = Pr(X = 2) = Pr(X = 3) = p X. (k) = Math 5. Rumbos Fall 07 Solutions to Review Problems for Exam. A bowl contains 5 chips of the same size and shape. Two chips are red and the other three are blue. Draw three chips from the bowl at random,

More information

E[X n ]= dn dt n M X(t). ). What is the mgf? Solution. Found this the other day in the Kernel matching exercise: 1 M X (t) =

E[X n ]= dn dt n M X(t). ). What is the mgf? Solution. Found this the other day in the Kernel matching exercise: 1 M X (t) = Chapter 7 Generating functions Definition 7.. Let X be a random variable. The moment generating function is given by M X (t) =E[e tx ], provided that the expectation exists for t in some neighborhood of

More information

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr.

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr. Simulation Discrete-Event System Simulation Chapter 4 Statistical Models in Simulation Purpose & Overview The world the model-builder sees is probabilistic rather than deterministic. Some statistical model

More information

Question Points Score Total: 76

Question Points Score Total: 76 Math 447 Test 2 March 17, Spring 216 No books, no notes, only SOA-approved calculators. true/false or fill-in-the-blank question. You must show work, unless the question is a Name: Question Points Score

More information

MVE055/MSG Lecture 8

MVE055/MSG Lecture 8 MVE055/MSG810 2017 Lecture 8 Petter Mostad Chalmers September 23, 2017 The Central Limit Theorem (CLT) Assume X 1,..., X n is a random sample from a distribution with expectation µ and variance σ 2. Then,

More information

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2 Order statistics Ex. 4. (*. Let independent variables X,..., X n have U(0, distribution. Show that for every x (0,, we have P ( X ( < x and P ( X (n > x as n. Ex. 4.2 (**. By using induction or otherwise,

More information

Continuous random variables

Continuous random variables Continuous random variables Continuous r.v. s take an uncountably infinite number of possible values. Examples: Heights of people Weights of apples Diameters of bolts Life lengths of light-bulbs We cannot

More information