Seismic Design of New R.C. Structures

Size: px
Start display at page:

Download "Seismic Design of New R.C. Structures"

Transcription

1 Seismic Design Philosophy Main Concepts Seismic Design of New R.C. Structures Prof. Stephanos E. Dritsos University of Patras, Greece. Energy dissipation Ductility Capacity design Learning from Earthquakes Pisa, March 2015 Energy Dissipation Ductility and Ductility Factors Ductility is the ability of the system to undergo plastic deformation. The structural system deforms before collapse without a substantial loss of strength but with a significant energy dissipation. The system can be designed with smaller restoring forces, exploiting its ability to undergo plastic deformation. Ductility factor ( u / y ): Ratio of the ultimate deformation at failure u to the yield deformation y. * u is defined for design purposes as the deformation for which the material or the structural element loses a predefined percentage of its maximum strength. 3 4

2 In terms of displacements: Ductility Factors u = y u : ultimate deformation at failure y : yield deformation Behaviour q Factor The q factor corresponds to the reduction in the level of seismic forces due to nonlinear behaviour as compared with the expected elastic force levels. In terms of rotations: (for members) θu θ = θ y θ u : ultimate rotation at failure θ y : yield rotation In terms of curvatures: (for members) ϕu ϕ = ϕ y φ u : ultimate curvature at failure φ y : yield curvature 5 Ductility and Behaviour Factor q Definition q= el. Flexible Structures T Tc : Rule of equal dispacement inel Ductility and Behaviour Factor q Stiff Structures T Tc q for T=0 q=1 for T=T c q=μ q 1max u 2 = = = 2max y2 μ 1 y2 u2 7 y u2 Rule of equal dissipating energy q el 1max = = = inel 2max (2 1) 1/ 2 Τ c T q= 1 ( 1) (Eurocode 8) T c Τ 8

3 Design spectrum for linear analysis The capacity of structural systems to resist seismic actions in the nonlinear range permits their design for resistance to seismic forces smaller than those corresponding to a linear elastic response. The energy dissipation capacity of the structure is taken into account mainly through the ductile behavior of its elements by performing a linear analysis based on a reduced response spectrum, called design spectrum. This reduction is accomplished by introducing the behavior factor q. 9 Design spectrum for linear analysis (Eurocode 8) For the horizontal components of the seismic action the design spectrum, S d (T), shall be defined by the following expressions: a g is the design ground acceleration on type A ground (a g = γ I.a gr ); γ I=importance factor T B is the lower limit of the period of the constant spectral acceleration branch; T C is the upper limit of the period of the constant spectral acceleration branch; T D is the value defining the beginning of the constant displacement response range of the spectrum; S is the soil factor S d (T) is the design spectrum; q is the behaviour factor; β is the lower bound factor for the horizontal design spectrum, recommended β=0,2 10 Importance Classes (Eurocode 8) Behaviour Factor (Eurocode 8) The upper limit value of the behavior factor q, introduced to account for energy dissipation capacity, shall be derived for each design direction as follows: q = q o k w 1,5 Where q o is the basic value of the behavior factor, dependent on the type of the structural system and on its regularity in elevation; k w is the factor reflecting the prevailing failure mode in structural systems with walls: ku= (1 ao ) / 3 1 and 0,5 ao= Pr evailing wall aspect ratio =Σhwi / Σl wi Low Ductility Class (DCL): Seismic design for low ductility, following EC2 without any additional requirements other than those of 5.3.2, is recomended only for low seismicity cases (see 3.2.1(4))

4 Behaviour Factor (Eurocode 8) au/a1 in behaviour factor of buildings designed for ductility: due to system redundancy & overstrenght A behaviour factor q of up to 1,5 may be used in deriving the seismic actions, regardless of the structural system and the regularity in elevation. Medium (DCM) and High Ductility Class (DCH): For buildings which are not regular in elevation, the value of qo should be reduced by 20% 13 Structural Regularity (Eurocode 8) Structural Regularity (Eurocode 8) For seismic design, building structures in all modern codes are separated in two categories: a) regular buildings b) nonregular buildings This distinction has implications for the following aspects of the seismic design: the structural model, which can be either a simplified planar model or a spatial model ; the method of analysis, which can be either a simplified response spectrum analysis (lateral force procedure) or a modal one; the value of the behavior factor q, which shall be decreased for buildings nonregular in elevation 15 16

5 Criteria for Regularity in Elevation (Eurocode 8) STRUCTURE OF EN19981:2004 All lateral load resisting systems, such as cores, structural walls, or frames, shall run without interruption from their foundations to the top of the building or, if setbacks at different heights are present, to the top of the relevant zone of the building. Both the lateral stiffness and the mass of the individual storeys shall remain constant or reduce gradually, without abrupt changes, from the base to the top of a particular building. When setbacks are present, special additional provisions apply. 17 How q is achieved? Material limitations for primary seismic elements Specific requirements in detailing (e.g. confining actions by well anchored stirrups) Avoid brittle failures Avoid soft storey mechanism Avoid short columns Provide seismic joints to protect from earthquake induced pounding from adjacent structures..

6 Capacity Design Avoid weak column/strong beam frames Capacity Design Provide strong column/weak beam frames or wall equivalent dual frames, with beam sway mechanisms, trying to involve plastic hinging at all beam ends Capacity Design (Eurocode 8) column 1 beam 1 beam 2 column 2 Shear Capacity Design (Eurocode 8) Avoid Brittle failure M Column moment distribution E 1 M 1,d E M 2 = Μ x M Μ = l M 1,d or 2 M 2,d 2 M 2,d Exceptions: see EC (2) M Μ = = l 1, d 2, d max,c, l12 l12 clear max,c M = Μ 2, d 1, d l 12

7 Shear Capacity Design of Columns (Eurocode 8) Shear Capacity Design of Beams (Eurocode 8) M 1,d Similarly M 1,d γ Rd M Rc,1, when ΣΜ Rb > ΣΜ Rc, weak columns γ Rd M Rc,1 (ΣΜ Rd,b \ ΣΜ Rd,c ), when ΣΜ Rb < ΣΜ Rc, weak beams: (moment developed in the column when beams fail) γ Rd M Rc,1, when ΣΜ Rb < ΣΜ Rc γ Rd M Rc,1 (ΣΜ Rd,b \ ΣΜ Rd,c ) M 1 M = 1 2 E CD gψq M 1,d M 2,d 1 2 Determination of M [M] or E M 1 M M M 1,d M 2,d 1 2 [M] Also similarly for M 2,d, M 2,d ΣΜ Rb, ΣΜ Rc for the corresponding direction of seismic action (E or E) In DC H γ Rd =1.3 In DC M γ Rd =1.1 M [] Μ 2, d 1, d M max,b = l12 In DC H γ Rd =1.2 In DC M γ Rd =1.0 M max,b M = [] Μ 1, d 2, d l 12 Shear Capacity Design of Beams (Eurocode 8) M 1,d Similarly M 1,d γ Rd M Rb,1, when ΣΜ Rb < ΣΜ Rc, weak beams γ Rd M Rb,1 (ΣΜ Rd,c \ ΣΜ Rd,b ), when ΣΜ Rb > ΣΜ Rc, weak columns: (moment developed in the column when beams fail) γ Rd M Rb,1 In DC H γ Rd =1.3 In DC M γ Rd =1.1, when ΣΜ Rb < ΣΜ Rc γ Rd M Rb,1 (ΣΜ Rd,c \ ΣΜ Rd,b ) Also similarly for M 2,d, M 2,d ΣΜ Rb, ΣΜ Rc for the corresponding direction of seismic action (E or E) Local Ductility Conditions Relation between q and μ = q if T1 T c, = 1 ( q 1) Tc / T1 if T1< Tc ; Relation between μ and μ φ = 1 3( φ 1) Lpl / Ls (1 0.5 Lpl / Ls ); where L pl :plastic hinge length, L s : shear span Relation of L pl & L s for typical RC beams, columns & walls * ( considering : εcu= aωw ) Lpl 0.3Ls and for safety factor 2 : Lpl 0.15 Ls Then : φ 2 1 For T 1 T c φ= 2 1= 2q 1 Tc Tc For T 1 T c φ= 2 1= 2[1 ( q 1) ] 1= 1 2( q 1) T1 T1 In EC8 q o is used instead of q concervatively to include irregular buildings (q<q o ) Therefore: φ = 2qo 1 if T1 Tc Tc φ = 1 2( qo 1) if T1 < Tc T 1 Note: For Steel class B μ φ demand increases by 50%

8 Ductility Estimation for Beams Ductility Estimation for Beams Ductility increases when: ε cu ρ2 fc confinement ρ1 Compressive reinforcement neccessary While for tension reinforcement: the less the best Confined Concrete Model Ductility Estimation for Columns σc περισφιγμέν ο με FRP Fc Fs 2 Fc1 = N περισφιγμένο με χαλύβινα στοιχεία * fc v = N / bdf c φ = E φu 0.6 =1.2 s [ 1] ε cu f y v ( ρ1 k ρ 2 )( f y / f c ) φy fc 0,85fc f = β fc * c Ductility is reduced when axial load increases EC8 limits: vd > 0.65 for DCM and vd > 0.55 for DCH ε co ε * c u ε co 0 According to EC2 ε = β ε co * co 2 Adopting β 1 3, 7 p fc ε* ε cu p 0.5 a ωw fc ωw= Mechanical volumertic ratio of hoops When hoops are used 0.86 (Newman K. & Newnan J.B. 1971) β min 1 5 p p, fc fc ε cu* = p fc α=confinement effectiveness factor, Therefore β = min (1 2.5 aωw, aωw ) ε cu* = aωw a = as an

9 Detailing of primary beams for local ductility Detailing of primary beams for local ductility EN 19981:2004 (Ε) for DCM l cr = hw for DCH l cr =1.5hw For Tension Reinforcement For Comression Reinforcement ρ 2 = ρ 2req 0.5ρ Within ℓcr transverse reinforcement in critical regions of beams: dbw 6mm s More detailing rules for DCH Detailing of primary seismic columns for local ductility EN 19981:2004 (Ε) hw / 4 24 dbw 8 dbl ( DCM ) or 6 dbl ( DCH ) 225mm ( DCM ) or 175mm ( DCH ) Detailing of primary seismic columns for local ductility EN 19981:2004 (Ε) Everywhere 6 mm dbw 1 dbl,max 4 more restrictions for DCH critical regions c d Normilised Axial Load vd 0.65 for DCM vd 0.55 for DCH In critical regions s for DCM s For l cr / hc < 3.0 l cr = l cl for DCH s bo / 2 8 dbl,min 175 mm bo / 3 6 dbl,min 125 mm d bo = bc 2(c w ) 2 bi 200 mm for DCM ρtot = Astot bu min ρtot =1% max ρtot = 4% bi 150 mm for DCH At least 3 bars in every slide

10 Detailing of primary seismic columns for local ductility for DCM & DCH in critical region at column base EN 19981:2004 (Ε) BeamColumn Joints DCM ω 0.08 for DCM ω w 0.12 for DCH w Horizontal hoops as in critical region of columns At least one intermediate column bar at each joint slide DCH Specific rules in Types of Dissipative Walls Ductile Walls h w h cr h cr = max h cr h w l w / 6 2l w h for n 6 storeys s 2h for n 7 storeys s l w hs = clear storey height φ after q = q M / M o o Ed Rd M / M at the base Ed Rd Normilised axial load for DCM v > 0.40 and for DCH v > 0.35 d d

11 No strong column/weak beam capacity design required in wall or wallequivallent dual systems (<50% of seismic base shear in walls) Design and Detailing of Ductile Walls For Shear Design in shear for from analysis, times:. 1.5 for DCM For DCH, Ed = ε ε 0.5 Ed strain distribution * = ε cu also l (0.15 l, 1.5 b ) c w c Confined boundary element of freeedge wall end: Longitudinal reinforcement ρ tot 0.5% Same restrictions as in columns e.g. ω 0.08 ( DCM ) ω wd 0.12 ( DCH ) wd S, etc max whereω ρ f f v= v yd, v / cd EN 19981:2004 (Ε) Detailing of Ductile Walls EN 19981:2004 (Ε) Detailing of Ductile Walls

12 Large Lightly Reinforced Walls Design and Detailing of Large Lightly Reinforced Walls Design and Detailing of Large Lightly Reinforced Walls Large l w Foundation Problem Large moment at the base and very low normalized axial force Usual way of footing with tiebeams is insufficient Impossible to form plastic hinge at the wall base. Wall will uplift & rock as a rigid body l max c Large Lightly Reinforced Walls Boundary elements b w 3b w σ cm /f cd σ cm = mean value of concrete compressive stress Longitudinal Reinforcement of Boundary Elements (a) Diameter of vertical bars (EC (2)) lower storeys when (b) Stirrups (EC (1)) In all storeysclosed stirrups d d 6 bl bw max( mm, 3 ) s min( 100mm, 8d ) w lw h storey/ 3 : d higher storeys: bl bl d bl 12mm 10mm No other particular regulations for LLRCW

13 Secondary Seismic Members A limited number of structural members may be designated as secondary seismic members. The strength and stiffness of these elements against seismic actions shall be neglected. The total contribution to lateral stiffness of all secondary seismic members should not exceed 15% of that of all primary seismic members. Such elements shall be designed and detailed to maintain their capacity to support the gravity loads present in the seismic design situation, when subjected to the maximum deformations under the seismic design situation. Maximum deformations shall account for PΔ. In more detail , , 5.7 Specific Provisions in EC8 for: LOCAL EFFECTS to masonry infills see 5.9 CONCRETE DIAPHRAGMS see 5.10 PRECAST CONCRETE STRUCTURES see 5.11 APPENDIX: Detailing & Dimensioning of seismic elements (Synopsis by M. Fardis) Thank you for your attention

14 APPENDIX: Detailing & Dimensioning of seismic elements (Synopsis by M. Fardis) APPENDIX: Detailing & Dimensioning of seismic elements (Synopsis by M. Fardis) APPENDIX: Detailing & Dimensioning of seismic elements (Synopsis by M. Fardis) APPENDIX: Detailing & Dimensioning of seismic elements (Synopsis by M. Fardis)

15 APPENDIX: Detailing & Dimensioning of seismic elements (Synopsis by M. Fardis) APPENDIX: Detailing & Dimensioning of seismic elements (Synopsis by M. Fardis)

Seismic Design, Assessment & Retrofitting of Concrete Buildings. fctm. h w, 24d bw, 175mm 8d bl, 4. w 4 (4) 2 cl

Seismic Design, Assessment & Retrofitting of Concrete Buildings. fctm. h w, 24d bw, 175mm 8d bl, 4. w 4 (4) 2 cl Seismic Design, Assessment & Retroitting o Concrete Buildings Table 5.1: EC8 rules or detailing and dimensioning o primary beams (secondary beams: as in DCL) DC H DCM DCL critical region length 1.5h w

More information

Design of Earthquake-Resistant Structures

Design of Earthquake-Resistant Structures NATIONAL TECHNICAL UNIVERSITY OF ATHENS LABORATORY OF EARTHQUAKE ENGINEERING Design of Earthquake-Resistant Structures Basic principles Ioannis N. Psycharis Basic considerations Design earthquake: small

More information

CHAPTER 5. T a = 0.03 (180) 0.75 = 1.47 sec 5.12 Steel moment frame. h n = = 260 ft. T a = (260) 0.80 = 2.39 sec. Question No.

CHAPTER 5. T a = 0.03 (180) 0.75 = 1.47 sec 5.12 Steel moment frame. h n = = 260 ft. T a = (260) 0.80 = 2.39 sec. Question No. CHAPTER 5 Question Brief Explanation No. 5.1 From Fig. IBC 1613.5(3) and (4) enlarged region 1 (ASCE 7 Fig. -3 and -4) S S = 1.5g, and S 1 = 0.6g. The g term is already factored in the equations, thus

More information

Nonlinear static analysis PUSHOVER

Nonlinear static analysis PUSHOVER Nonlinear static analysis PUSHOVER Adrian DOGARIU European Erasmus Mundus Master Course Sustainable Constructions under Natural Hazards and Catastrophic Events 520121-1-2011-1-CZ-ERA MUNDUS-EMMC Structural

More information

EUROCODE EN SEISMIC DESIGN OF BRIDGES

EUROCODE EN SEISMIC DESIGN OF BRIDGES Brussels, 18-20 February 2008 Dissemination of information workshop 1 EUROCODE EN1998-2 SEISMIC DESIGN OF BRIDGES Basil Kolias Basic Requirements Brussels, 18-20 February 2008 Dissemination of information

More information

DEFORMATION CAPACITY OF OLDER RC SHEAR WALLS: EXPERIMENTAL ASSESSMENT AND COMPARISON WITH EUROCODE 8 - PART 3 PROVISIONS

DEFORMATION CAPACITY OF OLDER RC SHEAR WALLS: EXPERIMENTAL ASSESSMENT AND COMPARISON WITH EUROCODE 8 - PART 3 PROVISIONS DEFORMATION CAPACITY OF OLDER RC SHEAR WALLS: EXPERIMENTAL ASSESSMENT AND COMPARISON WITH EUROCODE 8 - PART 3 PROVISIONS Konstantinos CHRISTIDIS 1, Emmanouil VOUGIOUKAS 2 and Konstantinos TREZOS 3 ABSTRACT

More information

Finite Element Modelling with Plastic Hinges

Finite Element Modelling with Plastic Hinges 01/02/2016 Marco Donà Finite Element Modelling with Plastic Hinges 1 Plastic hinge approach A plastic hinge represents a concentrated post-yield behaviour in one or more degrees of freedom. Hinges only

More information

Eurocode 8 Part 3: Assessment and retrofitting of buildings

Eurocode 8 Part 3: Assessment and retrofitting of buildings in the Euro-Mediterranean Area Eurocode 8 Part 3: Assessment and retrofitting of buildings Paolo Emilio Pinto Università di Roma La Sapienza Urgency of guidance documents for assessment and retrofit in

More information

Seismic design of bridges

Seismic design of bridges NATIONAL TECHNICAL UNIVERSITY OF ATHENS LABORATORY FOR EARTHQUAKE ENGINEERING Seismic design of bridges Lecture 3 Ioannis N. Psycharis Capacity design Purpose To design structures of ductile behaviour

More information

Displacement-based methods EDCE: Civil and Environmental Engineering CIVIL Advanced Earthquake Engineering

Displacement-based methods EDCE: Civil and Environmental Engineering CIVIL Advanced Earthquake Engineering Displacement-based methods EDCE: Civil and Environmental Engineering CIVIL 706 - Advanced Earthquake Engineering EDCE-EPFL-ENAC-SGC 2016-1- Content! Link to force-based methods! Assumptions! Reinforced

More information

Seismic performance evaluation of existing RC buildings designed as per past codes of practice

Seismic performance evaluation of existing RC buildings designed as per past codes of practice Sādhanā Vol. 37, Part 2, April 2012, pp. 281 297. c Indian Academy of Sciences Seismic performance evaluation of existing RC buildings designed as per past codes of practice 1. Introduction K RAMA RAJU,

More information

SeismoBuild Verification Report (KANEPE) For version 2018

SeismoBuild Verification Report (KANEPE) For version 2018 SeismoBuild Verification Report (KANEPE) For version 2018 Copyright Copyright 2002-2018 Seismosoft Ltd. All rights reserved. SeismoBuild is a registered trademark of Seismosoft Ltd. Copyright law protects

More information

SHOTCRETE OR FRP JACKETING OF CONCRETE COLUMNS FOR SEISMIC RETROFITTING

SHOTCRETE OR FRP JACKETING OF CONCRETE COLUMNS FOR SEISMIC RETROFITTING SfP PROJECT 9773: SEISMIC ASSESSMENT AND REHABILITATION OF EXISTING BUILDINGS INTERNATIONAL CLOSING WORKSHOP ISTANBUL, 3 MAY-JUNE, 5 SHOTCRETE OR FRP JACKETING OF CONCRETE COLUMNS FOR SEISMIC RETROFITTING

More information

EFFECT OF SHEAR REINFORCEMENT ON FAILURE MODE OF RC BRIDGE PIERS SUBJECTED TO STRONG EARTHQUAKE MOTIONS

EFFECT OF SHEAR REINFORCEMENT ON FAILURE MODE OF RC BRIDGE PIERS SUBJECTED TO STRONG EARTHQUAKE MOTIONS EFFECT OF SHEAR REINFORCEMENT ON FAILURE MODE OF RC BRIDGE PIERS SUBJECTED TO STRONG EARTHQUAKE MOTIONS Atsuhiko MACHIDA And Khairy H ABDELKAREEM SUMMARY Nonlinear D FEM was utilized to carry out inelastic

More information

CAPACITY DESIGN FOR TALL BUILDINGS WITH MIXED SYSTEM

CAPACITY DESIGN FOR TALL BUILDINGS WITH MIXED SYSTEM 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 2367 CAPACITY DESIGN FOR TALL BUILDINGS WITH MIXED SYSTEM M.UMA MAHESHWARI 1 and A.R.SANTHAKUMAR 2 SUMMARY

More information

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Elmer E. Marx, Alaska Department of Transportation and Public Facilities Michael Keever, California Department

More information

ENERGY DIAGRAM w/ HYSTERETIC

ENERGY DIAGRAM w/ HYSTERETIC ENERGY DIAGRAM ENERGY DIAGRAM w/ HYSTERETIC IMPLIED NONLINEAR BEHAVIOR STEEL STRESS STRAIN RELATIONSHIPS INELASTIC WORK DONE HYSTERETIC BEHAVIOR MOMENT ROTATION RELATIONSHIP IDEALIZED MOMENT ROTATION DUCTILITY

More information

Seismic Assessment of a RC Building according to FEMA 356 and Eurocode 8

Seismic Assessment of a RC Building according to FEMA 356 and Eurocode 8 1 Seismic Assessment of a RC Building according to FEMA 356 and Eurocode 8 Ioannis P. GIANNOPOULOS 1 Key words: Pushover analysis, FEMA 356, Eurocode 8, seismic assessment, plastic rotation, limit states

More information

Influence of cracked inertia and moment-curvature curve idealization on pushover analysis

Influence of cracked inertia and moment-curvature curve idealization on pushover analysis Influence of cracked inertia and moment-curvature curve idealization on pushover analysis Vivier Aurélie, Sekkat Dayae, Montens Serge Systra, 3 avenue du Coq, 75009 Paris SUMMARY: The pushover analysis

More information

Earthquake-resistant design of indeterminate reinforced-concrete slender column elements

Earthquake-resistant design of indeterminate reinforced-concrete slender column elements Engineering Structures 29 (2007) 163 175 www.elsevier.com/locate/engstruct Earthquake-resistant design of indeterminate reinforced-concrete slender column elements Gerasimos M. Kotsovos a, Christos Zeris

More information

Design of a Multi-Storied RC Building

Design of a Multi-Storied RC Building Design of a Multi-Storied RC Building 16 14 14 3 C 1 B 1 C 2 B 2 C 3 B 3 C 4 13 B 15 (S 1 ) B 16 (S 2 ) B 17 (S 3 ) B 18 7 B 4 B 5 B 6 B 7 C 5 C 6 C 7 C 8 C 9 7 B 20 B 22 14 B 19 (S 4 ) C 10 C 11 B 23

More information

Pushover Seismic Analysis of Bridge Structures

Pushover Seismic Analysis of Bridge Structures Pushover Seismic Analysis of Bridge Structures Bernardo Frère Departamento de Engenharia Civil, Arquitectura e Georrecursos, Instituto Superior Técnico, Technical University of Lisbon, Portugal October

More information

Comparison of Structural Models for Seismic Analysis of Multi-Storey Frame Buildings

Comparison of Structural Models for Seismic Analysis of Multi-Storey Frame Buildings Comparison of Structural Models for Seismic Analysis of Multi-Storey Frame Buildings Dj. Ladjinovic, A. Raseta, A. Radujkovic & R. Folic University of Novi Sad, Faculty of Technical Sciences, Novi Sad,

More information

Harmonized European standards for construction in Egypt

Harmonized European standards for construction in Egypt Harmonized European standards for construction in Egypt EN 1998 - Design of structures for earthquake resistance Jean-Armand Calgaro Chairman of CEN/TC250 Organised with the support of the Egyptian Organization

More information

Influence of the Plastic Hinges Non-Linear Behavior on Bridges Seismic Response

Influence of the Plastic Hinges Non-Linear Behavior on Bridges Seismic Response Influence of the Plastic Hinges Non-Linear Behavior on Bridges Seismic Response Miguel Arriaga e Cunha, Luís Guerreiro & Francisco Virtuoso Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisboa

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having

More information

Design of Reinforced Concrete Structures (II)

Design of Reinforced Concrete Structures (II) Design of Reinforced Concrete Structures (II) Discussion Eng. Mohammed R. Kuheil Review The thickness of one-way ribbed slabs After finding the value of total load (Dead and live loads), the elements are

More information

OS MODELER - EXAMPLES OF APPLICATION Version 1.0. (Draft)

OS MODELER - EXAMPLES OF APPLICATION Version 1.0. (Draft) OS MODELER - EXAMPLES OF APPLICATION Version 1.0 (Draft) Matjaž Dolšek February 2008 Content 1. Introduction... 1 2. Four-storey reinforced concrete frame designed according to EC8... 2 2.1. Description

More information

Earthquake Loads According to IBC IBC Safety Concept

Earthquake Loads According to IBC IBC Safety Concept Earthquake Loads According to IBC 2003 The process of determining earthquake loads according to IBC 2003 Spectral Design Method can be broken down into the following basic steps: Determination of the maimum

More information

Chapter 6 Seismic Design of Bridges. Kazuhiko Kawashima Tokyo Institute of Technology

Chapter 6 Seismic Design of Bridges. Kazuhiko Kawashima Tokyo Institute of Technology Chapter 6 Seismic Design of Bridges Kazuhiko Kawashima okyo Institute of echnology Seismic Design Loading environment (dead, live, wind, earthquake etc) Performance criteria for gravity (deflection, stresses)

More information

CHAPTER 6: ULTIMATE LIMIT STATE

CHAPTER 6: ULTIMATE LIMIT STATE CHAPTER 6: ULTIMATE LIMIT STATE 6.1 GENERAL It shall be in accordance with JSCE Standard Specification (Design), 6.1. The collapse mechanism in statically indeterminate structures shall not be considered.

More information

THE EC3 CLASSIFICATION OF JOINTS AND ALTERNATIVE PROPOSALS

THE EC3 CLASSIFICATION OF JOINTS AND ALTERNATIVE PROPOSALS EUROSTEEL 2002, Coimbra, 19-20 September 2002, p.987-996 THE EC3 CLASSIFICATION OF JOINTS AND ALTERNATIVE PROPOSALS Fernando C. T. Gomes 1 ABSTRACT The Eurocode 3 proposes a classification of beam-to-column

More information

A Modified Response Spectrum Analysis Procedure (MRSA) to Determine the Nonlinear Seismic Demands of Tall Buildings

A Modified Response Spectrum Analysis Procedure (MRSA) to Determine the Nonlinear Seismic Demands of Tall Buildings Fawad A. Najam Pennung Warnitchai Asian Institute of Technology (AIT), Thailand Email: fawad.ahmed.najam@ait.ac.th A Modified Response Spectrum Analysis Procedure (MRSA) to Determine the Nonlinear Seismic

More information

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder 16 PLATE GIRDERS II 1.0 INTRODUCTION This chapter describes the current practice for the design of plate girders adopting meaningful simplifications of the equations derived in the chapter on Plate Girders

More information

Lecture-09 Introduction to Earthquake Resistant Analysis & Design of RC Structures (Part I)

Lecture-09 Introduction to Earthquake Resistant Analysis & Design of RC Structures (Part I) Lecture-09 Introduction to Earthquake Resistant Analysis & Design of RC Structures (Part I) By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar www.drqaisarali.com 1 Topics Introduction Earthquake

More information

Bending and Shear in Beams

Bending and Shear in Beams Bending and Shear in Beams Lecture 3 5 th October 017 Contents Lecture 3 What reinforcement is needed to resist M Ed? Bending/ Flexure Section analysis, singly and doubly reinforced Tension reinforcement,

More information

Soil-Structure Interaction in Nonlinear Pushover Analysis of Frame RC Structures: Nonhomogeneous Soil Condition

Soil-Structure Interaction in Nonlinear Pushover Analysis of Frame RC Structures: Nonhomogeneous Soil Condition ABSTRACT: Soil-Structure Interaction in Nonlinear Pushover Analysis of Frame RC Structures: Nonhomogeneous Soil Condition G. Dok ve O. Kırtel Res. Assist., Department of Civil Engineering, Sakarya University,

More information

Behavior and Modeling of Existing Reinforced Concrete Columns

Behavior and Modeling of Existing Reinforced Concrete Columns Behavior and Modeling of Existing Reinforced Concrete Columns Kenneth J. Elwood University of British Columbia with contributions from Jose Pincheira, Univ of Wisconsin John Wallace, UCLA Questions? What

More information

ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram

ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram CHAPTER NINE COLUMNS 4 b. The modified axial strength in compression is reduced to account for accidental eccentricity. The magnitude of axial force evaluated in step (a) is multiplied by 0.80 in case

More information

Lecture-08 Gravity Load Analysis of RC Structures

Lecture-08 Gravity Load Analysis of RC Structures Lecture-08 Gravity Load Analysis of RC Structures By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar www.drqaisarali.com 1 Contents Analysis Approaches Point of Inflection Method Equivalent

More information

Alireza Mehdipanah BEHAVIOUR OF BUILDINGS FEATURING TRANSFER BEAMS IN THE REGIONS OF LOW TO MODERATE SEISMICITY

Alireza Mehdipanah BEHAVIOUR OF BUILDINGS FEATURING TRANSFER BEAMS IN THE REGIONS OF LOW TO MODERATE SEISMICITY BEHAVIOUR OF BUILDINGS FEATURING TRANSFER BEAMS IN THE REGIONS OF LOW TO MODERATE SEISMICITY Alireza Mehdipanah PhD Candidate at The University of Melbourne SUPERVISORS: A/PROF. NELSON LAM DR. ELISA LUMANTARNA

More information

STATIC NONLINEAR ANALYSIS. Advanced Earthquake Engineering CIVIL-706. Instructor: Lorenzo DIANA, PhD

STATIC NONLINEAR ANALYSIS. Advanced Earthquake Engineering CIVIL-706. Instructor: Lorenzo DIANA, PhD STATIC NONLINEAR ANALYSIS Advanced Earthquake Engineering CIVIL-706 Instructor: Lorenzo DIANA, PhD 1 By the end of today s course You will be able to answer: What are NSA advantages over other structural

More information

ROSESCHOOL ANALYSIS OF CODE PROCEDURES FOR SEISMIC ASSESSMENT OF EXISTING BUILDINGS: ITALIAN SEISMIC CODE, EC8, ATC-40, FEMA356, FEMA440

ROSESCHOOL ANALYSIS OF CODE PROCEDURES FOR SEISMIC ASSESSMENT OF EXISTING BUILDINGS: ITALIAN SEISMIC CODE, EC8, ATC-40, FEMA356, FEMA440 EUROPEAN SCHOOL FOR ADVANCED STUDIES IN REDUCTION OF SEISMIC RISK ROSESCHOOL ANALYSIS OF CODE PROCEDURES FOR SEISMIC ASSESSMENT OF EXISTING BUILDINGS: ITALIAN SEISMIC CODE, EC8, ATC-40, FEMA356, FEMA440

More information

SEISMIC PERFORMANCE EVALUATION METHOD FOR A BUILDING WITH CENTER CORE REINFORCED CONCRETE WALLS AND EXTERIOR STEEL FLAME

SEISMIC PERFORMANCE EVALUATION METHOD FOR A BUILDING WITH CENTER CORE REINFORCED CONCRETE WALLS AND EXTERIOR STEEL FLAME SEISMIC PERFORMANCE EVALUATION METHOD FOR A BUILDING WITH CENTER CORE REINFORCED CONCRETE WALLS AND EXTERIOR STEEL FLAME Yoshiyuki MATSUSHIMA, Masaomi TESHIGAWARA 2, Makoto KATO 3 And Kenichi SUGAYA 4

More information

Flexure: Behavior and Nominal Strength of Beam Sections

Flexure: Behavior and Nominal Strength of Beam Sections 4 5000 4000 (increased d ) (increased f (increased A s or f y ) c or b) Flexure: Behavior and Nominal Strength of Beam Sections Moment (kip-in.) 3000 2000 1000 0 0 (basic) (A s 0.5A s ) 0.0005 0.001 0.0015

More information

This Technical Note describes how the program checks column capacity or designs reinforced concrete columns when the ACI code is selected.

This Technical Note describes how the program checks column capacity or designs reinforced concrete columns when the ACI code is selected. COMPUTERS AND STRUCTURES, INC., BERKELEY, CALIFORNIA DECEMBER 2001 CONCRETE FRAME DESIGN ACI-318-99 Technical Note This Technical Note describes how the program checks column capacity or designs reinforced

More information

NUMERICAL SIMULATION OF THE INELASTIC SEISMIC RESPONSE OF RC STRUCTURES WITH ENERGY DISSIPATORS

NUMERICAL SIMULATION OF THE INELASTIC SEISMIC RESPONSE OF RC STRUCTURES WITH ENERGY DISSIPATORS NUMERICAL SIMULATION OF THE INELASTIC SEISMIC RESPONSE OF RC STRUCTURES WITH ENERGY DISSIPATORS ABSTRACT : P Mata1, AH Barbat1, S Oller1, R Boroschek2 1 Technical University of Catalonia, Civil Engineering

More information

Analysis of a portal steel frame subject to fire by use of a truss model

Analysis of a portal steel frame subject to fire by use of a truss model Analysis of a portal steel frame subject to fire by use of a truss model P. G. Papadopoulos & A. Mathiopoulou Department of Civil Engineering, Aristotle University of Thessaloniki, Greece Abstract A plane

More information

CHAPTER 4. ANALYSIS AND DESIGN OF COLUMNS

CHAPTER 4. ANALYSIS AND DESIGN OF COLUMNS 4.1. INTRODUCTION CHAPTER 4. ANALYSIS AND DESIGN OF COLUMNS A column is a vertical structural member transmitting axial compression loads with or without moments. The cross sectional dimensions of a column

More information

NUMERICAL EVALUATION OF THE ROTATIONAL CAPACITY OF STEEL BEAMS AT ELEVATED TEMPERATURES

NUMERICAL EVALUATION OF THE ROTATIONAL CAPACITY OF STEEL BEAMS AT ELEVATED TEMPERATURES 8 th GRACM International Congress on Computational Mechanics Volos, 12 July 15 July 2015 NUMERICAL EVALUATION OF THE ROTATIONAL CAPACITY OF STEEL BEAMS AT ELEVATED TEMPERATURES Savvas Akritidis, Daphne

More information

TORSIONAL EFFECTS AND REGULARITY CONDITIONS IN RC BUILDINGS

TORSIONAL EFFECTS AND REGULARITY CONDITIONS IN RC BUILDINGS TORSIONAL EFFECTS AND REGULARITY CONDITIONS IN RC BUILDINGS Edoardo COSENZA 1, Gaetano MANFREDI And Roberto REALFONZO 3 SUMMARY Earthquake damages at the perimeter of buildings are often the result of

More information

COLUMN INTERACTION EFFECT ON PUSH OVER 3D ANALYSIS OF IRREGULAR STRUCTURES

COLUMN INTERACTION EFFECT ON PUSH OVER 3D ANALYSIS OF IRREGULAR STRUCTURES th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, Paper No. 6 COLUMN INTERACTION EFFECT ON PUSH OVER D ANALYSIS OF IRREGULAR STRUCTURES Jaime DE-LA-COLINA, MariCarmen HERNANDEZ

More information

Inelastic shear response of RC coupled structural walls

Inelastic shear response of RC coupled structural walls Inelastic shear response of RC coupled structural walls E. Morariu EDIT Structural, Bucuresti, Rumania. T. Isakovic, N. Eser & M. Fischinger Faculty of Civil and Geodetic Engineering, University of Ljubljana,

More information

CE5510 Advanced Structural Concrete Design - Design & Detailing of Openings in RC Flexural Members-

CE5510 Advanced Structural Concrete Design - Design & Detailing of Openings in RC Flexural Members- CE5510 Advanced Structural Concrete Design - Design & Detailing Openings in RC Flexural Members- Assoc Pr Tan Kiang Hwee Department Civil Engineering National In this lecture DEPARTMENT OF CIVIL ENGINEERING

More information

Chapter 8. Shear and Diagonal Tension

Chapter 8. Shear and Diagonal Tension Chapter 8. and Diagonal Tension 8.1. READING ASSIGNMENT Text Chapter 4; Sections 4.1-4.5 Code Chapter 11; Sections 11.1.1, 11.3, 11.5.1, 11.5.3, 11.5.4, 11.5.5.1, and 11.5.6 8.2. INTRODUCTION OF SHEAR

More information

Where and are the factored end moments of the column and >.

Where and are the factored end moments of the column and >. 11 LIMITATION OF THE SLENDERNESS RATIO----( ) 1-Nonsway (braced) frames: The ACI Code, Section 6.2.5 recommends the following limitations between short and long columns in braced (nonsway) frames: 1. The

More information

Seismic Performance of RC Building Using Spectrum Response and Pushover Analyses

Seismic Performance of RC Building Using Spectrum Response and Pushover Analyses Seismic Performance of RC Building Using Spectrum Response and Pushover Analyses Mehani Youcef (&), Kibboua Abderrahmane, and Chikh Benazouz National Earthquake Engineering Research Center (CGS), Algiers,

More information

EFFECTS OF CONFINED CONCRETE MODELS ON SIMULATING RC COLUMNS UNDER LOW-CYCLIC LOADING

EFFECTS OF CONFINED CONCRETE MODELS ON SIMULATING RC COLUMNS UNDER LOW-CYCLIC LOADING 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 1498 EFFECTS OF CONFINED CONCRETE MODELS ON SIMULATING RC COLUMNS UNDER LOW-CYCLIC LOADING Zongming HUANG

More information

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in Sabah Shawkat Cabinet of Structural Engineering 17 3.6 Shear walls Walls carrying vertical loads should be designed as columns. Basically walls are designed in the same manner as columns, but there are

More information

Influence of column web stiffening on the seismic behaviour of beam-tocolumn

Influence of column web stiffening on the seismic behaviour of beam-tocolumn Influence of column web stiffening on the seismic behaviour of beam-tocolumn joints A.L. Ciutina & D. Dubina The Politehnica University of Timisoara, Romania ABSTRACT: The present paper summarises the

More information

Design Beam Flexural Reinforcement

Design Beam Flexural Reinforcement COPUTERS AND STRUCTURES, INC., BERKELEY, CALIFORNIA DECEBER 2001 CONCRETE FRAE DESIGN ACI-318-99 Technical Note This Technical Note describes how this program completes beam design when the ACI 318-99

More information

Chapter 4. Test results and discussion. 4.1 Introduction to Experimental Results

Chapter 4. Test results and discussion. 4.1 Introduction to Experimental Results Chapter 4 Test results and discussion This chapter presents a discussion of the results obtained from eighteen beam specimens tested at the Structural Technology Laboratory of the Technical University

More information

Displacement ductility demand and strength reduction factors for rocking structures

Displacement ductility demand and strength reduction factors for rocking structures Earthquake Resistant Engineering Structures VI 9 Displacement ductility demand and strength reduction factors for rocking structures M. Trueb, Y. Belmouden & P. Lestuzzi ETHZ-Swiss Federal Institute of

More information

1 Static Plastic Behaviour of Beams

1 Static Plastic Behaviour of Beams 1 Static Plastic Behaviour of Beams 1.1 Introduction Many ductile materials which are used in engineering practice have a considerable reserve capacity beyond the initial yield condition. The uniaxial

More information

Reinforced Concrete Structures

Reinforced Concrete Structures Reinforced Concrete Structures MIM 232E Dr. Haluk Sesigür I.T.U. Faculty of Architecture Structural and Earthquake Engineering WG Ultimate Strength Theory Design of Singly Reinforced Rectangular Beams

More information

A CONNECTION ELEMENT FOR MODELLING END-PLATE CONNECTIONS IN FIRE

A CONNECTION ELEMENT FOR MODELLING END-PLATE CONNECTIONS IN FIRE A CONNECTION ELEMENT OR MODELLING END-PLATE CONNECTIONS IN IRE Dr Zhaohui Huang Department of Civil & Structural Engineering, University of Sheffield 22 September 29 1. INTRODUCTION Three approaches for

More information

Lecture-03 Design of Reinforced Concrete Members for Flexure and Axial Loads

Lecture-03 Design of Reinforced Concrete Members for Flexure and Axial Loads Lecture-03 Design of Reinforced Concrete Members for Flexure and Axial Loads By: Prof. Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com Prof.

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

CHAPTER 4. Design of R C Beams

CHAPTER 4. Design of R C Beams CHAPTER 4 Design of R C Beams Learning Objectives Identify the data, formulae and procedures for design of R C beams Design simply-supported and continuous R C beams by integrating the following processes

More information

Seminar Bridge Design with Eurocodes

Seminar Bridge Design with Eurocodes Seminar Bridge Design with Eurocodes JRC Ispra, 1-2 October 2012 1 EU-Russia Regulatory Dialogue: Construction Sector Subgroup Seminar Bridge Design with Eurocodes JRC-Ispra, 1-2 October 2012 Organized

More information

Design of AAC wall panel according to EN 12602

Design of AAC wall panel according to EN 12602 Design of wall panel according to EN 160 Example 3: Wall panel with wind load 1.1 Issue Design of a wall panel at an industrial building Materials with a compressive strength 3,5, density class 500, welded

More information

Chapter 4 Seismic Design Requirements for Building Structures

Chapter 4 Seismic Design Requirements for Building Structures Chapter 4 Seismic Design Requirements for Building Structures where: F a = 1.0 for rock sites which may be assumed if there is 10 feet of soil between the rock surface and the bottom of spread footings

More information

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method (CSA A )

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method (CSA A ) Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method (CSA A23.3-94) Slender Concrete Column Design in Sway Frame Buildings Evaluate slenderness effect for columns in a

More information

ΙApostolos Konstantinidis Diaphragmatic behaviour. Volume B

ΙApostolos Konstantinidis Diaphragmatic behaviour. Volume B Volume B 3.1.4 Diaphragmatic behaviour In general, when there is eccentric loading at a floor, e.g. imposed by the horizontal seismic action, the in-plane rigidity of the slab forces all the in-plane points

More information

INFLUENCE OF EARTHQUAKE INTENSITY MEASURE ON THE PROBABILISTIC EVALUATION OF RC BUILDINGS

INFLUENCE OF EARTHQUAKE INTENSITY MEASURE ON THE PROBABILISTIC EVALUATION OF RC BUILDINGS INFLUENCE OF EARTHQUAKE INTENSITY MEASURE ON THE PROBABILISTIC EVALUATION OF RC BUILDINGS ABSTRACT: M. Bianchini, P.P. Diotallevi and L. Landi 3 Assistant Lecturer, DISTART, Dept. of Civil Engineering,

More information

A. Belejo, R. Bento & C. Bhatt Instituto Superior Técnico, Lisbon, Portugal 1.INTRODUCTION

A. Belejo, R. Bento & C. Bhatt Instituto Superior Técnico, Lisbon, Portugal 1.INTRODUCTION Comparison of different computer programs to predict the seismic performance of SPEAR the SPEAR building building by means of by means of Pushover Analysis A. Belejo, R. Bento & C. Bhatt Instituto Superior

More information

Parametric analysis and torsion design charts for axially restrained RC beams

Parametric analysis and torsion design charts for axially restrained RC beams Structural Engineering and Mechanics, Vol. 55, No. 1 (2015) 1-27 DOI: http://dx.doi.org/10.12989/sem.2015.55.1.001 1 Parametric analysis and torsion design charts for axially restrained RC beams Luís F.A.

More information

A METHOD OF LOAD INCREMENTS FOR THE DETERMINATION OF SECOND-ORDER LIMIT LOAD AND COLLAPSE SAFETY OF REINFORCED CONCRETE FRAMED STRUCTURES

A METHOD OF LOAD INCREMENTS FOR THE DETERMINATION OF SECOND-ORDER LIMIT LOAD AND COLLAPSE SAFETY OF REINFORCED CONCRETE FRAMED STRUCTURES A METHOD OF LOAD INCREMENTS FOR THE DETERMINATION OF SECOND-ORDER LIMIT LOAD AND COLLAPSE SAFETY OF REINFORCED CONCRETE FRAMED STRUCTURES Konuralp Girgin (Ph.D. Thesis, Institute of Science and Technology,

More information

STEEL JOINTS - COMPONENT METHOD APPLICATION

STEEL JOINTS - COMPONENT METHOD APPLICATION Bulletin of the Transilvania University of Braşov Vol. 5 (54) - 2012 Series 1: Special Issue No. 1 STEEL JOINTS - COPONENT ETHOD APPLICATION D. RADU 1 Abstract: As long as the rotation joint stiffness

More information

Coupling Beams of Shear Walls

Coupling Beams of Shear Walls Coupling Beams of Shear Walls Modelling Procedure for the Seismic Analysis of RC Structures João Miguel Damião Bezelga (1) July 215 (1) Instituto Superior Técnico Universidade de Lisboa, Av. Rovisco Pais,

More information

Journey Through a Project: Shake-table Test of a Reinforced Masonry Structure

Journey Through a Project: Shake-table Test of a Reinforced Masonry Structure Journey Through a Project: Shake-table Test of a Reinforced Masonry Structure P. Benson Shing and Andreas Koutras Department of Structural Engineering University of California, San Diego NHERI @ UCSD Workshop,

More information

SIMPLIFIED METHOD FOR PREDICTING DEFORMATIONS OF RC FRAMES DURING FIRE EXPOSURE

SIMPLIFIED METHOD FOR PREDICTING DEFORMATIONS OF RC FRAMES DURING FIRE EXPOSURE SIMPLIFIED METHOD FOR PREDICTING DEFORMATIONS OF RC FRAMES DURING FIRE EXPOSURE M.A. Youssef a, S.F. El-Fitiany a a Western University, Faculty of Engineering, London, Ontario, Canada Abstract Structural

More information

Collapse modes of structures under strong motions of earthquake

Collapse modes of structures under strong motions of earthquake ANNALS OF GEOPHYSICS, VOL. 45, N. 6, December 2002 Collapse modes of structures under strong motions of earthquake Hiroshi Akiyama Real Estate Science, School of Science and Technology, Nihon University,

More information

DESIGN AND DETAILING OF COUNTERFORT RETAINING WALL

DESIGN AND DETAILING OF COUNTERFORT RETAINING WALL DESIGN AND DETAILING OF COUNTERFORT RETAINING WALL When the height of the retaining wall exceeds about 6 m, the thickness of the stem and heel slab works out to be sufficiently large and the design becomes

More information

Codal Provisions IS 1893 (Part 1) 2002

Codal Provisions IS 1893 (Part 1) 2002 Abstract Codal Provisions IS 1893 (Part 1) 00 Paresh V. Patel Assistant Professor, Civil Engineering Department, Nirma Institute of Technology, Ahmedabad 38481 In this article codal provisions of IS 1893

More information

Lecture-04 Design of RC Members for Shear and Torsion

Lecture-04 Design of RC Members for Shear and Torsion Lecture-04 Design of RC Members for Shear and Torsion By: Prof. Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com 1 Topics Addressed Design of

More information

INELASTIC SEISMIC DISPLACEMENT RESPONSE PREDICTION OF MDOF SYSTEMS BY EQUIVALENT LINEARIZATION

INELASTIC SEISMIC DISPLACEMENT RESPONSE PREDICTION OF MDOF SYSTEMS BY EQUIVALENT LINEARIZATION INEASTIC SEISMIC DISPACEMENT RESPONSE PREDICTION OF MDOF SYSTEMS BY EQUIVAENT INEARIZATION M. S. Günay 1 and H. Sucuoğlu 1 Research Assistant, Dept. of Civil Engineering, Middle East Technical University,

More information

STRUCTURAL ANALYSIS CHAPTER 2. Introduction

STRUCTURAL ANALYSIS CHAPTER 2. Introduction CHAPTER 2 STRUCTURAL ANALYSIS Introduction The primary purpose of structural analysis is to establish the distribution of internal forces and moments over the whole part of a structure and to identify

More information

1. Background. 2. Objectives of Project. Page 1 of 29

1. Background. 2. Objectives of Project. Page 1 of 29 1. Background In close collaboration with local partners, Earthquake Damage Analysis Center (EDAC) of Bauhaus Universität Weimar initiated a Turkish German joint research project on Seismic Risk Assessment

More information

Case Study On The Soft-First-Story Buildings Strengthened By Confined Concrete Columns

Case Study On The Soft-First-Story Buildings Strengthened By Confined Concrete Columns 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 654 Case Study On The Soft-First-Story Buildings Strengthened By Confined Concrete Columns Hiroshi KOMOTO

More information

SEISMIC PERFORMANCE OF LARGE RC CIRCULAR HOLLOW COLUMNS

SEISMIC PERFORMANCE OF LARGE RC CIRCULAR HOLLOW COLUMNS SEISMIC PERFORMANCE OF LARGE RC CIRCULAR HOLLOW COLUMNS Giulio RANZO 1 And M J N PRIESTLEY SUMMARY experimental study conducted on three large size specimens are reported. The test units, designed with

More information

Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7

Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7 Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7 Dr. Colin Caprani, Chartered Engineer 1 Contents 1. Introduction... 3 1.1 Background... 3 1.2 Failure Modes... 5 1.3 Design Aspects...

More information

8. COLUMNS COLUMN = ELEMENT SUBJECTED TO: ECCENTRIC BENDING MOMENT & COMPRESSIVE FORCE COMPRESSIVE FORCE

8. COLUMNS COLUMN = ELEMENT SUBJECTED TO: ECCENTRIC BENDING MOMENT & COMPRESSIVE FORCE COMPRESSIVE FORCE 8. COLUMNS COLUMN = ELEMENT SUBJECTED TO: ECCENTRIC COMPRESSIVE FORCE BENDING MOMENT & COMPRESSIVE FORCE 1 8. COLUMNS RECTANGULAR SECTION Eccentric compression CIRCULAR SECTION Compression with biaxial

More information

Appendix G Analytical Studies of Columns

Appendix G Analytical Studies of Columns Appendix G Analytical Studies of Columns G.1 Introduction Analytical parametric studies were performed to evaluate a number of issues related to the use of ASTM A103 steel as longitudinal and transverse

More information

Plastic design of continuous beams

Plastic design of continuous beams Budapest University of Technology and Economics Department of Mechanics, Materials and Structures English courses Reinforced Concrete Structures Code: BMEEPSTK601 Lecture no. 4: Plastic design of continuous

More information

SPREAD OF PLASTICITY ANALYSIS OF R/C BUILDINGS, SUBJECTED TO MONOTONIC SEISMIC LOADING

SPREAD OF PLASTICITY ANALYSIS OF R/C BUILDINGS, SUBJECTED TO MONOTONIC SEISMIC LOADING 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 2229 SPREAD OF PLASTICITY ANALYSIS OF R/C BUILDINGS, SUBJECTED TO MONOTONIC SEISMIC LOADING Petros MARATHIAS

More information

FRP Seismic Strengthening of Columns in Frames

FRP Seismic Strengthening of Columns in Frames FRP Seismic Strengthening of Columns in Frames Dr Mihaela-Anca Ciupala (EU Marie Curie Research Fellow) Dr Kypros Pilakoutas (Reader) Professor Nicolae Taranu Centre for Cement and Concrete Department

More information

MODELING OF NONLINEAR BEHAVIOR OF RC SHEAR WALLS UNDER COMBINED AXIAL, SHEAR AND FLEXURAL LOADING

MODELING OF NONLINEAR BEHAVIOR OF RC SHEAR WALLS UNDER COMBINED AXIAL, SHEAR AND FLEXURAL LOADING CD02-003 MODELING OF NONLINEAR BEHAVIOR OF RC SHEAR WALLS UNDER COMBINED AXIAL, SHEAR AND FLEXURAL LOADING B. Ghiassi 1, M. Soltani 2, A. A. Tasnimi 3 1 M.Sc. Student, School of Engineering, Tarbiat Modares

More information

Evaluation of the ductility demand in partial strength steel structures in seismic areas using non-linear static analysis

Evaluation of the ductility demand in partial strength steel structures in seismic areas using non-linear static analysis Evaluation of the ductility demand in partial strength steel structures in seismic areas using non-linear static analysis Pedro Nogueiro Department of Applied Mechanics, ESTiG, Polytechnic Institute of

More information

PEER/SSC Tall Building Design. Case study #2

PEER/SSC Tall Building Design. Case study #2 PEER/SSC Tall Building Design Case study #2 Typical Plan View at Ground Floor and Below Typical Plan View at 2 nd Floor and Above Code Design Code Design Shear Wall properties Shear wall thickness and

More information