Workshop 9.1: Mixed effects models

Size: px
Start display at page:

Download "Workshop 9.1: Mixed effects models"

Transcription

1 -1- Workshop 91: Mixed effects models Murray Logan October 10, 2016 Table of contents 1 Non-independence - part Non-independence - part 2 11 Linear models Homogeneity of variance σ y i = β 0 + β 1 x }{{} i +ε i ε i N (0,σ 2 0 σ ) V = cov = 2 }{{} σ 2 Linearity Normality 0 σ 2 Zero covariance (=independence) How maximize power? 12 Linear models 1 Homogeneity of variance σ y i = β 0 + β 1 x }{{} i +ε i ε i N (0,σ 2 0 σ ) V = cov = 2 }{{} σ 2 Linearity Normality 0 σ 2 Zero covariance (=independence) How maximize power? increase replication 1

2 -2- add covariates (account for conditions) block (control conditions) 13 Hierarchical models Q5 Q6 To increase power - without more sites (replicates) 14 Hierarchical models Subreplicates - yet not independent

3 -3-15 Hierarchical models 151 Nested design Treatment Site Quadrat 16 Hierarchical models 161 Nested design

4 -4- Treatment (F) Site (R) Quadrat (R) 17 Hierarchical models 171 Nested design Treatment (F) Site (R) Quadrat (R)

5 -5-18 Hierarchical models Q7 Q6 0 4 Q8 5 Q5 Q To increase power 19 Hierarchical models Block treatments together - yet not independent 110 Hierarchical models

6 Randomized complete block Block Treatment Quadrat 111 Hierarchical models 1111 Randomized complete block

7 -7- Block (R) Treatment (F) Quadrat (R) 112 Hierarchical models 1121 Randomized complete block Block (R) Treatment (F) Quadrat (R) 113 Linear modelling assumptions Normality Homogeneity of Variance Linearity Independence

8 -8- Homogeneity of variance σ y i = β 0 + β 1 x }{{} i +ε i ε i N (0,σ 2 0 σ ) V = cov = 2 }{{} σ 2 Linearity Normality 0 σ 2 Zero covariance (=independence) 114 Non-independence one response is triggered by another temporal/spatial autocorrelation nested (hierarchical) design structures 1 Homogeneity of variance σ y i = β 0 + β 1 x }{{} i +ε i ε i N (0,σ 2 0 σ ) V = cov = 2 }{{} σ 2 Linearity Normality 0 σ 2 Zero covariance (=independence) 115 Hierarchical models linear model with separate covariance structure per block fixed and random factors (effects) 116 Example 1 > datarcb <- readcsv('/data/datarcbcsv') > head(datarcb) y x block Block Block Block Block Block Block1

9 Example > library(ggplot2) > ggplot(datarcb, aes(y=y, x=x)) + geom_point() + geom_smooth(method='lm') x y 118 Example > library(ggplot2) > ggplot(datarcb, aes(y=y, x=x,color=block))+geom_point()+ + geom_smooth(method='lm')

10 y block Block1 Block2 Block3 Block4 Block5 Block x 119 Example Simple linear regression - wrong > datarcblm <- lm(y~x, datarcb) Generalized least squares - more correct > library(nlme) > datarcbgls <- gls(y~x, datarcb, method='reml') 120 Example Model validation > plot(datarcbgls)

11 -11- Fitted values Standardized residuals Example > plot(residuals(datarcbgls, type='normalized') ~ + datarcb$block)

12 -12- residuals(datarcbgls, type = "normalized") Block1 Block2 Block3 Block4 Block5 Block6 datarcb$block - So what about ANCOVA 122 Example > library(ggplot2) > ggplot(datarcb, aes(y=y, x=x, color=block))+ + geom_smooth(method="lm")+geom_point()+theme_classic() 350 y block Block1 Block2 Block3 Block4 Block5 Block x

13 Example What if we add block as a predictor? (like ANCOVA) > library(nlme) > datarcbgls1 <- gls(y~x+block, datarcb, method='reml') > plot(datarcbgls) Standardized residuals Fitted values 124 Example > plot(residuals(datarcbgls1, type='normalized') ~ + datarcb$block)

14 -14- residuals(datarcbgls1, type = "normalized") Block1 Block2 Block3 Block4 Block5 Block6 datarcb$block 125 Example Looks good, but for INDEPENDENCE Can we deal with that with correlation structure? 126 Example Model in dependency structure > library(nlme) > datarcbgls2<-gls(y~x,datarcb, + correlation=corcompsymm(form=~1 block), + method="reml") > plot(residuals(datarcbgls2, type='normalized') ~ + fitted(datarcbgls2)) σ 2 ρ ρ Variance-covariance per Block:V = ρ σ 2 σ 2 ρ σ 2

15 fitted(datarcbgls2) residuals(datarcbgls2, type = "normalized") 127 Example > plot(residuals(datarcbgls2, type='normalized') ~ + datarcb$block)

16 -16- residuals(datarcbgls2, type = "normalized") Block1 Block3 Block5 datarcb$block 128 Example > summary(datarcbgls2) Generalized least squares fit by REML Model: y ~ x Data: datarcb AIC BIC loglik Correlation Structure: Compound symmetry Formula: ~1 block Parameter estimate(s): Rho Coefficients: Value StdError t-value p-value (Intercept) x Correlation: (Intr) x Standardized residuals:

17 -17- Min Med Max Residual standard error: Degrees of freedom: 60 total; 58 residual 129 Linear mixed effects model > datarcblme <- lme(y~x, random=~1 block, datarcb, + method='reml') > plot(datarcblme) 2 Standardized residuals Fitted values > plot(residuals(datarcblme, type='normalized') ~ fitted(datarcblme)) residuals(datarcblme, type = "normalized") fitted(datarcblme) > plot(residuals(datarcblme, type='normalized') ~ datarcb$block) residuals(datarcblme, type = "normalized") Block1 Block3 Block5 datarcb$block 130 Linear mixed effects model > summary(datarcblme) Linear mixed-effects model fit by REML Data: datarcb AIC BIC loglik Random effects: Formula: ~1 block (Intercept) Residual StdDev: Fixed effects: y ~ x Value StdError DF t-value p-value (Intercept)

18 -18- x Correlation: (Intr) x Standardized Within-Group Residuals: Min Med Max Number of Observations: 60 Number of Groups: Linear mixed effects model > anova(datarcblme) numdf dendf F-value p-value (Intercept) <0001 x <0001 > intervals(datarcblme) Approximate 95% confidence intervals Fixed effects: lower est upper (Intercept) x attr(,"label") [1] "Fixed effects:" Random Effects: Level: block lower est upper sd((intercept)) Within-group standard error: lower est upper Linear mixed effects model > vc<-asnumeric(asmatrix(varcorr(datarcblme))[,1]) > vc/sum(vc) [1] Linear mixed effects model > library(effects) > plot(alleffects(datarcblme, partialresiduals=true))

19 -19- x effect plot 360 y x 134 Linear mixed effects model > predict(datarcblme, newdata=dataframe(x=30:40),level=0) [1] [11] attr(,"label") [1] "Predicted values" 135 Linear mixed effects model > predict(datarcblme, newdata=dataframe(x=30:40, + block='block1'),level=1) Block1 Block1 Block1 Block1 Block1 Block1 Block1 Block1 Block1 Block1 Block attr(,"label") [1] "Predicted values" 136 Linear mixed effects model 1361 Summary figure Step 1 gather model coefficients > coefs <- fixef(datarcblme) > coefs (Intercept) x

20 Linear mixed effects model 1371 Summary figure Step 2 generate prediction model matrix > xs <- seq(min(datarcb$x), max(datarcb$x), l=100) > Xmat <- modelmatrix(~x, dataframe(x=xs)) > head(xmat) (Intercept) x Linear mixed effects model 1381 Summary figure Step 3 calculate predicted y > ys <- t(coefs %*% t(xmat)) > head(ys) [,1] Linear mixed effects model 1391 Summary figure Step 3 calculate confidence interval > SE <- sqrt(diag(xmat %*% vcov(datarcblme) %*% t(xmat))) > CI <- 2*SE > #OR > CI <- qt(0975,length(datarcb$x)-2)*se > datarcbpred <- dataframe(x=xs, fit=ys, se=se, + lower=ys-ci, upper=ys+ci) > head(datarcbpred) x fit se lower upper

21 Linear mixed effects model 1401 Summary figure Step 4 plot it > library(ggplot2) > ggplot(datarcbpred, aes(y=fit, x=x)) + + geom_ribbon(aes(ymin=lower,ymax=upper),fill='blue',alpha=02)+ + geom_line()+ + scale_y_continuous('y')+ + theme_classic()+ + theme(axistitlex=element_text(size=rel(125), vjust=-2), + axistitley=element_text(size=rel(125), vjust=2), + plotmargin=unit(c(01,01,2,2),'lines')) > > ## plot(fit~x, data=datarcbpred,type='n',axes=f, ann=f) > ## points(y~x, data=datarcb, pch=16, col='grey') > ## with(datarcbpred, polygon(c(x,rev(x)), c(lower, rev(upper)), > ## col="#0000ff50",border=false)) > ## lines(fit~x,data=datarcbpred) > ## lines(lower~x,data=datarcbpred, lty=2) > ## lines(upper~x,data=datarcbpred, lty=2) > ## axis(1) > ## mtext('x',1,line=3) > ## axis(2,las=1) > ## mtext('y',2,line=3) > ## box(bty='l') Linear mixed effects model 141 Linear mixed effects model 1411 Summary figure 320 Y x 142 Linear mixed effects model

22 Summary figure Step 4 plot it (with partial observed values) > datarcb$res <- predict(datarcblme, level=1)+ + residuals(datarcblme) > > library(ggplot2) > ggplot(datarcbpred, aes(y=fit, x=x)) + + geom_point(data=datarcb, aes(y=res))+ + geom_ribbon(aes(ymin=lower,ymax=upper),fill='blue',alpha=02)+ + geom_line()+ + scale_y_continuous('y')+ + theme_classic()+ + theme(axistitlex=element_text(size=rel(125), vjust=-2), + axistitley=element_text(size=rel(125), vjust=2), + plotmargin=unit(c(01,01,2,2),'lines')) 143 Linear mixed effects model 1431 Summary figure Y x

Workshop 9.3a: Randomized block designs

Workshop 9.3a: Randomized block designs -1- Workshop 93a: Randomized block designs Murray Logan November 23, 16 Table of contents 1 Randomized Block (RCB) designs 1 2 Worked Examples 12 1 Randomized Block (RCB) designs 11 RCB design Simple Randomized

More information

These slides illustrate a few example R commands that can be useful for the analysis of repeated measures data.

These slides illustrate a few example R commands that can be useful for the analysis of repeated measures data. These slides illustrate a few example R commands that can be useful for the analysis of repeated measures data. We focus on the experiment designed to compare the effectiveness of three strength training

More information

Repeated measures, part 2, advanced methods

Repeated measures, part 2, advanced methods enote 12 1 enote 12 Repeated measures, part 2, advanced methods enote 12 INDHOLD 2 Indhold 12 Repeated measures, part 2, advanced methods 1 12.1 Intro......................................... 3 12.2 A

More information

STAT3401: Advanced data analysis Week 10: Models for Clustered Longitudinal Data

STAT3401: Advanced data analysis Week 10: Models for Clustered Longitudinal Data STAT3401: Advanced data analysis Week 10: Models for Clustered Longitudinal Data Berwin Turlach School of Mathematics and Statistics Berwin.Turlach@gmail.com The University of Western Australia Models

More information

Hierarchical Linear Models (HLM) Using R Package nlme. Interpretation. 2 = ( x 2) u 0j. e ij

Hierarchical Linear Models (HLM) Using R Package nlme. Interpretation. 2 = ( x 2) u 0j. e ij Hierarchical Linear Models (HLM) Using R Package nlme Interpretation I. The Null Model Level 1 (student level) model is mathach ij = β 0j + e ij Level 2 (school level) model is β 0j = γ 00 + u 0j Combined

More information

R Output for Linear Models using functions lm(), gls() & glm()

R Output for Linear Models using functions lm(), gls() & glm() LM 04 lm(), gls() &glm() 1 R Output for Linear Models using functions lm(), gls() & glm() Different kinds of output related to linear models can be obtained in R using function lm() {stats} in the base

More information

Introduction and Background to Multilevel Analysis

Introduction and Background to Multilevel Analysis Introduction and Background to Multilevel Analysis Dr. J. Kyle Roberts Southern Methodist University Simmons School of Education and Human Development Department of Teaching and Learning Background and

More information

Solution pigs exercise

Solution pigs exercise Solution pigs exercise Course repeated measurements - R exercise class 2 November 24, 2017 Contents 1 Question 1: Import data 3 1.1 Data management..................................... 3 1.2 Inspection

More information

Categorical Predictor Variables

Categorical Predictor Variables Categorical Predictor Variables We often wish to use categorical (or qualitative) variables as covariates in a regression model. For binary variables (taking on only 2 values, e.g. sex), it is relatively

More information

13. October p. 1

13. October p. 1 Lecture 8 STK3100/4100 Linear mixed models 13. October 2014 Plan for lecture: 1. The lme function in the nlme library 2. Induced correlation structure 3. Marginal models 4. Estimation - ML and REML 5.

More information

Non-independence due to Time Correlation (Chapter 14)

Non-independence due to Time Correlation (Chapter 14) Non-independence due to Time Correlation (Chapter 14) When we model the mean structure with ordinary least squares, the mean structure explains the general trends in the data with respect to our dependent

More information

Exploring Hierarchical Linear Mixed Models

Exploring Hierarchical Linear Mixed Models Exploring Hierarchical Linear Mixed Models 1/49 Last time... A Greenhouse Experiment testing C:N Ratios Sam was testing how changing the C:N Ratio of soil affected plant leaf growth. He had 3 treatments.

More information

Repeated measures, part 1, simple methods

Repeated measures, part 1, simple methods enote 11 1 enote 11 Repeated measures, part 1, simple methods enote 11 INDHOLD 2 Indhold 11 Repeated measures, part 1, simple methods 1 11.1 Intro......................................... 2 11.1.1 Main

More information

Longitudinal Data Analysis. with Mixed Models

Longitudinal Data Analysis. with Mixed Models SPIDA 09 Mixed Models with R Longitudinal Data Analysis with Mixed Models Georges Monette 1 June 09 e-mail: georges@yorku.ca web page: http://wiki.math.yorku.ca/spida_09 1 with thanks to many contributors:

More information

Random and Mixed Effects Models - Part III

Random and Mixed Effects Models - Part III Random and Mixed Effects Models - Part III Statistics 149 Spring 2006 Copyright 2006 by Mark E. Irwin Quasi-F Tests When we get to more than two categorical factors, some times there are not nice F tests

More information

De-mystifying random effects models

De-mystifying random effects models De-mystifying random effects models Peter J Diggle Lecture 4, Leahurst, October 2012 Linear regression input variable x factor, covariate, explanatory variable,... output variable y response, end-point,

More information

Lecture 22 Mixed Effects Models III Nested designs

Lecture 22 Mixed Effects Models III Nested designs Lecture 22 Mixed Effects Models III Nested designs 94 Introduction: Crossed Designs The two-factor designs considered so far involve every level of the first factor occurring with every level of the second

More information

Introduction to the Analysis of Hierarchical and Longitudinal Data

Introduction to the Analysis of Hierarchical and Longitudinal Data Introduction to the Analysis of Hierarchical and Longitudinal Data Georges Monette, York University with Ye Sun SPIDA June 7, 2004 1 Graphical overview of selected concepts Nature of hierarchical models

More information

#Alternatively we could fit a model where the rail values are levels of a factor with fixed effects

#Alternatively we could fit a model where the rail values are levels of a factor with fixed effects examples-lme.r Tue Nov 25 12:32:20 2008 1 library(nlme) # The following data shows the results of tests carried over 6 rails. The response # indicated the time needed for a an ultrasonic wave to travel

More information

CO2 Handout. t(cbind(co2$type,co2$treatment,model.matrix(~type*treatment,data=co2)))

CO2 Handout. t(cbind(co2$type,co2$treatment,model.matrix(~type*treatment,data=co2))) CO2 Handout CO2.R: library(nlme) CO2[1:5,] plot(co2,outer=~treatment*type,layout=c(4,1)) m1co2.lis

More information

STK4900/ Lecture 10. Program

STK4900/ Lecture 10. Program STK4900/9900 - Lecture 10 Program 1. Repeated measures and longitudinal data 2. Simple analysis approaches 3. Random effects models 4. Generalized estimating equations (GEE) 5. GEE for binary data (and

More information

Intruction to General and Generalized Linear Models

Intruction to General and Generalized Linear Models Intruction to General and Generalized Linear Models Mixed Effects Models IV Henrik Madsen Anna Helga Jónsdóttir hm@imm.dtu.dk April 30, 2012 Henrik Madsen Anna Helga Jónsdóttir (hm@imm.dtu.dk) Intruction

More information

22s:152 Applied Linear Regression. Returning to a continuous response variable Y...

22s:152 Applied Linear Regression. Returning to a continuous response variable Y... 22s:152 Applied Linear Regression Generalized Least Squares Returning to a continuous response variable Y... Ordinary Least Squares Estimation The classical models we have fit so far with a continuous

More information

Coping with Additional Sources of Variation: ANCOVA and Random Effects

Coping with Additional Sources of Variation: ANCOVA and Random Effects Coping with Additional Sources of Variation: ANCOVA and Random Effects 1/49 More Noise in Experiments & Observations Your fixed coefficients are not always so fixed Continuous variation between samples

More information

22s:152 Applied Linear Regression. In matrix notation, we can write this model: Generalized Least Squares. Y = Xβ + ɛ with ɛ N n (0, Σ)

22s:152 Applied Linear Regression. In matrix notation, we can write this model: Generalized Least Squares. Y = Xβ + ɛ with ɛ N n (0, Σ) 22s:152 Applied Linear Regression Generalized Least Squares Returning to a continuous response variable Y Ordinary Least Squares Estimation The classical models we have fit so far with a continuous response

More information

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Introduction to General and Generalized Linear Models Mixed effects models - II Henrik Madsen, Jan Kloppenborg Møller, Anders Nielsen April 16, 2012 H. Madsen, JK. Møller, A. Nielsen () Chapman & Hall

More information

SAS Syntax and Output for Data Manipulation:

SAS Syntax and Output for Data Manipulation: CLP 944 Example 5 page 1 Practice with Fixed and Random Effects of Time in Modeling Within-Person Change The models for this example come from Hoffman (2015) chapter 5. We will be examining the extent

More information

Time-Series Regression and Generalized Least Squares in R*

Time-Series Regression and Generalized Least Squares in R* Time-Series Regression and Generalized Least Squares in R* An Appendix to An R Companion to Applied Regression, third edition John Fox & Sanford Weisberg last revision: 2018-09-26 Abstract Generalized

More information

Analysis of Covariance

Analysis of Covariance Analysis of Covariance Using categorical and continuous predictor variables Example An experiment is set up to look at the effects of watering on Oak Seedling establishment Three levels of watering: (no

More information

Outline. Mixed models in R using the lme4 package Part 3: Longitudinal data. Sleep deprivation data. Simple longitudinal data

Outline. Mixed models in R using the lme4 package Part 3: Longitudinal data. Sleep deprivation data. Simple longitudinal data Outline Mixed models in R using the lme4 package Part 3: Longitudinal data Douglas Bates Longitudinal data: sleepstudy A model with random effects for intercept and slope University of Wisconsin - Madison

More information

Repeated Measures Design. Advertising Sales Example

Repeated Measures Design. Advertising Sales Example STAT:5201 Anaylsis/Applied Statistic II Repeated Measures Design Advertising Sales Example A company is interested in comparing the success of two different advertising campaigns. It has 10 test markets,

More information

lme4 Luke Chang Last Revised July 16, Fitting Linear Mixed Models with a Varying Intercept

lme4 Luke Chang Last Revised July 16, Fitting Linear Mixed Models with a Varying Intercept lme4 Luke Chang Last Revised July 16, 2010 1 Using lme4 1.1 Fitting Linear Mixed Models with a Varying Intercept We will now work through the same Ultimatum Game example from the regression section and

More information

Introduction to Within-Person Analysis and RM ANOVA

Introduction to Within-Person Analysis and RM ANOVA Introduction to Within-Person Analysis and RM ANOVA Today s Class: From between-person to within-person ANOVAs for longitudinal data Variance model comparisons using 2 LL CLP 944: Lecture 3 1 The Two Sides

More information

DESIGNING EXPERIMENTS AND ANALYZING DATA A Model Comparison Perspective

DESIGNING EXPERIMENTS AND ANALYZING DATA A Model Comparison Perspective DESIGNING EXPERIMENTS AND ANALYZING DATA A Model Comparison Perspective Second Edition Scott E. Maxwell Uniuersity of Notre Dame Harold D. Delaney Uniuersity of New Mexico J,t{,.?; LAWRENCE ERLBAUM ASSOCIATES,

More information

Lecture 9 STK3100/4100

Lecture 9 STK3100/4100 Lecture 9 STK3100/4100 27. October 2014 Plan for lecture: 1. Linear mixed models cont. Models accounting for time dependencies (Ch. 6.1) 2. Generalized linear mixed models (GLMM, Ch. 13.1-13.3) Examples

More information

SAS Code for Data Manipulation: SPSS Code for Data Manipulation: STATA Code for Data Manipulation: Psyc 945 Example 1 page 1

SAS Code for Data Manipulation: SPSS Code for Data Manipulation: STATA Code for Data Manipulation: Psyc 945 Example 1 page 1 Psyc 945 Example page Example : Unconditional Models for Change in Number Match 3 Response Time (complete data, syntax, and output available for SAS, SPSS, and STATA electronically) These data come from

More information

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression.

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression. 10/3/011 Functional Connectivity Correlation and Regression Variance VAR = Standard deviation Standard deviation SD = Unbiased SD = 1 10/3/011 Standard error Confidence interval SE = CI = = t value for

More information

over Time line for the means). Specifically, & covariances) just a fixed variance instead. PROC MIXED: to 1000 is default) list models with TYPE=VC */

over Time line for the means). Specifically, & covariances) just a fixed variance instead. PROC MIXED: to 1000 is default) list models with TYPE=VC */ CLP 944 Example 4 page 1 Within-Personn Fluctuation in Symptom Severity over Time These data come from a study of weekly fluctuation in psoriasis severity. There was no intervention and no real reason

More information

Technische Universität München. Zentrum Mathematik. Linear Mixed Models Applied to Bank Branch Deposit Data

Technische Universität München. Zentrum Mathematik. Linear Mixed Models Applied to Bank Branch Deposit Data Technische Universität München Zentrum Mathematik Linear Mixed Models Applied to Bank Branch Deposit Data Project by Eike Christian Brechmann Supervisor: Prof. Claudia Czado, Ph.D. Tutor: Dr. Mathias Hofmann

More information

Hierarchical Random Effects

Hierarchical Random Effects enote 5 1 enote 5 Hierarchical Random Effects enote 5 INDHOLD 2 Indhold 5 Hierarchical Random Effects 1 5.1 Introduction.................................... 2 5.2 Main example: Lactase measurements in

More information

Random Intercept Models

Random Intercept Models Random Intercept Models Edps/Psych/Soc 589 Carolyn J. Anderson Department of Educational Psychology c Board of Trustees, University of Illinois Spring 2019 Outline A very simple case of a random intercept

More information

Subject-specific observed profiles of log(fev1) vs age First 50 subjects in Six Cities Study

Subject-specific observed profiles of log(fev1) vs age First 50 subjects in Six Cities Study Subject-specific observed profiles of log(fev1) vs age First 50 subjects in Six Cities Study 1.4 0.0-6 7 8 9 10 11 12 13 14 15 16 17 18 19 age Model 1: A simple broken stick model with knot at 14 fit with

More information

Overview. 1. Independence. 2. Modeling Autocorrelation. 3. Temporal Autocorrelation Example. 4. Spatial Autocorrelation Example

Overview. 1. Independence. 2. Modeling Autocorrelation. 3. Temporal Autocorrelation Example. 4. Spatial Autocorrelation Example 6. Autocorrelation Overview 1. Independence 2. Modeling Autocorrelation 3. Temporal Autocorrelation Example 4. Spatial Autocorrelation Example 6.1 Independence 6.1 Independence. Model assumptions All linear

More information

Covariance Models (*) X i : (n i p) design matrix for fixed effects β : (p 1) regression coefficient for fixed effects

Covariance Models (*) X i : (n i p) design matrix for fixed effects β : (p 1) regression coefficient for fixed effects Covariance Models (*) Mixed Models Laird & Ware (1982) Y i = X i β + Z i b i + e i Y i : (n i 1) response vector X i : (n i p) design matrix for fixed effects β : (p 1) regression coefficient for fixed

More information

Solution to Series 6

Solution to Series 6 Dr. M. Dettling Applied Series Analysis SS 2014 Solution to Series 6 1. a) > r.bel.lm summary(r.bel.lm) Call: lm(formula = NURSING ~., data = d.beluga) Residuals: Min 1Q

More information

Part III: Linear mixed effects models

Part III: Linear mixed effects models Part III: Linear mixed effects models 159 BIO 245, Spring 2018 Dental growth data Females Males Length, mm 16 18 20 22 24 26 28 30 32 11 11 4 3 2 11 4 7 11 4 3 3 2 8 4 8 5 8 58 7 1 7 5 6 9 57 2 1 9 12

More information

Regression Models - Introduction

Regression Models - Introduction Regression Models - Introduction In regression models there are two types of variables that are studied: A dependent variable, Y, also called response variable. It is modeled as random. An independent

More information

SAS Syntax and Output for Data Manipulation: CLDP 944 Example 3a page 1

SAS Syntax and Output for Data Manipulation: CLDP 944 Example 3a page 1 CLDP 944 Example 3a page 1 From Between-Person to Within-Person Models for Longitudinal Data The models for this example come from Hoffman (2015) chapter 3 example 3a. We will be examining the extent to

More information

A brief introduction to mixed models

A brief introduction to mixed models A brief introduction to mixed models University of Gothenburg Gothenburg April 6, 2017 Outline An introduction to mixed models based on a few examples: Definition of standard mixed models. Parameter estimation.

More information

Confidence Interval for the mean response

Confidence Interval for the mean response Week 3: Prediction and Confidence Intervals at specified x. Testing lack of fit with replicates at some x's. Inference for the correlation. Introduction to regression with several explanatory variables.

More information

Value Added Modeling

Value Added Modeling Value Added Modeling Dr. J. Kyle Roberts Southern Methodist University Simmons School of Education and Human Development Department of Teaching and Learning Background for VAMs Recall from previous lectures

More information

Random and Mixed Effects Models - Part II

Random and Mixed Effects Models - Part II Random and Mixed Effects Models - Part II Statistics 149 Spring 2006 Copyright 2006 by Mark E. Irwin Two-Factor Random Effects Model Example: Miles per Gallon (Neter, Kutner, Nachtsheim, & Wasserman, problem

More information

20. REML Estimation of Variance Components. Copyright c 2018 (Iowa State University) 20. Statistics / 36

20. REML Estimation of Variance Components. Copyright c 2018 (Iowa State University) 20. Statistics / 36 20. REML Estimation of Variance Components Copyright c 2018 (Iowa State University) 20. Statistics 510 1 / 36 Consider the General Linear Model y = Xβ + ɛ, where ɛ N(0, Σ) and Σ is an n n positive definite

More information

Introduction to Hierarchical Data Theory Real Example. NLME package in R. Jiang Qi. Department of Statistics Renmin University of China.

Introduction to Hierarchical Data Theory Real Example. NLME package in R. Jiang Qi. Department of Statistics Renmin University of China. Department of Statistics Renmin University of China June 7, 2010 The problem Grouped data, or Hierarchical data: correlations between subunits within subjects. The problem Grouped data, or Hierarchical

More information

Hypothesis Testing for Var-Cov Components

Hypothesis Testing for Var-Cov Components Hypothesis Testing for Var-Cov Components When the specification of coefficients as fixed, random or non-randomly varying is considered, a null hypothesis of the form is considered, where Additional output

More information

Randomized Block Designs with Replicates

Randomized Block Designs with Replicates LMM 021 Randomized Block ANOVA with Replicates 1 ORIGIN := 0 Randomized Block Designs with Replicates prepared by Wm Stein Randomized Block Designs with Replicates extends the use of one or more random

More information

df=degrees of freedom = n - 1

df=degrees of freedom = n - 1 One sample t-test test of the mean Assumptions: Independent, random samples Approximately normal distribution (from intro class: σ is unknown, need to calculate and use s (sample standard deviation)) Hypotheses:

More information

Fitting mixed models in R

Fitting mixed models in R Fitting mixed models in R Contents 1 Packages 2 2 Specifying the variance-covariance matrix (nlme package) 3 2.1 Illustration:.................................... 3 2.2 Technical point: why to use as.numeric(time)

More information

Workshop 7.4a: Single factor ANOVA

Workshop 7.4a: Single factor ANOVA -1- Workshop 7.4a: Single factor ANOVA Murray Logan November 23, 2016 Table of contents 1 Revision 1 2 Anova Parameterization 2 3 Partitioning of variance (ANOVA) 10 4 Worked Examples 13 1. Revision 1.1.

More information

Serial Correlation. Edps/Psych/Stat 587. Carolyn J. Anderson. Fall Department of Educational Psychology

Serial Correlation. Edps/Psych/Stat 587. Carolyn J. Anderson. Fall Department of Educational Psychology Serial Correlation Edps/Psych/Stat 587 Carolyn J. Anderson Department of Educational Psychology c Board of Trustees, University of Illinois Fall 017 Model for Level 1 Residuals There are three sources

More information

Applied Regression Analysis

Applied Regression Analysis Applied Regression Analysis Chapter 3 Multiple Linear Regression Hongcheng Li April, 6, 2013 Recall simple linear regression 1 Recall simple linear regression 2 Parameter Estimation 3 Interpretations of

More information

Mixed effects models

Mixed effects models Mixed effects models The basic theory and application in R Mitchel van Loon Research Paper Business Analytics Mixed effects models The basic theory and application in R Author: Mitchel van Loon Research

More information

Correlated Data: Linear Mixed Models with Random Intercepts

Correlated Data: Linear Mixed Models with Random Intercepts 1 Correlated Data: Linear Mixed Models with Random Intercepts Mixed Effects Models This lecture introduces linear mixed effects models. Linear mixed models are a type of regression model, which generalise

More information

Outline. Statistical inference for linear mixed models. One-way ANOVA in matrix-vector form

Outline. Statistical inference for linear mixed models. One-way ANOVA in matrix-vector form Outline Statistical inference for linear mixed models Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark general form of linear mixed models examples of analyses using linear mixed

More information

Review of CLDP 944: Multilevel Models for Longitudinal Data

Review of CLDP 944: Multilevel Models for Longitudinal Data Review of CLDP 944: Multilevel Models for Longitudinal Data Topics: Review of general MLM concepts and terminology Model comparisons and significance testing Fixed and random effects of time Significance

More information

Business Statistics. Lecture 10: Correlation and Linear Regression

Business Statistics. Lecture 10: Correlation and Linear Regression Business Statistics Lecture 10: Correlation and Linear Regression Scatterplot A scatterplot shows the relationship between two quantitative variables measured on the same individuals. It displays the Form

More information

MLR Model Selection. Author: Nicholas G Reich, Jeff Goldsmith. This material is part of the statsteachr project

MLR Model Selection. Author: Nicholas G Reich, Jeff Goldsmith. This material is part of the statsteachr project MLR Model Selection Author: Nicholas G Reich, Jeff Goldsmith This material is part of the statsteachr project Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported License: http://creativecommons.org/licenses/by-sa/3.0/deed.en

More information

Regression and Models with Multiple Factors. Ch. 17, 18

Regression and Models with Multiple Factors. Ch. 17, 18 Regression and Models with Multiple Factors Ch. 17, 18 Mass 15 20 25 Scatter Plot 70 75 80 Snout-Vent Length Mass 15 20 25 Linear Regression 70 75 80 Snout-Vent Length Least-squares The method of least

More information

with the usual assumptions about the error term. The two values of X 1 X 2 0 1

with the usual assumptions about the error term. The two values of X 1 X 2 0 1 Sample questions 1. A researcher is investigating the effects of two factors, X 1 and X 2, each at 2 levels, on a response variable Y. A balanced two-factor factorial design is used with 1 replicate. The

More information

Research Design: Topic 18 Hierarchical Linear Modeling (Measures within Persons) 2010 R.C. Gardner, Ph.d.

Research Design: Topic 18 Hierarchical Linear Modeling (Measures within Persons) 2010 R.C. Gardner, Ph.d. Research Design: Topic 8 Hierarchical Linear Modeling (Measures within Persons) R.C. Gardner, Ph.d. General Rationale, Purpose, and Applications Linear Growth Models HLM can also be used with repeated

More information

Simulation and Analysis of Data from a Classic Split Plot Experimental Design

Simulation and Analysis of Data from a Classic Split Plot Experimental Design Simulation and Analysis of Data from a Classic Split Plot Experimental Design 1 Split-Plot Experimental Designs Field Plot Block 1 Block 2 Block 3 Block 4 Genotype C Genotype B Genotype A Genotype B Genotype

More information

Additional Notes: Investigating a Random Slope. When we have fixed level-1 predictors at level 2 we show them like this:

Additional Notes: Investigating a Random Slope. When we have fixed level-1 predictors at level 2 we show them like this: Ron Heck, Summer 01 Seminars 1 Multilevel Regression Models and Their Applications Seminar Additional Notes: Investigating a Random Slope We can begin with Model 3 and add a Random slope parameter. If

More information

Mutilevel Models: Pooled and Clustered Data

Mutilevel Models: Pooled and Clustered Data Mutilevel Models: Pooled and Clustered Data ICPSR, June 1-5, 2015 Tom Carsey carsey@unc.edu In the Beginning... We start with a simple linear model Where i subscripts individual observations. Y i = β 0

More information

Chapte The McGraw-Hill Companies, Inc. All rights reserved.

Chapte The McGraw-Hill Companies, Inc. All rights reserved. 12er12 Chapte Bivariate i Regression (Part 1) Bivariate Regression Visual Displays Begin the analysis of bivariate data (i.e., two variables) with a scatter plot. A scatter plot - displays each observed

More information

Spatial inference. Spatial inference. Accounting for spatial correlation. Multivariate normal distributions

Spatial inference. Spatial inference. Accounting for spatial correlation. Multivariate normal distributions Spatial inference I will start with a simple model, using species diversity data Strong spatial dependence, Î = 0.79 what is the mean diversity? How precise is our estimate? Sampling discussion: The 64

More information

Correlation and Simple Linear Regression

Correlation and Simple Linear Regression Correlation and Simple Linear Regression Sasivimol Rattanasiri, Ph.D Section for Clinical Epidemiology and Biostatistics Ramathibodi Hospital, Mahidol University E-mail: sasivimol.rat@mahidol.ac.th 1 Outline

More information

Lecture 6: Linear Regression (continued)

Lecture 6: Linear Regression (continued) Lecture 6: Linear Regression (continued) Reading: Sections 3.1-3.3 STATS 202: Data mining and analysis October 6, 2017 1 / 23 Multiple linear regression Y = β 0 + β 1 X 1 + + β p X p + ε Y ε N (0, σ) i.i.d.

More information

Optimal design of experiments

Optimal design of experiments Optimal design of experiments Session 4: Some theory Peter Goos / 40 Optimal design theory continuous or approximate optimal designs implicitly assume an infinitely large number of observations are available

More information

Exam Applied Statistical Regression. Good Luck!

Exam Applied Statistical Regression. Good Luck! Dr. M. Dettling Summer 2011 Exam Applied Statistical Regression Approved: Tables: Note: Any written material, calculator (without communication facility). Attached. All tests have to be done at the 5%-level.

More information

Stat 579: Generalized Linear Models and Extensions

Stat 579: Generalized Linear Models and Extensions Stat 579: Generalized Linear Models and Extensions Linear Mixed Models for Longitudinal Data Yan Lu April, 2018, week 14 1 / 64 Data structure and Model t1 t2 tn i 1st subject y 11 y 12 y 1n1 2nd subject

More information

Information. Hierarchical Models - Statistical Methods. References. Outline

Information. Hierarchical Models - Statistical Methods. References. Outline Information Hierarchical Models - Statistical Methods Sarah Filippi 1 University of Oxford Hilary Term 2015 Webpage: http://www.stats.ox.ac.uk/~filippi/msc_ hierarchicalmodels_2015.html Lectures: Week

More information

A discussion on multiple regression models

A discussion on multiple regression models A discussion on multiple regression models In our previous discussion of simple linear regression, we focused on a model in which one independent or explanatory variable X was used to predict the value

More information

Acknowledgements. Outline. Marie Diener-West. ICTR Leadership / Team INTRODUCTION TO CLINICAL RESEARCH. Introduction to Linear Regression

Acknowledgements. Outline. Marie Diener-West. ICTR Leadership / Team INTRODUCTION TO CLINICAL RESEARCH. Introduction to Linear Regression INTRODUCTION TO CLINICAL RESEARCH Introduction to Linear Regression Karen Bandeen-Roche, Ph.D. July 17, 2012 Acknowledgements Marie Diener-West Rick Thompson ICTR Leadership / Team JHU Intro to Clinical

More information

Step 2: Select Analyze, Mixed Models, and Linear.

Step 2: Select Analyze, Mixed Models, and Linear. Example 1a. 20 employees were given a mood questionnaire on Monday, Wednesday and again on Friday. The data will be first be analyzed using a Covariance Pattern model. Step 1: Copy Example1.sav data file

More information

Interactions between Binary & Quantitative Predictors

Interactions between Binary & Quantitative Predictors Interactions between Binary & Quantitative Predictors The purpose of the study was to examine the possible joint effects of the difficulty of the practice task and the amount of practice, upon the performance

More information

Statistical Techniques II EXST7015 Simple Linear Regression

Statistical Techniques II EXST7015 Simple Linear Regression Statistical Techniques II EXST7015 Simple Linear Regression 03a_SLR 1 Y - the dependent variable 35 30 25 The objective Given points plotted on two coordinates, Y and X, find the best line to fit the data.

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

Simple and Multiple Linear Regression

Simple and Multiple Linear Regression Sta. 113 Chapter 12 and 13 of Devore March 12, 2010 Table of contents 1 Simple Linear Regression 2 Model Simple Linear Regression A simple linear regression model is given by Y = β 0 + β 1 x + ɛ where

More information

TMA4255 Applied Statistics V2016 (5)

TMA4255 Applied Statistics V2016 (5) TMA4255 Applied Statistics V2016 (5) Part 2: Regression Simple linear regression [11.1-11.4] Sum of squares [11.5] Anna Marie Holand To be lectured: January 26, 2016 wiki.math.ntnu.no/tma4255/2016v/start

More information

Multi-factor analysis of variance

Multi-factor analysis of variance Faculty of Health Sciences Outline Multi-factor analysis of variance Basic statistics for experimental researchers 2015 Two-way ANOVA and interaction Mathed samples ANOVA Random vs systematic variation

More information

Stats fest Analysis of variance. Single factor ANOVA. Aims. Single factor ANOVA. Data

Stats fest Analysis of variance. Single factor ANOVA. Aims. Single factor ANOVA. Data 1 Stats fest 2007 Analysis of variance murray.logan@sci.monash.edu.au Single factor ANOVA 2 Aims Description Investigate differences between population means Explanation How much of the variation in response

More information

23. Inference for regression

23. Inference for regression 23. Inference for regression The Practice of Statistics in the Life Sciences Third Edition 2014 W. H. Freeman and Company Objectives (PSLS Chapter 23) Inference for regression The regression model Confidence

More information

Modelling the Covariance

Modelling the Covariance Modelling the Covariance Jamie Monogan Washington University in St Louis February 9, 2010 Jamie Monogan (WUStL) Modelling the Covariance February 9, 2010 1 / 13 Objectives By the end of this meeting, participants

More information

Lecture 12: Effect modification, and confounding in logistic regression

Lecture 12: Effect modification, and confounding in logistic regression Lecture 12: Effect modification, and confounding in logistic regression Ani Manichaikul amanicha@jhsph.edu 4 May 2007 Today Categorical predictor create dummy variables just like for linear regression

More information

GMM - Generalized method of moments

GMM - Generalized method of moments GMM - Generalized method of moments GMM Intuition: Matching moments You want to estimate properties of a data set {x t } T t=1. You assume that x t has a constant mean and variance. x t (µ 0, σ 2 ) Consider

More information

Answer to exercise: Blood pressure lowering drugs

Answer to exercise: Blood pressure lowering drugs Answer to exercise: Blood pressure lowering drugs The data set bloodpressure.txt contains data from a cross-over trial, involving three different formulations of a drug for lowering of blood pressure:

More information

A (Brief) Introduction to Crossed Random Effects Models for Repeated Measures Data

A (Brief) Introduction to Crossed Random Effects Models for Repeated Measures Data A (Brief) Introduction to Crossed Random Effects Models for Repeated Measures Data Today s Class: Review of concepts in multivariate data Introduction to random intercepts Crossed random effects models

More information

A Re-Introduction to General Linear Models (GLM)

A Re-Introduction to General Linear Models (GLM) A Re-Introduction to General Linear Models (GLM) Today s Class: You do know the GLM Estimation (where the numbers in the output come from): From least squares to restricted maximum likelihood (REML) Reviewing

More information

POL 213: Research Methods

POL 213: Research Methods Brad 1 1 Department of Political Science University of California, Davis April 15, 2008 Some Matrix Basics What is a matrix? A rectangular array of elements arranged in rows and columns. 55 900 0 67 1112

More information

36-402/608 Homework #10 Solutions 4/1

36-402/608 Homework #10 Solutions 4/1 36-402/608 Homework #10 Solutions 4/1 1. Fixing Breakout 17 (60 points) You must use SAS for this problem! Modify the code in wallaby.sas to load the wallaby data and to create a new outcome in the form

More information