1. Algebra 1 The properties of powers. iv) y xy y. c c. ii) vi) c c c. 2 Manipulating expressions. a b b a. ab ba. 3 Some useful algebraic identities.

Size: px
Start display at page:

Download "1. Algebra 1 The properties of powers. iv) y xy y. c c. ii) vi) c c c. 2 Manipulating expressions. a b b a. ab ba. 3 Some useful algebraic identities."

Transcription

1 . Alger The properties of powers 0 i) ii) y y y iii) iv) y y y v) vi) y y y y Mipultig epressios. ( ) ( ) ( ) ( ) ( ) ( ) 3 Soe useful lgeri idetities. ( )( ) or, ore geerlly, ( ) 4 Solutio of d order polyoil equtio of the for qudrti forul is 0 0. The, Cople uers re of the for z i where i (or, i ). Alger with ople uers uses the followig idetities: z z ( ) ( ) i z z ( ) i z z z z z z, where z is the ojugte of z, suh tht ( )( ). zz i i. Geoetry Pythgor's theore: B Diste etwee two poits i D spe: A C

2 d ( ) ( y y ) Properties of two-diesiol shpes d three-diesiol solids Squre Digols re equl d iset eh other t right gles. Perieter: 4 Are: Retgle Prllelogr h Trpeziu h Cirle r Ellipse h r Trigle h d Digols re equl d iset eh other Perieter: ( ) Are: Digols iset eh other Perieter: ( ) Are: h Two sides re prllel Perieter: d Are: h All poits o the perieter (iruferee) re the se diste (rdius) fro poit (the etre) iterl to the irle. Perieter: r Are: r A ellipse is the set of poits o ple whose su of distes ( ) fro two give poits is the se. Perieter (pproite): r h 3 h r r h rh rh Are: rh The se re e lulted usig y side of the trigle with its orrespodig height. Perieter: h Are:

3 Regulr hego h Cue All the trigles fored y drwig the three digols of the hego re equilterl. Perieter: Are: 3h All sides re ll squres Surfe re: 6 Volue: 3 Cuoid Sphere r All sides re retgles Surfe re: Volue: Surfe re: 4r 4 3 Volue: 3 r Cylider r Surfe re: r( r h) Volue: r h h 3. Trigooetry Nottio. Agles re usully deoted y the Greek letters,, Agle oversios etwee degrees (d) d rdis ( ): 360 / d / useful gle oversios re Degrees Rdis Degrees Rdis Soe

4 3 Defiitios of trigooetri futios os( ) / r, si( ) y / r, t( ) y /, ot( ) / y r y 4 Nueril pproitio of si trigooetri futios: si( ) 3! 5! 7! 4 6 os( )! 4! 6! 5 Covertig polr to Crtesi oordites: (, y) ( r os( ), r si( )) 6 Bsi trigooetri idetities: t si / os os ( ) si ( ) os( ) os si( ) si os( ) os si( ) si os( ) os si( ) si 7 Trigooetri idetities for sus of gles: si( ) si os os si os( ) os os si si t t t( ) t t 8 Trigooetri idetities for doule gles: si( ) si os os( ) os si t t( ) t 9 Idetities for the produt of trigooetri futios: si os si( ) si( ) os si si( ) si( ) os os os( ) os( ) si si os( ) os( ) 0 Idetities for the su of trigooetri futios:

5 si si si os si si os si os os os os os os si si Idetities for the gles d sides of olique trigle (i.e. oe, tht does ot hve right gle). The lw of sies : A B C si si si A B A B C BC os The lw of osies : B A C AC os C A B ABos C Geerl trsfortio of os ito ew periodi futio: f fi f f i f ( t) os ( t t0 ) T where fi d f re the iiu d iu of the ew futio (replig - d ), T is the ew period (replig ) d t 0 the ew pek (replig 0). is the lotio of 3 Superpositio of severl periodi opoets is desried y trigooetri polyoil f ( t) ost os t si t si t 4. Sequees Aritheti progressio. The itertive defiitio is d the orrespodig geerl defiitio is 0. Geoetri progressio. The itertive defiitio is d the orrespodig geerl defiitio is 0.

6 3 A tooy of differee equtios preseted usig geeri eples:, d 3 re ostts d ( t), ( t) d 3 ( t) re futios of tie. The etries desrie the right hd side of the differee equtio, so hoogeeous, utooous, lier, ffie, equtio is t t Lier ffie Autooous t Hoogeeous No-utooous ( t ) t Lier t 0 ( t) t 0 No-lier ffie t t No-lier t t 0 t ( t ) ( t ) ( ) t ( ) t 0 t t t Lier 0 ( t ) No-hoogeeous Autooous No-utooous t t 0 ( t) ( t) No lier t t 0 ( t) t t 0 ( t) ( t) ( t) 5. Logriths Properties of the logrithi futio i) log 0 iv) log ( y) log log y ii) log v) log y log log y iii) log k vi) log k log 3 Reltioship etwee turl d oo logriths: l l0log. This iplies tht the two re proportiol to eh other. 6. Liits Properties of liits. If li f ( ) d li g( ), the i) The liit of the su equls the su of the liits

7 li f ( ) g( ) ii) The liit of the produt equls the produt of the liits li f ( ) g( ) iii) The liit of the rtio equls the rtio of the liits, ssuig tht 0 f ( ) li give 0 ( ) g iv) The liit of the produt etwee ostt d futio equls the produt of the ostt d the futio s liit li f ( ) Liits ivolvig ifiity. i) li ii) li Derivtives Defiitio of the derivtive df f ( ) f ( ) li d or, ltertively df f ( ) f ( ) li d 0 There re five ltertive ottios for the derivtive of futio: df ( ) df d f ( ) f ( ) f ( ) d d d Rules of differetitio Futio Derivtive f ( ) f 0 f ( ) f 3 f ( ) g( ) f g 4 f ( ) g( ) h( ) f g h 5 Produt rule f ( ) g( ) h( ) f gh hg 6 7 Quotiet rule 8 f ( ) g( ) f g g g( ) gh hg f ( ) f h( ) h f ( ) g( ) f g g

8 9 f ( ) l 0 f ( ) e f ( ) si f ( ) os 3 f ( ) t f f e f os f si f se 3 The hi rule For futio f ( ) f ( g( )), df df dg d dg d More geerlly, for f ( ) f ( g( g( g( )))), df df dg dg d dg dg d 4 Tylor epsio ( i) i i i! f ( ) f ( ) f ( )( ) 8. Itegrls Bsi rules of itegrtio Futio ( F( ) ) Idefiite itegrl ( F( ) d ) 3 G( ) G( ) d 4 G( ) H( ) G( ) d H( ) d e ( ) dg G d G( ) dg d G( ) G( ) l e

9 9 si os 0 os si t se Mipultig defiite itegrls i) Give itervl [, ] tht oprises the two suitervls [, ] d [, ] the f ( ) d f ( ) d f ( ) d ii) f ( ) d f ( ) d 9. Mtries Properties of tri ritheti. For y three tries A, B, C d slrs,, the followig re true A B B A ( A B) C A ( B C) 3 ( A B) A B 4 ( ) A A A 5 A( BC) ( AB) C 6 IA A, AI A 7 A( B C) AB AC Properties of the trspose ( A ) T T A ( A B) T A T B T 3 ( AB) T B T A T 3 Properties of the deterit det( AB) det( A)det( B) T det( A ) det( A) 3 det( I ) d, if A is ivertile, 4 det( A ) det( A) 4 Nolier dyil systes. The Joi:

10 f f M f f 0. Desriptive sttistis The verge. For sple of oservtios,,, the verge is: i i. If f ( ) is the reltive frequey with whih vlue ours i the sple, the the verge is lso writte f ( ). The two epressios will e idetil if o iig is used to lulte the reltive frequeies (e.g. s is the se i disrete vriles). Oe rdo vrile Vrie i v ( ) ( ) Stdrd devitio s( ) v( ) Skewess 3 ( ) 3 i s i Kurtosis 4 ( ) 3 4 i s 3 Two rdo vriles i i All Covrie ov(, y ) ( )( y y ) Correltio i ov(, y) r s s y i i. Sets d evets The epty set is writte d the evet spe of eperiet is ovetiolly writte. Coprisos etwee two sets A B The set A is idetil to the set B A B The set A is suset of the set B A B Set A is suset of, or the se s, set B A B Set A is ot suset of B

11 3 Set opertors A Negtio: ot A A B Uio of two sets: A or B A B Itersetio etwee two sets: A d B 4 Iportt reltioships etwee evets B A : Copleetry evets A B : Colletively ehustive evets A B : Mutully elusive evets. Rules of proility For set of utully elusive d olletively ehustive evets E, E, E3,, E, it is lwys true tht i likely, eh with proility p, the opleetry, the P( E) P( E ). P( E ). If these evets re eqully i p. Also, if two evets re The proility of the uio of two utully elusive evets is P( E E ) P( E ) P( E ). The proility of the uio of y two evets is P( E E ) P( E ) P( E ) P( E E ) 3 Rules delig with oditiol proility P( E E ). P( E E ) P( E ). P( E E ) P( E ) 3. P( E E ) P( E ) P( E ) P( E E ) P( E ) (Bye s lw) (Idepedet evets) 4. Totl proility. Give the proilities P( E ),, P( E ) of utully elusive d olletively ehustive evets, d the oditiol proilities P( G E ),, P( G E ) referrig to soe other evet G, the the totl proility of G is P( G) P( G Ei ) P( Ei ) i 3 Byesi proility. P( dt H) P( H) P( H dt) P( dt) 3. Proility distriutios

12 Disrete rdo vriles Proility ss futio (PMF): f ( ) P( X ) Properties of the PMF: i) 0 f ( ) ii) f ( ) All Cuultive distr. futio (CDF): F ( ) P( X ) Properties of the CDF: i) li F( ) 0, ii) li F( ), iii) If, the F( ) F( ) Reltioship etwee the PMF d CDF: f ( ) F( ) F( ) & F( ) f ( i) X X i Cotiuous rdo vriles Defiitio d properties of CDF: se s i disrete se. Proility desity futio (PDF): defied s the derivtive of the CDF. Properties of the PDF: i) f ( ) 0, ii) P( X ) f ( ) d, iii) f ( ) d Reltioship etwee PDF d CDF: df( ) f ( ) d & F ( ) f ( s ) ds 4. Epettio Epettio of rdo vrile: If X is disrete: E( X) f ( ) If X is otiuous: E( X) f ( ) d Moets of distriutio: If X is disrete: ( E X ) f ( ) If X is otiuous: E( X ) f ( ) d

13 3 Epettio of geerl futio g( X) If X is disrete: E( g( X)) g( ) f ( ) If X is otiuous: E( g( X)) g( ) f ( ) d 4 Reltioship etwee oets d desriptive sttistis E( X), Vr( X) E( X ) E( X), ov( X, Y) E( X )( Y ) X Y 5 Mipultig epettios d vries E( X Y) E( X) E( Y) E( X) E( X) Vr X ( ) Vr( X) E( XY) E( X) E( Y) (idepedet vriles) Vr( X Y) Vr( X) Vr( Y) (idepedet vriles) 5. Coitoris The ioil oeffiiet outs he uer of wys of orderig suesses! i strig of trils:!( )! 6. Disrete proility distriutios Ne PMF Me Vrie Uifor U(, k ) k Bioil p q B(, p) ( ) k p pq Poisso e Poisso( )! Geoetri ( is o of f ( ) pq p q p trils) Geoetri( p) Geoetri ( is o of filures) Geoetri( p) Negtive ioil if is o of trils NegB( k, p) Negtive ioil if is o of filures f ( ) pq q p q p f p q k k k k k p q k k p kq p k p q k p q

14 X ~ NegB( k, p) Multioil Multio(, p)! p!! k p k k i p i i p i q i. 7. Cotiuous proility distriutios Ne PMF Me Vrie Uifor U(, ) Epoetil M( ) G G( k, ) Bet Bet(, ) Norl N(, ) t-distriutio ( ) ( ) e k k e ( k) t Logorl LogN(, ) Chi-squre ( ) ( ) ( ) ( ) ( ) y e e e ( ) (l y) k k ( ) ( ) 0 if if e ( e ) e

AIEEE CBSE ENG A function f from the set of natural numbers to integers defined by

AIEEE CBSE ENG A function f from the set of natural numbers to integers defined by AIEEE CBSE ENG. A futio f from the set of turl umers to itegers defied y, whe is odd f (), whe is eve is (A) oe oe ut ot oto (B) oto ut ot oe oe (C) oe oe d oto oth (D) either oe oe or oto. Let z d z e

More information

12.2 The Definite Integrals (5.2)

12.2 The Definite Integrals (5.2) Course: Aelerted Egieerig Clulus I Istrutor: Mihel Medvisky. The Defiite Itegrls 5. Def: Let fx e defied o itervl [,]. Divide [,] ito suitervls of equl width Δx, so x, x + Δx, x + jδx, x. Let x j j e ritrry

More information

Perimeter: P = 2l + 2w. Area: A = lw. Parallelogram. Perimeter: P = 2a + 2b. Area: A= h( b+ 3. Obtuse

Perimeter: P = 2l + 2w. Area: A = lw. Parallelogram. Perimeter: P = 2a + 2b. Area: A= h( b+ 3. Obtuse Geoetry Perieter d re Trigle Retgle Squre h Perieter: P = + + re: = h l Perieter: P = l + w w re: = lw s Perieter: P = 4s re: = s Trpezoid h d Prllelogr Perieter: P = + + + d h re: = h( + ) Perieter: P

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral Defiite Itegrl Defiitio Itegrl. Riem Sum Let f e futio efie over the lose itervl with = < < < = e ritrr prtitio i suitervl. We lle the Riem Sum of the futio f over[, ] the sum of the form ( ξ ) S = f Δ

More information

Spain Park Math Team Formula Sheet

Spain Park Math Team Formula Sheet Spi Prk Mth Tem Formul Sheet 04-05 Tle of Cotets Geometry Bsis Are Surfe Are Volume Trigles Polygos Cirles Triks Miselleous Alger d PreClulus Epoet Rules Mtri Formuls Coordite Geometry: Polyomil Formuls:

More information

Algebra 2 Important Things to Know Chapters bx c can be factored into... y x 5x. 2 8x. x = a then the solutions to the equation are given by

Algebra 2 Important Things to Know Chapters bx c can be factored into... y x 5x. 2 8x. x = a then the solutions to the equation are given by Alger Iportt Thigs to Kow Chpters 8. Chpter - Qudrtic fuctios: The stdrd for of qudrtic fuctio is f ( ) c, where 0. c This c lso e writte s (if did equl zero, we would e left with The grph of qudrtic fuctio

More information

AP Calculus AB AP Review

AP Calculus AB AP Review AP Clulus AB Chpters. Re limit vlues from grphsleft-h Limits Right H Limits Uerst tht f() vlues eist ut tht the limit t oes ot hve to.. Be le to ietify lel isotiuities from grphs. Do t forget out the 3-step

More information

ENGINEERING PROBABILITY AND STATISTICS

ENGINEERING PROBABILITY AND STATISTICS ENGINEERING PROBABILITY AND STATISTICS DISPERSION, MEAN, MEDIAN, AND MODE VALUES If X, X,, X represet the vlues of rdom smple of items or oservtios, the rithmetic me of these items or oservtios, deoted

More information

ECE 102 Engineering Computation

ECE 102 Engineering Computation ECE Egieerig Computtio Phillip Wog Mth Review Vetor Bsis Mtri Bsis System of Lier Equtios Summtio Symol is the symol for summtio. Emple: N k N... 9 k k k k k the, If e e e f e f k Vetor Bsis A vetor is

More information

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1 Addedum Addedum Vetor Review Deprtmet of Computer Siee d Egieerig - Coordite Systems Right hded oordite system Addedum y z Deprtmet of Computer Siee d Egieerig - -3 Deprtmet of Computer Siee d Egieerig

More information

Unit 1 Chapter-3 Partial Fractions, Algebraic Relationships, Surds, Indices, Logarithms

Unit 1 Chapter-3 Partial Fractions, Algebraic Relationships, Surds, Indices, Logarithms Uit Chpter- Prtil Frctios, Algeric Reltioships, Surds, Idices, Logriths. Prtil Frctios: A frctio of the for 7 where the degree of the uertor is less th the degree of the deoitor is referred to s proper

More information

[Q. Booklet Number]

[Q. Booklet Number] 6 [Q. Booklet Numer] KOLKATA WB- B-J J E E - 9 MATHEMATICS QUESTIONS & ANSWERS. If C is the reflecto of A (, ) i -is d B is the reflectio of C i y-is, the AB is As : Hits : A (,); C (, ) ; B (, ) y A (,

More information

Hypergeometric Functions and Lucas Numbers

Hypergeometric Functions and Lucas Numbers IOSR Jourl of Mthetis (IOSR-JM) ISSN: 78-78. Volue Issue (Sep-Ot. ) PP - Hypergeoetri utios d us Nuers P. Rjhow At Kur Bor Deprtet of Mthetis Guhti Uiversity Guwhti-78Idi Astrt: The i purpose of this pper

More information

MATRIX ALGEBRA, Systems Linear Equations

MATRIX ALGEBRA, Systems Linear Equations MATRIX ALGEBRA, Systes Lier Equtios Now we chge to the LINEAR ALGEBRA perspective o vectors d trices to reforulte systes of lier equtios. If you fid the discussio i ters of geerl d gets lost i geerlity,

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thoms Whithm ith Form Pure Mthemtis Uit lger Trigoometr Geometr lulus lger equees The ifiite sequee of umers U U U... U... is si to e () overget if U L fiite limit s () iverget to if U s Emple The sequee...

More information

* power rule: * fraction raised to negative exponent: * expanded power rule:

* power rule: * fraction raised to negative exponent: * expanded power rule: Mth 15 Iteredite Alger Stud Guide for E 3 (Chpters 7, 8, d 9) You use 3 5 ote crd (oth sides) d scietific clcultor. You re epected to kow (or hve writte o our ote crd) foruls ou eed. Thik out rules d procedures

More information

82A Engineering Mathematics

82A Engineering Mathematics Clss Notes 9: Power Series /) 8A Egieerig Mthetics Secod Order Differetil Equtios Series Solutio Solutio Ato Differetil Equtio =, Hoogeeous =gt), No-hoogeeous Solutio: = c + p Hoogeeous No-hoogeeous Fudetl

More information

FREE Download Study Package from website: &

FREE Download Study Package from website:  & FREE Dolod Study Pkge from esite:.tekolsses.om &.MthsBySuhg.om Get Solutio of These Pkges & Ler y Video Tutorils o.mthsbysuhg.om SHORT REVISION. Defiitio : Retgulr rry of m umers. Ulike determits it hs

More information

SINCLAIR COMMUNITY COLLEGE DAYTON, OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT ALGEBRA II (3 CREDIT HOURS)

SINCLAIR COMMUNITY COLLEGE DAYTON, OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT ALGEBRA II (3 CREDIT HOURS) SINCLAIR COMMUNITY COLLEGE DAYTON OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT - ALGEBRA II (3 CREDIT HOURS) 1. COURSE DESCRIPTION: Ftorig; opertios with polyoils d rtiol expressios; solvig seod degree equtios

More information

Solutions to RSPL/1. log 3. When x = 1, t = 0 and when x = 3, t = log 3 = sin(log 3) 4. Given planes are 2x + y + 2z 8 = 0, i.e.

Solutions to RSPL/1. log 3. When x = 1, t = 0 and when x = 3, t = log 3 = sin(log 3) 4. Given planes are 2x + y + 2z 8 = 0, i.e. olutios to RPL/. < F < F< Applig C C + C, we get F < 5 F < F< F, $. f() *, < f( h) f( ) h Lf () lim lim lim h h " h h " h h " f( + h) f( ) h Rf () lim lim lim h h " h h " h h " Lf () Rf (). Hee, differetile

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Itrodutio to Mtri Alger George H Olso, Ph D Dotorl Progrm i Edutiol Ledership Applhi Stte Uiversit Septemer Wht is mtri? Dimesios d order of mtri A p q dimesioed mtri is p (rows) q (olums) rr of umers,

More information

Riemann Integral Oct 31, such that

Riemann Integral Oct 31, such that Riem Itegrl Ot 31, 2007 Itegrtio of Step Futios A prtitio P of [, ] is olletio {x k } k=0 suh tht = x 0 < x 1 < < x 1 < x =. More suitly, prtitio is fiite suset of [, ] otiig d. It is helpful to thik of

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

Add Maths Formulae List: Form 4 (Update 18/9/08)

Add Maths Formulae List: Form 4 (Update 18/9/08) Add Mths Formule List: Form 4 (Updte 8/9/08) 0 Fuctios Asolute Vlue Fuctio f ( ) f( ), if f( ) 0 f( ), if f( ) < 0 Iverse Fuctio If y f( ), the Rememer: Oject the vlue of Imge the vlue of y or f() f()

More information

EXERCISE a a a 5. + a 15 NEETIIT.COM

EXERCISE a a a 5. + a 15 NEETIIT.COM - Dowlod our droid App. Sigle choice Type Questios EXERCISE -. The first term of A.P. of cosecutive iteger is p +. The sum of (p + ) terms of this series c be expressed s () (p + ) () (p + ) (p + ) ()

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) +

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) + MATH 04: INTRODUCTORY ANALYSIS SPRING 008/09 PROBLEM SET 0 SOLUTIONS Throughout this problem set, B[, b] will deote the set of ll rel-vlued futios bouded o [, b], C[, b] the set of ll rel-vlued futios

More information

Things I Should Know In Calculus Class

Things I Should Know In Calculus Class Thigs I Should Kow I Clculus Clss Qudrtic Formul = 4 ± c Pythgore Idetities si cos t sec cot csc + = + = + = Agle sum d differece formuls ( ) ( ) si ± y = si cos y± cos si y cos ± y = cos cos ym si si

More information

Students must always use correct mathematical notation, not calculator notation. the set of positive integers and zero, {0,1, 2, 3,...

Students must always use correct mathematical notation, not calculator notation. the set of positive integers and zero, {0,1, 2, 3,... Appedices Of the vrious ottios i use, the IB hs chose to dopt system of ottio bsed o the recommedtios of the Itertiol Orgiztio for Stdrdiztio (ISO). This ottio is used i the emitio ppers for this course

More information

Dynamics of Structures

Dynamics of Structures UNION Dymis of Strutures Prt Zbigiew Wójii Je Grosel Projet o-fied by Europe Uio withi Europe Soil Fud UNION Mtries Defiitio of mtri mtri is set of umbers or lgebri epressios rrged i retgulr form with

More information

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is SPH3UW Uit 7.5 Sell s Lw Pge 1 of 7 Notes Physis Tool ox Refrtio is the hge i diretio of wve due to hge i its speed. This is most ommoly see whe wve psses from oe medium to other. Idex of refrtio lso lled

More information

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1 Numeril Methods Leture 5. Numeril itegrtio dr h. iż. Ktrzy Zkrzewsk, pro. AGH Numeril Methods leture 5 Outlie Trpezoidl rule Multi-segmet trpezoidl rule Rihrdso etrpoltio Romerg's method Simpso's rule

More information

Mathematical Notations and Symbols xi. Contents: 1. Symbols. 2. Functions. 3. Set Notations. 4. Vectors and Matrices. 5. Constants and Numbers

Mathematical Notations and Symbols xi. Contents: 1. Symbols. 2. Functions. 3. Set Notations. 4. Vectors and Matrices. 5. Constants and Numbers Mthemticl Nottios d Symbols i MATHEMATICAL NOTATIONS AND SYMBOLS Cotets:. Symbols. Fuctios 3. Set Nottios 4. Vectors d Mtrices 5. Costts d Numbers ii Mthemticl Nottios d Symbols SYMBOLS = {,,3,... } set

More information

Cape Cod Community College

Cape Cod Community College Cpe Cod Couity College Deprtetl Syllus Prepred y the Deprtet of Mthetics Dte of Deprtetl Approvl: Noveer, 006 Dte pproved y Curriculu d Progrs: Jury 9, 007 Effective: Fll 007 1. Course Nuer: MAT110 Course

More information

Indices and Logarithms

Indices and Logarithms the Further Mthemtics etwork www.fmetwork.org.uk V 7 SUMMARY SHEET AS Core Idices d Logrithms The mi ides re AQA Ed MEI OCR Surds C C C C Lws of idices C C C C Zero, egtive d frctiol idices C C C C Bsic

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

EXPONENTS AND LOGARITHMS

EXPONENTS AND LOGARITHMS 978--07-6- Mthemtis Stdrd Level for IB Diplom Eerpt EXPONENTS AND LOGARITHMS WHAT YOU NEED TO KNOW The rules of epoets: m = m+ m = m ( m ) = m m m = = () = The reltioship etwee epoets d rithms: = g where

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

Project 3: Using Identities to Rewrite Expressions

Project 3: Using Identities to Rewrite Expressions MAT 5 Projet 3: Usig Idetities to Rewrite Expressios Wldis I lger, equtios tht desrie properties or ptters re ofte lled idetities. Idetities desrie expressio e repled with equl or equivlet expressio tht

More information

Synopsis Grade 12 Math Part II

Synopsis Grade 12 Math Part II Syopsis Grde 1 Mth Prt II Chpter 7: Itegrls d Itegrtio is the iverse process of differetitio. If f ( ) g ( ), the we c write g( ) = f () + C. This is clled the geerl or the idefiite itegrl d C is clled

More information

For students entering Honors Precalculus Summer Packet

For students entering Honors Precalculus Summer Packet Hoors PreClculus Summer Review For studets eterig Hoors Preclculus Summer Pcket The prolems i this pcket re desiged to help ou review topics from previous mthemtics courses tht re importt to our success

More information

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III.

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III. Assessmet Ceter Elemetry Alger Study Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d otet of questios o the Aupler Elemetry Alger test. Reviewig these smples will give

More information

Sharjah Institute of Technology

Sharjah Institute of Technology For commets, correctios, etc Plese cotct Ahf Abbs: hf@mthrds.com Shrh Istitute of Techolog echicl Egieerig Yer Thermofluids sheet ALGERA Lws of Idices:. m m + m m. ( ).. 4. m m 5. Defiitio of logrithm:

More information

G8-11 Congruence Rules

G8-11 Congruence Rules G8-11 ogruee Rules If two polgos re ogruet, ou ple the oe o top of the other so tht the th etl. The verties tht th re lled orrespodig verties. The gles tht th re lled orrespodig gles. The sides tht th

More information

Accuplacer Elementary Algebra Study Guide

Accuplacer Elementary Algebra Study Guide Testig Ceter Studet Suess Ceter Aupler Elemetry Alger Study Guide The followig smple questios re similr to the formt d otet of questios o the Aupler Elemetry Alger test. Reviewig these smples will give

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

The Real Numbers. RATIONAL FIELD Take rationals as given. is a field with addition and multiplication defined. BOUNDS. Addition: xy= yx, xy z=x yz,

The Real Numbers. RATIONAL FIELD Take rationals as given. is a field with addition and multiplication defined. BOUNDS. Addition: xy= yx, xy z=x yz, MAT337H Itrodutio to Rel Alysis The Rel Numers RATIONAL FIELD Tke rtiols s give { m, m, R, } is field with dditio d multiplitio defied Additio: y= y, y z= yz, There eists Q suh tht = For eh Q there eists

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2 MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS 6.9: Let f(x) { x 2 if x Q [, b], 0 if x (R \ Q) [, b], where > 0. Prove tht b. Solutio. Let P { x 0 < x 1 < < x b} be regulr prtitio

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAdMthsTutor.com PhysicsAdMthsTutor.com Jue 009 4. Give tht y rsih ( ), > 0, () fid d y d, givig your swer s simplified frctio. () Leve lk () Hece, or otherwise, fid 4 d, 4 [ ( )] givig your swer

More information

a f(x)dx is divergent.

a f(x)dx is divergent. Mth 250 Exm 2 review. Thursdy Mrh 5. Brig TI 30 lultor but NO NOTES. Emphsis o setios 5.5, 6., 6.2, 6.3, 3.7, 6.6, 8., 8.2, 8.3, prt of 8.4; HW- 2; Q-. Kow for trig futios tht 0.707 2/2 d 0.866 3/2. From

More information

The Reimann Integral is a formal limit definition of a definite integral

The Reimann Integral is a formal limit definition of a definite integral MATH 136 The Reim Itegrl The Reim Itegrl is forml limit defiitio of defiite itegrl cotiuous fuctio f. The costructio is s follows: f ( x) dx for Reim Itegrl: Prtitio [, ] ito suitervls ech hvig the equl

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Lecture 17

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Lecture 17 CS 70 Discrete Mthemtics d Proility Theory Sprig 206 Ro d Wlrd Lecture 7 Vrice We hve see i the previous ote tht if we toss coi times with is p, the the expected umer of heds is p. Wht this mes is tht

More information

Elementary Linear Algebra

Elementary Linear Algebra Elemetry Lier Alger Ato & Rorres, th Editio Lecture Set Chpter : Systems of Lier Equtios & Mtrices Chpter Cotets Itroductio to System of Lier Equtios Gussi Elimitio Mtrices d Mtri Opertios Iverses; Rules

More information

Chapter 2. LOGARITHMS

Chapter 2. LOGARITHMS Chpter. LOGARITHMS Dte: - 009 A. INTRODUCTION At the lst hpter, you hve studied bout Idies d Surds. Now you re omig to Logrithms. Logrithm is ivers of idies form. So Logrithms, Idies, d Surds hve strog

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

ALGEBRA II CHAPTER 7 NOTES. Name

ALGEBRA II CHAPTER 7 NOTES. Name ALGEBRA II CHAPTER 7 NOTES Ne Algebr II 7. th Roots d Rtiol Expoets Tody I evlutig th roots of rel ubers usig both rdicl d rtiol expoet ottio. I successful tody whe I c evlute th roots. It is iportt for

More information

x x x a b) Math 233B Intermediate Algebra Fall 2012 Final Exam Study Guide

x x x a b) Math 233B Intermediate Algebra Fall 2012 Final Exam Study Guide Mth B Iteredite Alger Fll 0 Fil E Stud Guide The fil e is o Thursd, Deceer th fro :00p :00p. You re llowed scietific clcultor d 4" 6" ide crd for otes. O our ide crd e sure to write foruls ou eeded for

More information

Important Facts You Need To Know/Review:

Important Facts You Need To Know/Review: Importt Fcts You Need To Kow/Review: Clculus: If fuctio is cotiuous o itervl I, the its grph is coected o I If f is cotiuous, d lim g Emple: lim eists, the lim lim f g f g d lim cos cos lim 3 si lim, t

More information

Objective Mathematics

Objective Mathematics . o o o o {cos 4 cos 9 si cos 65 } si 7º () cos 6º si 8º. If x R oe of these, the mximum vlue of the expressio si x si x.cos x c cos x ( c) is : () c c c c c c. If ( cos )cos cos ; 0, the vlue of 4. The

More information

APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES

APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES Scietific Reserch of the Istitute of Mthetics d Coputer Sciece 3() 0, 5-0 APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES Jolt Borows, Le Łcińs, Jowit Rychlews Istitute of Mthetics,

More information

334 MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION

334 MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION TEST SAMPLE TEST III - P APER Questio Distributio INSTRUCTIONS:. Attempt ALL questios.. Uless otherwise specified, ll worig must be

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

Notes 17 Sturm-Liouville Theory

Notes 17 Sturm-Liouville Theory ECE 638 Fll 017 Dvid R. Jckso Notes 17 Sturm-Liouville Theory Notes re from D. R. Wilto, Dept. of ECE 1 Secod-Order Lier Differetil Equtios (SOLDE) A SOLDE hs the form d y dy 0 1 p ( x) + p ( x) + p (

More information

Mathematical Induction (selected questions)

Mathematical Induction (selected questions) Mtheticl Iductio (selected questios). () Let P() e the propositio : For P(), L.H.S. R.H.S., P() is true. Assue P() is true for soe turl uer, tht is, () For P( ),, y () By the Priciple of Mtheticl Iductio,

More information

Course 121, , Test III (JF Hilary Term)

Course 121, , Test III (JF Hilary Term) Course 2, 989 9, Test III (JF Hilry Term) Fridy 2d Februry 99, 3. 4.3pm Aswer y THREE questios. Let f: R R d g: R R be differetible fuctios o R. Stte the Product Rule d the Quotiet Rule for differetitig

More information

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4) Liford 1 Kyle Liford Mth 211 Hoors Project Theorems to Alyze: Theorem 2.4 The Limit of Fuctio Ivolvig Rdicl (A4) Theorem 2.8 The Squeeze Theorem (A5) Theorem 2.9 The Limit of Si(x)/x = 1 (p. 85) Theorem

More information

(1) Functions A relationship between two variables that assigns to each element in the domain exactly one element in the range.

(1) Functions A relationship between two variables that assigns to each element in the domain exactly one element in the range. -. ALGEBRA () Fuctios A reltioship etwee two vriles tht ssigs to ech elemet i the domi ectly oe elemet i the rge. () Fctorig Aother ottio for fuctio of is f e.g. Domi: The domi of fuctio Rge: The rge of

More information

+2 MATH COME BOOK CREATIVE ONE MARK QUESTIONS

+2 MATH COME BOOK CREATIVE ONE MARK QUESTIONS + MATH COME BOOK CREATIVE ONE MARK QUESTIONS COME BOOK CREATIVE ONE MARK QUESTIONS 1. The rk of the mtrix 1 CHAPTER I ( MATRICES AND DETERMINANTS) ) 1 ) ) 8 1. The rk of the mtrix 1 ) 9 ) ) 1. If A d B

More information

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex: Ifiite Series Sequeces: A sequece i defied s fuctio whose domi is the set of positive itegers. Usully it s esier to deote sequece i subscript form rther th fuctio ottio.,, 3, re the terms of the sequece

More information

Fourier Series and Applications

Fourier Series and Applications 9/7/9 Fourier Series d Applictios Fuctios epsio is doe to uderstd the better i powers o etc. My iportt probles ivolvig prtil dieretil equtios c be solved provided give uctio c be epressed s iiite su o

More information

BITSAT MATHEMATICS PAPER. If log 0.0( ) log 0.( ) the elogs to the itervl (, ] () (, ] [,+ ). The poit of itersectio of the lie joiig the poits i j k d i+ j+ k with the ple through the poits i+ j k, i

More information

Waves in dielectric media. Waveguiding: χ (r ) Wave equation in linear non-dispersive homogenous and isotropic media

Waves in dielectric media. Waveguiding: χ (r ) Wave equation in linear non-dispersive homogenous and isotropic media Wves i dieletri medi d wveguides Setio 5. I this leture, we will osider the properties of wves whose propgtio is govered by both the diffrtio d ofiemet proesses. The wveguides re result of the ble betwee

More information

( ) dx ; f ( x ) is height and Δx is

( ) dx ; f ( x ) is height and Δx is Mth : 6.3 Defiite Itegrls from Riem Sums We just sw tht the exct re ouded y cotiuous fuctio f d the x xis o the itervl x, ws give s A = lim A exct RAM, where is the umer of rectgles i the Rectgulr Approximtio

More information

PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

More information

Chapter Real Numbers

Chapter Real Numbers Chpter. - Rel Numbers Itegers: coutig umbers, zero, d the egtive of the coutig umbers. ex: {,-3, -, -,,,, 3, } Rtiol Numbers: quotiets of two itegers with ozero deomitor; termitig or repetig decimls. ex:

More information

MATHEMATICS (860) CLASS XI

MATHEMATICS (860) CLASS XI MATHEMATICS (860) Aims:. To ele didtes to quire kowledge d to develop uderstdig of the terms, oepts, symols, defiitios, priiples, proesses d formule of Mthemtis t the Seior Seodry stge.. To develop the

More information

Math 152 Intermediate Algebra

Math 152 Intermediate Algebra Mth 15 Iteredite Alger Stud Guide for the Fil E You use 46 otecrd (oth sides) d scietific clcultor. You re epected to kow (or hve writte o our ote crd) foruls ou eed. Thik out rules d procedures ou eeded

More information

Mathematics Last Minutes Review

Mathematics Last Minutes Review Mthemtics Lst Miutes Review 60606 Form 5 Fil Emitio Dte: 6 Jue 06 (Thursdy) Time: 09:00-:5 (Pper ) :45-3:00 (Pper ) Veue: School Hll Chpters i Form 5 Chpter : Bsic Properties of Circles Chpter : Tgets

More information

x is called the real part, labeled by Re z and y is called the imaginary part, labeled by Im z

x is called the real part, labeled by Re z and y is called the imaginary part, labeled by Im z CORPORATE INSTITUTE OF SCIENCE AND TECHNOLOGY, BHOPAL IMPORTANT FORMULA ( Egg. Mthemtis III (BE-4) ) Fulty Nme : Akhilesh Ji Comple Alysis: A omple umber z = (,y) = + iy Where i = (-) /. We will see tht

More information

Multiplicative Versions of Infinitesimal Calculus

Multiplicative Versions of Infinitesimal Calculus Multiplictive Versios o Iiitesiml Clculus Wht hppes whe you replce the summtio o stdrd itegrl clculus with multiplictio? Compre the revited deiitio o stdrd itegrl D å ( ) lim ( ) D i With ( ) lim ( ) D

More information

D1.7 Two independent Events: Events A and B are independent if and only if P[AB] = P[A]P[B]. When events A and B have nonzero probabilities, the

D1.7 Two independent Events: Events A and B are independent if and only if P[AB] = P[A]P[B]. When events A and B have nonzero probabilities, the Theores d Defiitios T De Morg s lw reltes ll three bsic opertios: (A B) = A B D Outcoe: A outcoe of experiet is y possible observtio of tht experiet D Sple spce: The sple spce of experiet is the fiest-gri,

More information

Name of the Student:

Name of the Student: Egieerig Mthemtics 5 NAME OF THE SUBJECT : Mthemtics I SUBJECT CODE : MA65 MATERIAL NAME : Additiol Prolems MATERIAL CODE : HGAUM REGULATION : R UPDATED ON : M-Jue 5 (Sc the ove QR code for the direct

More information

Math 153: Lecture Notes For Chapter 1

Math 153: Lecture Notes For Chapter 1 Mth : Lecture Notes For Chpter Sectio.: Rel Nubers Additio d subtrctios : Se Sigs: Add Eples: = - - = - Diff. Sigs: Subtrct d put the sig of the uber with lrger bsolute vlue Eples: - = - = - Multiplictio

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

Thomas J. Osler Mathematics Department Rowan University Glassboro NJ Introduction

Thomas J. Osler Mathematics Department Rowan University Glassboro NJ Introduction Ot 0 006 Euler s little summtio formul d speil vlues of te zet futio Toms J Osler temtis Deprtmet Row Uiversity Glssboro J 0608 Osler@rowedu Itrodutio I tis ote we preset elemetry metod of determiig vlues

More information

Chapter 5. Integration

Chapter 5. Integration Chpter 5 Itegrtio Itrodutio The term "itegrtio" hs severl meigs It is usully met s the reverse proess to differetitio, ie fidig ti-derivtive to futio A ti-derivtive of futio f is futio F suh tht its derivtive

More information

Surds, Indices, and Logarithms Radical

Surds, Indices, and Logarithms Radical MAT 6 Surds, Idices, d Logrithms Rdicl Defiitio of the Rdicl For ll rel, y > 0, d ll itegers > 0, y if d oly if y where is the ide is the rdicl is the rdicd. Surds A umber which c be epressed s frctio

More information

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a . Cosider two fuctios f () d g () defied o itervl I cotiig. f () is cotiuous t d g() is discotiuous t. Which of the followig is true bout fuctios f g d f g, the sum d the product of f d g, respectively?

More information

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B. Review Sheet: Chpter Cotet: Essetil Clculus, Erly Trscedetls, Jmes Stewrt, 007 Chpter : Fuctios d Limits Cocepts, Defiitios, Lws, Theorems: A fuctio, f, is rule tht ssigs to ech elemet i set A ectly oe

More information

Exponential and Logarithmic Functions (4.1, 4.2, 4.4, 4.6)

Exponential and Logarithmic Functions (4.1, 4.2, 4.4, 4.6) WQ017 MAT16B Lecture : Mrch 8, 017 Aoucemets W -4p Wellm 115-4p Wellm 115 Q4 ue F T 3/1 10:30-1:30 FINAL Expoetil Logrithmic Fuctios (4.1, 4., 4.4, 4.6) Properties of Expoets Let b be positive rel umbers.

More information

Interpolation. 1. What is interpolation?

Interpolation. 1. What is interpolation? Iterpoltio. Wht is iterpoltio? A uctio is ote give ol t discrete poits such s:.... How does oe id the vlue o t other vlue o? Well cotiuous uctio m e used to represet the + dt vlues with pssig through the

More information

Section 2.2. Matrix Multiplication

Section 2.2. Matrix Multiplication Mtri Alger Mtri Multiplitio Setio.. Mtri Multiplitio Mtri multiplitio is little more omplite th mtri itio or slr multiplitio. If A is the prout A of A is the ompute s follow: m mtri, the is k mtri, 9 m

More information

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I EXERCISE I t Q. d Q. 6 6 cos si Q. Q.6 d d Q. d Q. Itegrte cos t d by the substitutio z = + e d e Q.7 cos. l cos si d d Q. cos si si si si b cos Q.9 d Q. si b cos Q. si( ) si( ) d ( ) Q. d cot d d Q. (si

More information

M098 Carson Elementary and Intermediate Algebra 3e Section 10.2

M098 Carson Elementary and Intermediate Algebra 3e Section 10.2 M09 Crso Eleetry d Iteredite Alger e Sectio 0. Ojectives. Evlute rtiol epoets.. Write rdicls s epressios rised to rtiol epoets.. Siplify epressios with rtiol uer epoets usig the rules of epoets.. Use rtiol

More information

National Quali cations SPECIMEN ONLY

National Quali cations SPECIMEN ONLY AH Ntiol Quli ctios SPECIMEN ONLY SQ/AH/0 Mthemtics Dte Not pplicble Durtio hours Totl mrks 00 Attempt ALL questios. You my use clcultor. Full credit will be give oly to solutios which coti pproprite workig.

More information

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning Hdout # Title: FAE Course: Eco 8/ Sprig/5 Istructor: Dr I-Mig Chiu Itroductio to Mtrix: Mtrix opertios & Geometric meig Mtrix: rectgulr rry of umers eclosed i pretheses or squre rckets It is covetiolly

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information