Solutions to the Exercises * on Multiple Integrals

Size: px
Start display at page:

Download "Solutions to the Exercises * on Multiple Integrals"

Transcription

1 Solutions to the Exercises * on Multiple Integrals Laurenz Wiskott Institut für Neuroinformatik Ruhr-Universität Bochum, Germany, EU 4 February 27 Contents Introduction 2 2 Calculating multiple integrals 2 2. Exercises Exercise: Integral of a function between two curves Changing the order of integration 3 3. Exercises Exercise: Integration in opposite order Exercise: Integration in opposite order Changing the coordinate system of integration 4 4. Exercises Exercise: Jacobian determinant Exercise: Integration with a nonlinear coordinate transformation Laurenz Wiskott (homepage This work (except for all figures from other sources, if present) is licensed under the Creative Commons Attribution-ShareAlike 4. International License. To view a copy of this license, visit Figures from other sources have their own copyright, which is generally indicated. Do not distribute parts of these lecture notes showing figures with non-free copyrights (here usually figures I have the rights to publish but you don t, like my own published figures). Several of my exercises (not necessarily on this topic) were inspired by papers and textbooks by other authors. Unfortunately, I did not document that well, because initially I did not intend to make the exercises publicly available, and now I cannot trace it back anymore. So I cannot give as much credit as I would like to. The concrete versions of the exercises are certainly my own work, though. In cases where I reuse an exercise in different variants, references may be wrong for technical reasons. * These exercises complement my corresponding lecture notes available at Teaching/Material/, where you can also find other teaching material such as programming exercises. The table of contents of the lecture notes is reproduced here to give an orientation when the exercises can be reasonably solved. For best learning effect I recommend to first seriously try to solve the exercises yourself before looking into the solutions.

2 4..3 Exercise: Variable transformation Exercise: Area integral Gauss theorem - integration by parts in multiple dimensions 9 5. Exercises Exercise: Gauss theorem Introduction 2 Calculating multiple integrals 2. Exercises 2.. Exercise: Integral of a function between two curves Integrate the function f(x, y) xy over the region between the curves y x and y x 2 for x 2. Solution: One has to be a bit careful here. Sketching the two functions x and x 2 shows that x > x 2 for < x < and x > x 2 for x >. Thus, we have to split the integral I into two parts, because otherwise one part would yield a negative contribution. I x 2 x2 xy dy dx + x 2 2 x[y 2 /2] x x dx + 2 x x(x 2 /2 x 4 /2) dx + (x 3 x 5 ) dx + 2 xy dy dx () x[y 2 /2] x2 x dx (2) x(x 4 /2 x 2 /2) dx (3) (x 5 x 3 ) dx (4) ([x 4 /4] [x 6 /6] )/2 + ([x 6 /6] 2 [x 4 /4] 2 )/2 (5) ((/4 /4) (/6 /6))/2 + ((64/6 /6) (6/4 /4))/2 (6) /8 /2 + 63/2 5/8 (7) 62/2 4/8 (8) 62/2 2/2 (9) 4/2 () () 2

3 3 Changing the order of integration 3. Exercises 3.. Exercise: Integration in opposite order Sketch the integration region and solve the following integral in the opposite order (first x then y): x y 2 dy dx. () x2 Solution: The integration region is the upper left triangle of the square with x [, 2] and y [, 2] (Sketch not available!). Integrating in the opposite order yields y y 2 dx dy x2 y 2 y dx dy (2) x2 y 2 [ /x] y dy (3) y 2 ( /y ( /)) dy (4) y 2 dy y dy (5) [y 3 /3] 2 [y 2 /2] 2 (6) (2 3 /3 3 /3) (2 2 /2 2 /2) (7) (8/3 /3) (4/2 /2) (8) 7/3 3/2 (9) 5/6. () 3..2 Exercise: Integration in opposite order Sketch the integration region and solve the following integral in the opposite order (first x then y): +x x x y 2 dy dx. () Solution: The integration region is a symmetric triangle (D: gleichschenkliges Dreieck) pointing to the left within the rectangle with x [, 2] and y [ 2, +2] (Sketch not available!). It can equally well be integrated 3

4 over with +2 2 y x y 2 dx dy y 2 x dx dy + +2 y y y 2 x dx dy (2) y 2 x dx dy (3) y y 2 [x 2 /2] 2 y dy (4) y 2 (2 2 y 2 )/2 dy (5) 4y 2 y 4 dy (6) 4[y 3 /3] 2 [y 5 /5] 2 (7) 4(2 3 3 )/3 (2 5 5 )/5 (8) 32/3 32/5 (9) 6/5 96/5 () 64/5. () 4 Changing the coordinate system of integration 4. Exercises 4.. Exercise: Jacobian determinant Consider the following nonlinear coordinate transformation between variables x and y and variables u and v (a and b are parameters): x u + a cos(u) () y v + b sin(u). (2). Visualize the transformation. Solution: Für a und b wären beide Koordinatensysteme identisch und man könnte zur Visualisierung einfach ein regelmäßiges u-v-gitter in die x-y-ebene zeichnen. Wählen wir a ungleich Null, wird das Koordinatensystem mit zunehmendem u periodisch in x-richtung vor- und zurückgeschoben, was zu einer periodischen Stauchung und Streckung führt. Wählen wir b ungleich Null, wird das Koordinatensystem mit zunehmendem u periodisch in y-richtung hoch- und runtergeschoben, was zu einer Wellenform führt. For b and a.5, for instance, we have: Graph: (Wiskott group, 27, unclear) 4

5 2. Calculate the Jacobian determinant. Solution: J x u y u x v y v ( a sin(u)) b cos(u) (3) (4) ( a sin(u)) b cos(u) (5) a sin(u). (6) Now, consider the following extended nonlinear coordinate transformation: x u + a cos(u) + b sin(v) (7) y v + a cos(v) + b sin(u). (8) 3. Calculate the Jacobian determinant. Solution: J x x u v y y u v ( a sin(u)) b b cos(u) cos(v) ( a sin(v)) () ( a sin(u)) ( a sin(v)) b cos(u) b cos(v) () a sin(u) a sin(v) + a 2 sin(u) sin(v) b 2 cos(u) cos(v). (2) (9) 4. Discuss the result in comparison to the first transformation. Solution: In the first part the shift in y-direction dependent on u, i.e. the term b sin(u) in (2), does not have any effect on the Jacobian, because it does not effect the local volume. If the roles of x and y as well as u and v would be swapped in (, 2), one would get a similar coordinate transformation in which a shift in x-direction dependent on v would have no effect either for symmetry reasons. In some sense one can argue that equations (7, 8) are a combination of these two coordinate transformations. Isn t it curious that in the combination the terms b sin(u) and b sin(v) actually have an effect on the Jacobian? 4..2 Exercise: Integration with a nonlinear coordinate transformation Compute the integral I ( ) x 2 + y 2 dx dy, () with D indicating the disc in the xy-plane around (, ) with radius. Hint: Use polar coordinates (r, φ) with x r cos φ, y r sin φ. D 5

6 Solution: I D 2π 2π ( ) x 2 + y 2 dx dy (2) dφ ( ) r 2 dφ x r y r x φ y φ } {{ } r cos φ cos φ+ r sin φ sin φr dr (3) (r r 2 ) dr (4) 2π([r 2 /2] [r 3 /3] ) (5) 2π((/2 /2) (/3 /3)) (6) 2π(3/6 2/6) (7) π/3 (8) (9) Extra question: How does the volume integrated over look? 4..3 Exercise: Variable transformation (a) Calculate the integral of the function f(x, y) over the dashed area of the figure. Give a geometric interpretation for this integral. φ r CC BY-SA 4. Hint: The integral of y 2 is 2 (y y 2 + arcsin(y)). Solution: The easiest way is to realize that the area is the difference between a quarter unit circle of area π/4 minus half a unit square of area /2. 6

7 The most direct way is to simply calculate the integral. y 2 dx dy y [ ] y 2 x dy () y y2 ( y) dy (2) y2 dy dy + [ 2 (y y 2 + arcsin(y)) ] 2 [arcsin() arcsin() ] + }{{}}{{} 2 π/2 y dy (3) [ ] [ ] y + 2 y2 (4) (5) π 4 2 (6) Another way is to split the integral up into the difference of the integral over the quarter circle (in polar coordinates) and the integral over the triangle (in x-y-coordinates). π/2 x x y r φ dx dy y y dr dφ dx dy (7) r φ A }{{} r cos φ cos φ+ r sin φ sin φr π/2 π/2 [ 2 φ [ 2 r2 ] 2 dφ ] π/2 dφ [ x ] y dy (8) y dy (9) [ 2 y2 + y ] π/4 ( /2 + ) π 4 2 () () (b) Calculate the integral of the function f(x, y) /(x 2 +y 2 ) 3/2 over the same area. Use polar coordinates (r, φ) with x r cos φ, y r sin φ. Solution: First determine the boundaries of the area in polar coordinates: Since we look only at the upper right quadrant we have angles from to 9. This means φ [, π/2]. The upper bound of the radius is just the radius. The lower bound is given by the function y x. If x and y are substituted by polar coordinates we get r sin φ r cos φ and therefore r [/(cos φ + sin φ), ]. 7

8 A y π/2 y 2 /(x 2 + y 2 ) 3/2 dx dy (2) x x r φ r 3 y y dr dφ (3) π/2 π/2 π/2 /(cos φ+sin φ) /(cos φ+sin φ) ] [ r /(cos φ+sin φ) r φ } {{ } r cos φ cos φ+ r sin φ sin φr dr dφ (4) r2 dφ (5) + (cos φ + sin φ) dφ (6) [ φ + sin φ cos φ ] π/2 (7) ( π/2 + sin(π/2) cos(π/2)) ( + sin cos ) (8) π/ π/2 (9) 4..4 Exercise: Area integral Consider a shape in the xy-plane with a boundary given by x ( + a cos(nφ)) cos(φ) () y 3( + a cos(nφ)) sin(φ) (2) for any a [, ] and n N + (without ). (a) Sketch the shap for a.5 and n 6. Solution: The correct sketch is shown on the left. If y is scaled by /3 the figure looks nicer (right). Figure (left): (Wiskott group, 27, unclear); Figure (right): (Wiskott group, 27, unclear) (b) Calculate the area of the shape for general a and n. Hint: First apply a very simple geometrical transformation that makes the task much easier. Solution: First we compress everything in the y-direction by a factor of /3 to get a more symmetric boundary with only /3 of the area. x ( + a cos(nφ)) cos(φ) (3) ỹ ( + a cos(nφ)) sin(φ). (4) 8

9 The integral is then best written in polar coordinates. I/3 2π 2π (+a cos(nφ)) r dr dφ (5) [r 2 (+a cos(nφ)) /2] dφ (6) 2π (( + a cos(nφ)) 2 /2 /2) dφ (7) 2 2π ( + 2a cos(nφ) + a 2 cos(nφ) 2) dφ (8) 2π 2π dφ + a cos(nφ) dφ + a2 2 2 } {{ } 2π cos(nφ) 2 dφ } {{ } π π + + a 2 π/2 () ( + a 2 /2)π () I 3( + a 2 /2)π. (2) The last integral in (9) equals π, because 2π π dφ π (sin(φ)2 + cos(φ) 2 ) dφ and for symmetry reasons. (c) Discuss the plausibility of the result. Solution: The result is plausible in several aspects: (i) The area equals 3π for a, because in that case the shape is an ellipse with radii and 3. (ii) The result does not depend on n for symmetry reasons. After compression in y-direction by a factor of /3 one could rearrange infinitesimally small radial slices to get from any n to any other n (except ) without changing the overall area. (iii) The area increases with a, because what gets subtracted from the inner of the ellipse gets added even more to the outer of the ellipse, because of the radial magnification factor. (9) 5 Gauss theorem - integration by parts in multiple dimensions 5. Exercises 5.. Exercise: Gauss theorem Consider the two-dimensional vector field f(x) x (x, x 2 ) T. () (a) Sketch the vector field. Solution: Not available! (b) Calculate the divergence T f(x). 9

10 Solution: T f(x) f x + f 2 x 2 (2) () x + x 2 (3) x x 2 + (4) 2. (5) (c) Calculate the integral over the divergence over the area of a disc of radius r centered at the origin. Solution: Since the divergence is 2 everywhere the integral is simply twice the area of the disc, i.e. 2πr 2. (d) Calculate the flow of the vector field through the boundary of the disc with radius r centered at the origin. Hint: By Gauss theorem the result should be identical to the integral over the divergence. Solution: At radius r the vectors of the vector field have length r and point strictly outwards, away from the origin, i.e. they are orthogonal to the boundary of the disc. Thus the flow through the boundary is simply r times the circumference, i.e. r2πr, which is the same as the integral over the divergence over the disc, see above. (e) Calculate the integral over the divergence over the area of a disc of radius r centered at an arbitrary point x c. Solution: Since the divergence is 2 everywhere in any case the integral is still simply twice the area of the disc, i.e. 2πr 2. (f) Calculate the flow of the vector field through the boundary of the disc with radius r centered at x c. Hint: Because of the linearity of the integral, the flow through a volume boundary of a sum of two vector fields equals the sum of the flows through the volume boundary of the two vector fields individually. Solution: First consider the flow through the boundary of the disc for the vector field f(x) x c. This vector field looks identical to f(x) itself except that it is centered at x c. Thus its flow through the boundary is exactly the one we have calculated for f(x) and the disc at the origin. Next we realize that the flow of the constant vector field x c through the boundary of any closed volume is zero for symmetry reasons. Thus the flow of f(x) through the disc centered at x c is again r2πr. Hint: There is actually not much to calculate here. Use symmetry arguments and Gedankenexperiments instead. Extra question: How would you calculate the flow through the boundary of a rectangle?

Exercises * on Functions

Exercises * on Functions Exercises * on Functions Laurenz Wiskott Institut für Neuroinformatik Ruhr-Universität Bochum, Germany, EU 2 February 2017 Contents 1 Scalar functions in one variable 3 1.1 Elementary transformations.....................................

More information

Exercises * on Principal Component Analysis

Exercises * on Principal Component Analysis Exercises * on Principal Component Analysis Laurenz Wiskott Institut für Neuroinformatik Ruhr-Universität Bochum, Germany, EU 4 February 207 Contents Intuition 3. Problem statement..........................................

More information

Exercises * on Linear Algebra

Exercises * on Linear Algebra Exercises * on Linear Algebra Laurenz Wiskott Institut für Neuroinformatik Ruhr-Universität Bochum, Germany, EU 4 February 7 Contents Vector spaces 4. Definition...............................................

More information

Solutions to the Exercises * on Linear Algebra

Solutions to the Exercises * on Linear Algebra Solutions to the Exercises * on Linear Algebra Laurenz Wiskott Institut für Neuroinformatik Ruhr-Universität Bochum, Germany, EU 4 ebruary 7 Contents Vector spaces 4. Definition...............................................

More information

The Change-of-Variables Formula for Double Integrals

The Change-of-Variables Formula for Double Integrals The Change-of-Variables Formula for Double Integrals Minh-Tam Trinh In this document, I suggest ideas about how to solve some of the exercises in ection 15.9 of tewart, Multivariable Calculus, 8th Ed.

More information

(You may need to make a sin / cos-type trigonometric substitution.) Solution.

(You may need to make a sin / cos-type trigonometric substitution.) Solution. MTHE 7 Problem Set Solutions. As a reminder, a torus with radii a and b is the surface of revolution of the circle (x b) + z = a in the xz-plane about the z-axis (a and b are positive real numbers, with

More information

36. Double Integration over Non-Rectangular Regions of Type II

36. Double Integration over Non-Rectangular Regions of Type II 36. Double Integration over Non-Rectangular Regions of Type II When establishing the bounds of a double integral, visualize an arrow initially in the positive x direction or the positive y direction. A

More information

Section 5-7 : Green's Theorem

Section 5-7 : Green's Theorem Section 5-7 : Green's Theorem In this section we are going to investigate the relationship between certain kinds of line integrals (on closed paths) and double integrals. Let s start off with a simple

More information

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2 Math Prelim II Solutions Spring Note: Each problem is worth points except numbers 5 and 6 which are 5 points. x. Compute x da where is the region in the second quadrant between the + y circles x + y and

More information

MATH 52 FINAL EXAM DECEMBER 7, 2009

MATH 52 FINAL EXAM DECEMBER 7, 2009 MATH 52 FINAL EXAM DECEMBER 7, 2009 THIS IS A CLOSED BOOK, CLOSED NOTES EXAM. NO CALCULATORS OR OTHER ELECTRONIC DEVICES ARE PERMITTED. IF YOU NEED EXTRA SPACE, PLEASE USE THE BACK OF THE PREVIOUS PROB-

More information

Math 23b Practice Final Summer 2011

Math 23b Practice Final Summer 2011 Math 2b Practice Final Summer 211 1. (1 points) Sketch or describe the region of integration for 1 x y and interchange the order to dy dx dz. f(x, y, z) dz dy dx Solution. 1 1 x z z f(x, y, z) dy dx dz

More information

MAT100 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS

MAT100 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT100 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT100 is a fast-paced and thorough tour of precalculus mathematics, where the choice of topics is primarily motivated by the conceptual and technical knowledge

More information

Ideas from Vector Calculus Kurt Bryan

Ideas from Vector Calculus Kurt Bryan Ideas from Vector Calculus Kurt Bryan Most of the facts I state below are for functions of two or three variables, but with noted exceptions all are true for functions of n variables..1 Tangent Line Approximation

More information

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. alculus III Preface Here are my online notes for my alculus III course that I teach here at Lamar University. espite the fact that these are my class notes, they should be accessible to anyone wanting

More information

In general, the formula is S f ds = D f(φ(u, v)) Φ u Φ v da. To compute surface area, we choose f = 1. We compute

In general, the formula is S f ds = D f(φ(u, v)) Φ u Φ v da. To compute surface area, we choose f = 1. We compute alculus III Test 3 ample Problem Answers/olutions 1. Express the area of the surface Φ(u, v) u cosv, u sinv, 2v, with domain u 1, v 2π, as a double integral in u and v. o not evaluate the integral. In

More information

Math 234 Exam 3 Review Sheet

Math 234 Exam 3 Review Sheet Math 234 Exam 3 Review Sheet Jim Brunner LIST OF TOPIS TO KNOW Vector Fields lairaut s Theorem & onservative Vector Fields url Divergence Area & Volume Integrals Using oordinate Transforms hanging the

More information

MTHE 227 Problem Set 2 Solutions

MTHE 227 Problem Set 2 Solutions MTHE 7 Problem Set Solutions 1 (Great Circles). The intersection of a sphere with a plane passing through its center is called a great circle. Let Γ be the great circle that is the intersection of the

More information

MATH Green s Theorem Fall 2016

MATH Green s Theorem Fall 2016 MATH 55 Green s Theorem Fall 16 Here is a statement of Green s Theorem. It involves regions and their boundaries. In order have any hope of doing calculations, you must see the region as the set of points

More information

Answers for Ch. 6 Review: Applications of the Integral

Answers for Ch. 6 Review: Applications of the Integral Answers for Ch. 6 Review: Applications of the Integral. The formula for the average value of a function, which you must have stored in your magical mathematical brain, is b b a f d. a d / / 8 6 6 ( 8 )

More information

Multiple Choice. Compute the Jacobian, (u, v), of the coordinate transformation x = u2 v 4, y = uv. (a) 2u 2 + 4v 4 (b) xu yv (c) 3u 2 + 7v 6

Multiple Choice. Compute the Jacobian, (u, v), of the coordinate transformation x = u2 v 4, y = uv. (a) 2u 2 + 4v 4 (b) xu yv (c) 3u 2 + 7v 6 .(5pts) y = uv. ompute the Jacobian, Multiple hoice (x, y) (u, v), of the coordinate transformation x = u v 4, (a) u + 4v 4 (b) xu yv (c) u + 7v 6 (d) u (e) u v uv 4 Solution. u v 4v u = u + 4v 4..(5pts)

More information

The Divergence Theorem

The Divergence Theorem Math 1a The Divergence Theorem 1. Parameterize the boundary of each of the following with positive orientation. (a) The solid x + 4y + 9z 36. (b) The solid x + y z 9. (c) The solid consisting of all points

More information

Figure 21:The polar and Cartesian coordinate systems.

Figure 21:The polar and Cartesian coordinate systems. Figure 21:The polar and Cartesian coordinate systems. Coordinate systems in R There are three standard coordinate systems which are used to describe points in -dimensional space. These coordinate systems

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenourseWare http://ocw.mit.edu 8.02 Multivariable alculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.02 Lecture 8. hange of variables.

More information

Around the corner. Mathematics B-day 2015, Friday November 13, 9:00h-16:00h

Around the corner. Mathematics B-day 2015, Friday November 13, 9:00h-16:00h Around the corner Mathematics B-day 2015, Friday November 13, 9:00h-16:00h Exploration 1 (Piano) You have to move a heavy piano through a 1 meter wide corridor with a right-angled corner in it. The figure

More information

Find all solutions cos 6. Find all solutions. 7sin 3t Find all solutions on the interval [0, 2 ) sin t 15cos t sin.

Find all solutions cos 6. Find all solutions. 7sin 3t Find all solutions on the interval [0, 2 ) sin t 15cos t sin. 7.1 Solving Trigonometric Equations with Identities In this section, we explore the techniques needed to solve more complex trig equations: By Factoring Using the Quadratic Formula Utilizing Trig Identities

More information

49. Green s Theorem. The following table will help you plan your calculation accordingly. C is a simple closed loop 0 Use Green s Theorem

49. Green s Theorem. The following table will help you plan your calculation accordingly. C is a simple closed loop 0 Use Green s Theorem 49. Green s Theorem Let F(x, y) = M(x, y), N(x, y) be a vector field in, and suppose is a path that starts and ends at the same point such that it does not cross itself. Such a path is called a simple

More information

MATH 250 TOPIC 13 INTEGRATION. 13B. Constant, Sum, and Difference Rules

MATH 250 TOPIC 13 INTEGRATION. 13B. Constant, Sum, and Difference Rules Math 5 Integration Topic 3 Page MATH 5 TOPIC 3 INTEGRATION 3A. Integration of Common Functions Practice Problems 3B. Constant, Sum, and Difference Rules Practice Problems 3C. Substitution Practice Problems

More information

Practice Final Solutions

Practice Final Solutions Practice Final Solutions Math 1, Fall 17 Problem 1. Find a parameterization for the given curve, including bounds on the parameter t. Part a) The ellipse in R whose major axis has endpoints, ) and 6, )

More information

LAB 8: INTEGRATION. Figure 1. Approximating volume: the left by cubes, the right by cylinders

LAB 8: INTEGRATION. Figure 1. Approximating volume: the left by cubes, the right by cylinders LAB 8: INTGRATION The purpose of this lab is to give intuition about integration. It will hopefully complement the, rather-dry, section of the lab manual and the, rather-too-rigorous-and-unreadable, section

More information

MITOCW ocw-18_02-f07-lec17_220k

MITOCW ocw-18_02-f07-lec17_220k MITOCW ocw-18_02-f07-lec17_220k The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free.

More information

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61 Integrals D. DeTurck University of Pennsylvania January 1, 2018 D. DeTurck Math 104 002 2018A: Integrals 1 / 61 Integrals Start with dx this means a little bit of x or a little change in x If we add up

More information

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours) SOLUTIONS TO THE 18.02 FINAL EXAM BJORN POONEN December 14, 2010, 9:00am-12:00 (3 hours) 1) For each of (a)-(e) below: If the statement is true, write TRUE. If the statement is false, write FALSE. (Please

More information

MATH 103 Pre-Calculus Mathematics Dr. McCloskey Fall 2008 Final Exam Sample Solutions

MATH 103 Pre-Calculus Mathematics Dr. McCloskey Fall 2008 Final Exam Sample Solutions MATH 103 Pre-Calculus Mathematics Dr. McCloskey Fall 008 Final Exam Sample Solutions In these solutions, FD refers to the course textbook (PreCalculus (4th edition), by Faires and DeFranza, published by

More information

MTHE 227 Problem Set 10 Solutions. (1 y2 +z 2., 0, 0), y 2 + z 2 < 4 0, Otherwise.

MTHE 227 Problem Set 10 Solutions. (1 y2 +z 2., 0, 0), y 2 + z 2 < 4 0, Otherwise. MTHE 7 Problem Set Solutions. (a) Sketch the cross-section of the (hollow) clinder + = in the -plane, as well as the vector field in this cross-section. ( +,, ), + < F(,, ) =, Otherwise. This is a simple

More information

Mathematics 1 Lecture Notes Chapter 1 Algebra Review

Mathematics 1 Lecture Notes Chapter 1 Algebra Review Mathematics 1 Lecture Notes Chapter 1 Algebra Review c Trinity College 1 A note to the students from the lecturer: This course will be moving rather quickly, and it will be in your own best interests to

More information

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y:

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y: 3 Algebraic Methods b The first appearance of the equation E Mc 2 in Einstein s handwritten notes. So far, the only general class of differential equations that we know how to solve are directly integrable

More information

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCourseWare http://ocw.mit.edu 18.02 Multivariable Calculus, Fall 2007 Please use the following citation format: Denis Auroux. 18.02 Multivariable Calculus, Fall 2007. (Massachusetts Institute of

More information

Name Period. Date: Topic: 9-2 Circles. Standard: G-GPE.1. Objective:

Name Period. Date: Topic: 9-2 Circles. Standard: G-GPE.1. Objective: Name Period Date: Topic: 9-2 Circles Essential Question: If the coefficients of the x 2 and y 2 terms in the equation for a circle were different, how would that change the shape of the graph of the equation?

More information

Examples. 1. (Solution) (a) Suppose f is an increasing function, and let A(x) = x

Examples. 1. (Solution) (a) Suppose f is an increasing function, and let A(x) = x Math 31A Final Exam Practice Problems Austin Christian December 1, 15 Here are some practice problems for the final. You ll notice that these problems all come from material since the last exam. You are,

More information

Unit #13 - Integration to Find Areas and Volumes, Volumes of Revolution

Unit #13 - Integration to Find Areas and Volumes, Volumes of Revolution Unit #1 - Integration to Find Areas and Volumes, Volumes of Revolution Some problems and solutions selected or adapted from Hughes-Hallett Calculus. Areas In Questions #1-8, find the area of one strip

More information

Solutions for the Practice Final - Math 23B, 2016

Solutions for the Practice Final - Math 23B, 2016 olutions for the Practice Final - Math B, 6 a. True. The area of a surface is given by the expression d, and since we have a parametrization φ x, y x, y, f x, y with φ, this expands as d T x T y da xy

More information

Figure 25:Differentials of surface.

Figure 25:Differentials of surface. 2.5. Change of variables and Jacobians In the previous example we saw that, once we have identified the type of coordinates which is best to use for solving a particular problem, the next step is to do

More information

5.5. The Substitution Rule

5.5. The Substitution Rule INTEGRALS 5 INTEGRALS 5.5 The Substitution Rule In this section, we will learn: To substitute a new variable in place of an existing expression in a function, making integration easier. INTRODUCTION Due

More information

1. (25 points) Consider the region bounded by the curves x 2 = y 3 and y = 1. (a) Sketch both curves and shade in the region. x 2 = y 3.

1. (25 points) Consider the region bounded by the curves x 2 = y 3 and y = 1. (a) Sketch both curves and shade in the region. x 2 = y 3. Test Solutions. (5 points) Consider the region bounded by the curves x = y 3 and y =. (a) Sketch both curves and shade in the region. x = y 3 y = (b) Find the area of the region above. Solution: Observing

More information

MATH H53 : Final exam

MATH H53 : Final exam MATH H53 : Final exam 11 May, 18 Name: You have 18 minutes to answer the questions. Use of calculators or any electronic items is not permitted. Answer the questions in the space provided. If you run out

More information

SECTION 3.5: DIFFERENTIALS and LINEARIZATION OF FUNCTIONS

SECTION 3.5: DIFFERENTIALS and LINEARIZATION OF FUNCTIONS (Section 3.5: Differentials and Linearization of Functions) 3.5.1 SECTION 3.5: DIFFERENTIALS and LINEARIZATION OF FUNCTIONS LEARNING OBJECTIVES Use differential notation to express the approximate change

More information

Lecture 10 - Moment of Inertia

Lecture 10 - Moment of Inertia Lecture 10 - oment of Inertia A Puzzle... Question For any object, there are typically many ways to calculate the moment of inertia I = r 2 dm, usually by doing the integration by considering different

More information

Distance Between Ellipses in 2D

Distance Between Ellipses in 2D Distance Between Ellipses in 2D David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International License. To

More information

A-Level Notes CORE 1

A-Level Notes CORE 1 A-Level Notes CORE 1 Basic algebra Glossary Coefficient For example, in the expression x³ 3x² x + 4, the coefficient of x³ is, the coefficient of x² is 3, and the coefficient of x is 1. (The final 4 is

More information

Exercises * on Bayesian Theory and Graphical Models

Exercises * on Bayesian Theory and Graphical Models Exercises * on Bayesian Theory and Graphical Models Laurenz Wiskott Institut für Neuroinformatik Ruhr-Universität Bochum, Germany, EU 4 February 2017 Contents 1 Bayesian inference 3 1.1 Discrete random

More information

STEP Support Programme. Hints and Partial Solutions for Assignment 1

STEP Support Programme. Hints and Partial Solutions for Assignment 1 STEP Support Programme Hints and Partial Solutions for Assignment 1 Warm-up 1 You can check many of your answers to this question by using Wolfram Alpha. Only use this as a check though and if your answer

More information

MEI Core 1. Basic Algebra. Section 1: Basic algebraic manipulation and solving simple equations. Manipulating algebraic expressions

MEI Core 1. Basic Algebra. Section 1: Basic algebraic manipulation and solving simple equations. Manipulating algebraic expressions MEI Core Basic Algebra Section : Basic algebraic manipulation and solving simple equations Notes and Examples These notes contain subsections on Manipulating algebraic expressions Collecting like terms

More information

PHY102 Electricity Topic 3 (Lectures 4 & 5) Gauss s Law

PHY102 Electricity Topic 3 (Lectures 4 & 5) Gauss s Law PHY1 Electricity Topic 3 (Lectures 4 & 5) Gauss s Law In this topic, we will cover: 1) Electric Flux ) Gauss s Law, relating flux to enclosed charge 3) Electric Fields and Conductors revisited Reading

More information

MTH 132 Solutions to Exam 2 Apr. 13th 2015

MTH 132 Solutions to Exam 2 Apr. 13th 2015 MTH 13 Solutions to Exam Apr. 13th 015 Name: Section: Instructor: READ THE FOLLOWING INSTRUCTIONS. Do not open your exam until told to do so. No calculators, cell phones or any other electronic devices

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.02 Multivariable Calculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 3. Double Integrals 3A. Double

More information

Major Ideas in Calc 3 / Exam Review Topics

Major Ideas in Calc 3 / Exam Review Topics Major Ideas in Calc 3 / Exam Review Topics Here are some highlights of the things you should know to succeed in this class. I can not guarantee that this list is exhaustive!!!! Please be sure you are able

More information

53. Flux Integrals. Here, R is the region over which the double integral is evaluated.

53. Flux Integrals. Here, R is the region over which the double integral is evaluated. 53. Flux Integrals Let be an orientable surface within 3. An orientable surface, roughly speaking, is one with two distinct sides. At any point on an orientable surface, there exists two normal vectors,

More information

Hi AP AB Calculus Class of :

Hi AP AB Calculus Class of : Hi AP AB Calculus Class of 2017 2018: In order to complete the syllabus that the College Board requires and to have sufficient time to review and practice for the exam, I am asking you to do a (mandatory)

More information

Area of Circles. Say Thanks to the Authors Click (No sign in required)

Area of Circles. Say Thanks to the Authors Click  (No sign in required) Area of Circles Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org

More information

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr.

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr. 1. Let F(x, y) xyi+(y 3x)j, and let be the curve r(t) ti+(3t t 2 )j for t 2. ompute F dr. Solution. F dr b a 2 2 F(r(t)) r (t) dt t(3t t 2 ), 3t t 2 3t 1, 3 2t dt t 3 dt 1 2 4 t4 4. 2. Evaluate the line

More information

Crash Course in Trigonometry

Crash Course in Trigonometry Crash Course in Trigonometry Dr. Don Spickler September 5, 003 Contents 1 Trigonometric Functions 1 1.1 Introduction.................................... 1 1. Right Triangle Trigonometry...........................

More information

Calculus II (Fall 2015) Practice Problems for Exam 1

Calculus II (Fall 2015) Practice Problems for Exam 1 Calculus II (Fall 15) Practice Problems for Exam 1 Note: Section divisions and instructions below are the same as they will be on the exam, so you will have a better idea of what to expect, though I will

More information

4 The Cartesian Coordinate System- Pictures of Equations

4 The Cartesian Coordinate System- Pictures of Equations 4 The Cartesian Coordinate System- Pictures of Equations Concepts: The Cartesian Coordinate System Graphs of Equations in Two Variables x-intercepts and y-intercepts Distance in Two Dimensions and the

More information

Tangent Planes, Linear Approximations and Differentiability

Tangent Planes, Linear Approximations and Differentiability Jim Lambers MAT 80 Spring Semester 009-10 Lecture 5 Notes These notes correspond to Section 114 in Stewart and Section 3 in Marsden and Tromba Tangent Planes, Linear Approximations and Differentiability

More information

Math 121 (Lesieutre); 9.1: Polar coordinates; November 22, 2017

Math 121 (Lesieutre); 9.1: Polar coordinates; November 22, 2017 Math 2 Lesieutre; 9: Polar coordinates; November 22, 207 Plot the point 2, 2 in the plane If you were trying to describe this point to a friend, how could you do it? One option would be coordinates, but

More information

1.1 Single Variable Calculus versus Multivariable Calculus Rectangular Coordinate Systems... 4

1.1 Single Variable Calculus versus Multivariable Calculus Rectangular Coordinate Systems... 4 MATH2202 Notebook 1 Fall 2015/2016 prepared by Professor Jenny Baglivo Contents 1 MATH2202 Notebook 1 3 1.1 Single Variable Calculus versus Multivariable Calculus................... 3 1.2 Rectangular Coordinate

More information

14.1. Multiple Integration. Iterated Integrals and Area in the Plane. Iterated Integrals. Iterated Integrals. MAC2313 Calculus III - Chapter 14

14.1. Multiple Integration. Iterated Integrals and Area in the Plane. Iterated Integrals. Iterated Integrals. MAC2313 Calculus III - Chapter 14 14 Multiple Integration 14.1 Iterated Integrals and Area in the Plane Objectives Evaluate an iterated integral. Use an iterated integral to find the area of a plane region. Copyright Cengage Learning.

More information

EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 4 TUTORIAL 1 - INTEGRATION

EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 4 TUTORIAL 1 - INTEGRATION Learning outcomes EEXCEL NATIONAL CERTIFICATE UNIT MATHEMATICS FOR TECHNICIANS OUTCOME TUTORIAL 1 - INTEGRATION On completion of this unit a learner should: 1 Know how to use algebraic methods e able to

More information

See animations and interactive applets of some of these at. Fall_2009/Math123/Notes

See animations and interactive applets of some of these at.   Fall_2009/Math123/Notes MA123, Chapter 7 Word Problems (pp. 125-153) Chapter s Goal: In this chapter we study the two main types of word problems in Calculus. Optimization Problems. i.e., max - min problems Related Rates See

More information

Slope Fields and Differential Equations. Copyright Cengage Learning. All rights reserved.

Slope Fields and Differential Equations. Copyright Cengage Learning. All rights reserved. Slope Fields and Differential Equations Copyright Cengage Learning. All rights reserved. Objectives Review verifying solutions to differential equations. Review solving differential equations. Review using

More information

Vector Calculus handout

Vector Calculus handout Vector Calculus handout The Fundamental Theorem of Line Integrals Theorem 1 (The Fundamental Theorem of Line Integrals). Let C be a smooth curve given by a vector function r(t), where a t b, and let f

More information

Summary: Applications of Gauss Law

Summary: Applications of Gauss Law Physics 2460 Electricity and Magnetism I, Fall 2006, Lecture 15 1 Summary: Applications of Gauss Law 1. Field outside of a uniformly charged sphere of radius a: 2. An infinite, uniformly charged plane

More information

Final exam (practice 1) UCLA: Math 32B, Spring 2018

Final exam (practice 1) UCLA: Math 32B, Spring 2018 Instructor: Noah White Date: Final exam (practice 1) UCLA: Math 32B, Spring 218 This exam has 7 questions, for a total of 8 points. Please print your working and answers neatly. Write your solutions in

More information

Note: Final Exam is at 10:45 on Tuesday, 5/3/11 (This is the Final Exam time reserved for our labs). From Practice Test I

Note: Final Exam is at 10:45 on Tuesday, 5/3/11 (This is the Final Exam time reserved for our labs). From Practice Test I MA Practice Final Answers in Red 4/8/ and 4/9/ Name Note: Final Exam is at :45 on Tuesday, 5// (This is the Final Exam time reserved for our labs). From Practice Test I Consider the integral 5 x dx. Sketch

More information

Sin, Cos and All That

Sin, Cos and All That Sin, Cos and All That James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 9, 2017 Outline 1 Sin, Cos and all that! 2 A New Power Rule 3

More information

Math 180 Written Homework Assignment #10 Due Tuesday, December 2nd at the beginning of your discussion class.

Math 180 Written Homework Assignment #10 Due Tuesday, December 2nd at the beginning of your discussion class. Math 18 Written Homework Assignment #1 Due Tuesday, December 2nd at the beginning of your discussion class. Directions. You are welcome to work on the following problems with other MATH 18 students, but

More information

Name: Student ID number:

Name: Student ID number: Math 20E Final Exam Name: Student ID number: Instructions: Answers without work may be given no credit at the grader s discretion. The test is out of 69 points, with 2 extra credit points possible. This

More information

10.7 Trigonometric Equations and Inequalities

10.7 Trigonometric Equations and Inequalities 0.7 Trigonometric Equations and Inequalities 857 0.7 Trigonometric Equations and Inequalities In Sections 0. 0. and most recently 0. we solved some basic equations involving the trigonometric functions.

More information

is any such piece, suppose we choose a in this piece and use σ ( xk, yk, zk) . If B

is any such piece, suppose we choose a in this piece and use σ ( xk, yk, zk) . If B Multivariable Calculus Lecture # Notes In this lecture we look at integration over regions in space, ie triple integrals, using Cartesian coordinates, cylindrical coordinates, and spherical coordinates

More information

Advanced Calculus Questions

Advanced Calculus Questions Advanced Calculus Questions What is here? This is a(n evolving) collection of challenging calculus problems. Be warned - some of these questions will go beyond the scope of this course. Particularly difficult

More information

154 Chapter 9 Hints, Answers, and Solutions The particular trajectories are highlighted in the phase portraits below.

154 Chapter 9 Hints, Answers, and Solutions The particular trajectories are highlighted in the phase portraits below. 54 Chapter 9 Hints, Answers, and Solutions 9. The Phase Plane 9.. 4. The particular trajectories are highlighted in the phase portraits below... 3. 4. 9..5. Shown below is one possibility with x(t) and

More information

Math 221 Exam III (50 minutes) Friday April 19, 2002 Answers

Math 221 Exam III (50 minutes) Friday April 19, 2002 Answers Math Exam III (5 minutes) Friday April 9, Answers I. ( points.) Fill in the boxes as to complete the following statement: A definite integral can be approximated by a Riemann sum. More precisely, if a

More information

We saw in Section 5.1 that a limit of the form. arises when we compute an area.

We saw in Section 5.1 that a limit of the form. arises when we compute an area. INTEGRALS 5 INTEGRALS Equation 1 We saw in Section 5.1 that a limit of the form n lim f ( x *) x n i 1 i lim[ f ( x *) x f ( x *) x... f ( x *) x] n 1 2 arises when we compute an area. n We also saw that

More information

Concentric Circles Puzzle

Concentric Circles Puzzle In the image above, the inner circle has a circumference of 10 and the distance between the inner and outer circles is 3. If the circumference of the inner circle is increased to 11, and the distance between

More information

0 MATH Last Updated: September 7, 2012

0 MATH Last Updated: September 7, 2012 Problem List 0.1 Trig. Identity 0.2 Basic vector properties (Numeric) 0.3 Basic vector properties (Conceptual) 0.4 Vector decomposition (Conceptual) 0.5 Div, grad, curl, and all that 0.6 Curl of a grad

More information

Vector Algebra II: Scalar and Vector Products

Vector Algebra II: Scalar and Vector Products Chapter 2 Vector Algebra II: Scalar and Vector Products ------------------- 2 a b = 0, φ = 90 The vectors are perpendicular to each other 49 Check the result geometrically by completing the diagram a =(4,

More information

1. Find and classify the extrema of h(x, y) = sin(x) sin(y) sin(x + y) on the square[0, π] [0, π]. (Keep in mind there is a boundary to check out).

1. Find and classify the extrema of h(x, y) = sin(x) sin(y) sin(x + y) on the square[0, π] [0, π]. (Keep in mind there is a boundary to check out). . Find and classify the extrema of hx, y sinx siny sinx + y on the square[, π] [, π]. Keep in mind there is a boundary to check out. Solution: h x cos x sin y sinx + y + sin x sin y cosx + y h y sin x

More information

MIDTERM 2 REVIEW: ADDITIONAL PROBLEMS. 1 2 x + 1. y = + 1 = x 1/ = 1. y = 1 2 x 3/2 = 1. into this equation would have then given. y 1.

MIDTERM 2 REVIEW: ADDITIONAL PROBLEMS. 1 2 x + 1. y = + 1 = x 1/ = 1. y = 1 2 x 3/2 = 1. into this equation would have then given. y 1. MIDTERM 2 REVIEW: ADDITIONAL PROBLEMS ) If x + y =, find y. IMPLICIT DIFFERENTIATION Solution. Taking the derivative (with respect to x) of both sides of the given equation, we find that 2 x + 2 y y =

More information

Section 5.5 More Integration Formula (The Substitution Method) 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 5.5 More Integration Formula (The Substitution Method) 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 5.5 More Integration Formula (The Substitution Method) 2 Lectures College of Science MATHS : Calculus I (University of Bahrain) Integrals / 7 The Substitution Method Idea: To replace a relatively

More information

Math 11 Fall 2018 Practice Final Exam

Math 11 Fall 2018 Practice Final Exam Math 11 Fall 218 Practice Final Exam Disclaimer: This practice exam should give you an idea of the sort of questions we may ask on the actual exam. Since the practice exam (like the real exam) is not long

More information

Solid of Revolution. IB Mathematic HL. International Baccalaureate Program. October 31, 2016

Solid of Revolution. IB Mathematic HL. International Baccalaureate Program. October 31, 2016 1 Solid of Revolution IB Mathematic HL International Baccalaureate Program 2070 October 31, 2016 2 Introduction: Geometry is one of the areas of math that I feel passionate about, thereby I am inspired

More information

Math Exam IV - Fall 2011

Math Exam IV - Fall 2011 Math 233 - Exam IV - Fall 2011 December 15, 2011 - Renato Feres NAME: STUDENT ID NUMBER: General instructions: This exam has 16 questions, each worth the same amount. Check that no pages are missing and

More information

Final Exam SOLUTIONS MAT 131 Fall 2011

Final Exam SOLUTIONS MAT 131 Fall 2011 1. Compute the following its. (a) Final Exam SOLUTIONS MAT 131 Fall 11 x + 1 x 1 x 1 The numerator is always positive, whereas the denominator is negative for numbers slightly smaller than 1. Also, as

More information

51. General Surface Integrals

51. General Surface Integrals 51. General urface Integrals The area of a surface in defined parametrically by r(u, v) = x(u, v), y(u, v), z(u, v) over a region of integration in the input-variable plane is given by d = r u r v da.

More information

1. (a) The volume of a piece of cake, with radius r, height h and angle θ, is given by the formula: [Yes! It s a piece of cake.]

1. (a) The volume of a piece of cake, with radius r, height h and angle θ, is given by the formula: [Yes! It s a piece of cake.] 1. (a The volume of a piece of cake, with radius r, height h and angle θ, is given by the formula: / 3 V (r,h,θ = 1 r θh. Calculate V r, V h and V θ. [Yes! It s a piece of cake.] V r = 1 r θh = rθh V h

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Functions

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Functions ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER 1 2017/2018 DR. ANTHONY BROWN 4. Functions 4.1. What is a Function: Domain, Codomain and Rule. In the course so far, we

More information

Green s Theorem. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Green s Theorem

Green s Theorem. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Green s Theorem Green s Theorem MATH 311, alculus III J. obert Buchanan Department of Mathematics Fall 2011 Main Idea Main idea: the line integral around a positively oriented, simple closed curve is related to a double

More information

10.7 Trigonometric Equations and Inequalities

10.7 Trigonometric Equations and Inequalities 0.7 Trigonometric Equations and Inequalities 857 0.7 Trigonometric Equations and Inequalities In Sections 0., 0. and most recently 0., we solved some basic equations involving the trigonometric functions.

More information

Practice Problems for Final Exam

Practice Problems for Final Exam Math 1280 Spring 2016 Practice Problems for Final Exam Part 2 (Sections 6.6, 6.7, 6.8, and chapter 7) S o l u t i o n s 1. Show that the given system has a nonlinear center at the origin. ẋ = 9y 5y 5,

More information

Look out for typos! Homework 1: Review of Calc 1 and 2. Problem 1. Sketch the graphs of the following functions:

Look out for typos! Homework 1: Review of Calc 1 and 2. Problem 1. Sketch the graphs of the following functions: Math 226 homeworks, Fall 2016 General Info All homeworks are due mostly on Tuesdays, occasionally on Thursdays, at the discussion section. No late submissions will be accepted. If you need to miss the

More information