Recall: ECC Approach: Redundancy. General Idea: Code Vector Space. Some Code Types Linear Codes: CS252 Graduate Computer Architecture Lecture 24

Size: px
Start display at page:

Download "Recall: ECC Approach: Redundancy. General Idea: Code Vector Space. Some Code Types Linear Codes: CS252 Graduate Computer Architecture Lecture 24"

Transcription

1 Graduate omputer Archtecture Lecture Error orrecto odes Aprl rd, Joh Kubatowcz Electrcal Egeerg ad omputer ceces Uversty of alfora, Bereley Recall: E Approach: Redudacy Approach: Redudacy Add extra formato so that we ca recover from errors a we do better tha just create complete copes? Bloc odes: Data oded blocs data bts coded to ecoded bts Measure of overhead: Rate of ode: K/N Ofte called a (,) code osder data as vectors GF() [.e. vectors of bts ] ode pace s set of all vectors, Data space set of vectors Ecodg fucto: =f(d) Decodg fucto: d=f( ) Not all possble code vectors,, are vald! // cs-, Lecture Geeral Idea: ode Vector pace ode pace ode Dstace (Hammg Dstace) =f(v ) v Not every vector the code space s vald Hammg Dstace (d): Mmum umber of bt flps to tur oe code word to aother Number of errors that we ca detect: (d-) Number of errors that we ca fx: ½(d-) // cs-, Lecture ome ode Types Lear odes: G d H ode s geerated by G ad ull-space of H (,) code: Data space, ode space (,,d) code: specfy dstace d as well Radom code: Need to both detfy errors ad correct them Dstace d correct ½(d-) errors Erasure code: a correct errors f we ow whch bts/symbols are bad Example: RAID codes, where symbols are blocs of ds Dstace d correct (d-) errors Error detecto code: Dstace d detect (d-) errors Hammg odes d = olums ozero, Dstct d = olums ozero, Dstct, Odd-weght Bary Golay code: based o quadratc resdues mod Bary code: [,, 8] ad [,, ]. Ofte used space-based schemes, ca correct errors // cs-, Lecture

2 Hammg Boud, symbols GF() osder a (,) code wth dstace d How do,, ad d relate to oe aother? Frst questo: How bg are spheres? For dstace d, spheres are of radus ½ (d-),».e. all error wth weght ½ (d-) or less must ft wth sphere Thus, sze of sphere s at least: + Num(-bt err) + Num(-bt err) + + Num( ½(d-) bt err) ze ( d ) e e Hammg boud reflects b-pacg of spheres: eed of these spheres wth code space ( d ) e e ( ), d // cs-, Lecture How to Geerate code words? osder a lear code. Need a Geerator Matrx. Let v be the data value ( bts), be resultg code ( bts): Are there uque code values? Oly f the colums of G are learly depedet! Of course, eed some way of decodg as well. v G v f d ' G must be a matrx Is ths lear??? Why or why ot? A code s systematc f the data s drectly ecoded wth the code words. Meas Geerator has form: I a always tur o-systematc G code to a systematc oe (row ops) P But What s dstace of code? Not Obvous! // cs-, Lecture Implctly Defg odes by hec Matrx osder a party-chec matrx H ([-]) Defe vald code words as those that gve = (ull space of H) H ze of ull space? (ull-ra H)= f (-) learly depedet colums H uppose we trasmt code word wth error: Model ths as vector E whch flps selected bts of to get R (receved): R E osder what happes whe we multply by H: H R H ( E) H E What s dstace of code? ode has dstace d f o sum of d- or less colums yelds I.e. No error vectors, E, of weght < d have zero sydromes o ode desg s desgg H matrx // cs-, Lecture How to relate G ad H (Bary odes) Defg H maes t easy to uderstad dstace of code, but hard to geerate code (H defes code mplctly!) However, let H be of followg form: P s (-), I s (-)(-) H P I Result: H s (-) The, G ca be of followg form (maxmal code sze): I G P P s (-), I s Result: G s Notce: G geerates values ull-space of H ad has depedet colums so geerates uque values: H I G v P I v P // cs-, Lecture 8

3 // 9 cs-, Lecture mple example (Party, d=) Party code (8-bts): Note: omplexty of logc depeds o umber of s row! H G v v v v v v v v + c 8 + s 8 // cs-, Lecture mple example: Repetto (votg, d=) Repetto code (-bt): Postves: smple Negatves: Expesve: oly % of code word s data Not paced Hammg-boud sese (oly D=). ould get much more effcet codg by ecodg multple bts at a tme H G Error v // cs-, Lecture Bary Hammg code meets Hammg boud Recall boud for d=: o, rearragg: Thus, for: c= chec bts, (Repetto code) c= chec bts, c= chec bts,, use =8? c= chec bts,, use =? c= chec bts,, use =? c= chec bts,, use =? H matrx cossts of all uque, o-zero vectors There are c - vectors, c used for party, so remag c -c- Example: Hammg ode (d=) H G ) ( c c c ), ( // cs-, Lecture Example, d= code (E-DED) Desg H wth: All colums o-zero, odd-weght, dstct» Note that odd-weght refers to Hammg Weght,.e. umber of zeros Why does ths geerate d=? Ay sgle bt error wll geerate a dstct, o-zero value Ay double error wll geerate a dstct, o-zero value» Why? Add together two dstct colums, get dstct result Ay trple error wll geerate a o-zero value» Why? Add together three odd-weght values, get a odd-weght value o: eed four errors before dstgushable from code word Because d=: a correct error (gle Error orrecto,.e. E) a detect errors (Double Error Detecto,.e. DED) Example: Note: log sze of ullspace wll be (colums ra) =, so:» Ra =, sce rows depedet, cols dpt» learly, 8 bts code word» Thus: (8,) code

4 Twees: No reaso caot mae code shorter tha requred uppose -=8 bts of party. What s max code sze () for d=? Maxmum umber of uque, odd-weght colums: = 8 o, = 8. But, the = ( ) =. Werd! Just throw out colums of hgh weght ad mae (, ) code! rcut optmzato: f throwg out colum vectors, pc oes of hghest weght (# bts=) to smplfy crcut But shorteed codes le ths mght have d > some specal drectos Example: Kaeda paper, catches falures of groups of bts Good for catchg chp falures whe DRAM has groups of bts What about EVENODD code? a be used to hadle two erasures What about two dead DRAMs? Yes, f you ca really ow they are dead // cs-, Lecture Admstrva Mdterm Results: Almost doe. Really! Oe last problem to grade DIVA: A Relable ubstrate for Deep ubmcro Mcroarchtecture Desg, Author: Todd M. Aust Use of hecer stage placed after prmary computatoal stage Geeral addto of dyamc checg to OOO ppele Traset Fault Detecto va multaeous Multthreadg, Authors: teve K. Rehardt ad ubhedu. Muherjee Pared threads duplcatg computato to catch traset errors // cs-, Lecture How to correct errors? osder a party-chec matrx H ([-]) ompute the followg sydrome gve code elemet : H H E uppose that two correctable error vectors E ad E produce same sydrome: H E E H E E H But, sce both E ad E have (d-)/ bts set, E + E d- bts set so ths cocluso caot be true! o, sydrome s uque dcator of correctable error vectors E has d or more bts set E // cs-, Lecture // cs-, Lecture

5 Galos Feld Defto: Feld: a complete group of elemets wth: Addto, subtracto, multplcato, dvso ompletely closed uder these operatos Every elemet has a addtve verse Every elemet except zero has a multplcatve verse Examples: Real umbers Bary, called GF() Galos Feld wth base» Values,. Addto/subtracto: use xor. Multplcatve verse of s Prme feld, GF(p) Galos Feld wth base p» Values p-» Addto/subtracto/multplcato: modulo p» Multplcatve Iverse: every value except has verse» Example: GF(): mod, mod, mod Geeral Galos Feld: GF(p m ) base p (prme!), dmeso m» Values are vectors of elemets of GF(p) of dmeso m» Add/subtract: vector addto/subtracto» Multply/dvde: more complex» Just le real umbers but fte!» ommo for computer algorthms: GF( m ) // cs-, Lecture pecfc Example: Galos Felds GF( ) osder polyomals whose coeffcets come from GF(). Each term of the form x s ether preset or abset. Examples:,, x, x, ad x + x + = x + x + x + x + x + x + x + x Wth addto ad multplcato these form a rg (ot qute a feld stll mssg dvso): Add : XOR each elemet dvdually wth o carry: x + x + + x + + x + + x + x x + x + Multply : multplyg by x s le shftg to the left. x + x + x + x + x + x + x + x x + // cs-, Lecture 8 o what about dvso (mod) x + x x x + x + X + = x + x wth remader = x + x wth remader X + x + x + x + x + x + x Remader // cs-, Lecture 9 x + x x + x x + x x + x + x + x + Producg Galos Felds These polyomals form a Galos (fte) feld f we tae the results of ths multplcato modulo a prme polyomal p(x) A prme polyomal caot be wrtte as product of two o-trval polyomals q(x)r(x) For ay degree, there exsts at least oe prme polyomal. Wth t we ca form GF( ) Every Galos feld has a prmtve elemet,, such that all o-zero elemets of the feld ca be expressed as a power of erta choces of p(x) mae the smple polyomal x the prmtve elemet. These polyomals are called prmtve For example, x + x + s prmtve. o = x s a prmtve elemet ad successve powers of wll geerate all o-zero elemets of GF(). Example o ext slde. // cs-, Lecture

6 Galos Felds wth prmtve x + x + = = x = x = x = x + = x + x = x + x = x + x + 8 = x + 9 = x + x = x + x + = x + x + x = x + x + x + = x + x + = x + = Prmtve elemet α = x GF( ) α = x mod x + x + = x xor x + x + = x + I geeral fdg prmtve polyomals s dffcult. Most people just loo them up a table, such as: // cs-, Lecture Prmtve Polyomals x + x + x + x + x + x + x + x + x + x + x + x + x 8 + x + x + x + x 9 + x + x + x + x + x + x + x + x + x + x + x + x + x + x + x + x + x + x + x + x + x + x + x + x + x + x 8 + x + x 9 + x + x + x+ x + x + x + x + Hardware shft left x + x + x + x + x + x + x + x + x + x + x + x + x + x + x + x + x + x + x 8 + x + x 9 + x + x + x + x + x + x + x + x + x + x + x + Galos Feld Multplcato by x Tag the result mod p(x) XOR-g wth the coeffcets of p(x) whe the most sgfcat coeffcet s. Obtag all - o-zero elemets by evaluatg x for =,, - hftg ad XOR-g - tmes. // cs-, Lecture Reed-olomo odes Galos feld codes: code words cosst of symbols Rather tha bts Reed-olomo codes: Based o polyomals GF( ) (I.e. -bt symbols) Data as coeffcets, code space as values of polyomal: P(x)=a +a x + a - x - oded: P(),P(),P().,P(-) a recover polyomal as log as get ay of Propertes: ca choose umber of chec symbols Reed-olomo codes are maxmum dstace separable (MD) a add d symbols for dstace d+ code Ofte used erasure code mode: as log as o more tha - coded symbols erased, ca recover data de ote: Multplcato by costat GF( ) ca be represeted by matrx: ax Decompose uow vector to bts: x=x +x x - Each colum s result of multplyg a by // cs-, Lecture Reed-olomo odes (co t) Reed-solomo codes (No-systematc): Data as coeffcets, code space as values of polyomal: P(x)=a +a x + a x oded: P(),P(),P().,P() alled Vadermode Matrx: maxmum ra Dfferet represetato (Ths H ad G ot related) lear that all combatos of two or less colums depedet d= Very easy to pc whatever d you happe to wat: add more rows Fast, ystematc verso of Reed-olomo: auchy Reed-olomo, others G ' H // cs-, Lecture a a a a a

7 Asde: Why erasure codg? Hgh Durablty/overhead rato! tatstcal Advatage of Fragmets Tme to oalesce vs. Fragmets Requested (TI) 8 Fracto Blocs Lost Per Year (FBLPY) Latecy 8 Explot law of large umbers for durablty! moth repar, FBLPY: Replcato:. Fragmetato: - // cs-, Lecture Objects Requested Latecy ad stadard devato reduced: Memory-less latecy model Rate ½ code wth total fragmets // cs-, Lecture ocluso E: add redudacy to correct for errors (,,d) code bts, data bts, dstace d Lear codes: code vectors computed by lear trasformato Erasure code: after detfyg erasures, ca correct Reed-olomo codes Based o GF(p ), ofte GF( ) Easy to get dstace d+ code wth d extra symbols Ofte used erasure mode // cs-, Lecture

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

Spring Ammar Abu-Hudrouss Islamic University Gaza

Spring Ammar Abu-Hudrouss Islamic University Gaza ١ ١ Chapter Chapter 4 Cyl Blo Cyl Blo Codes Codes Ammar Abu-Hudrouss Islam Uversty Gaza Spr 9 Slde ٢ Chael Cod Theory Cyl Blo Codes A yl ode s haraterzed as a lear blo ode B( d wth the addtoal property

More information

PTAS for Bin-Packing

PTAS for Bin-Packing CS 663: Patter Matchg Algorthms Scrbe: Che Jag /9/00. Itroducto PTAS for B-Packg The B-Packg problem s NP-hard. If we use approxmato algorthms, the B-Packg problem could be solved polyomal tme. For example,

More information

Introduction to Matrices and Matrix Approach to Simple Linear Regression

Introduction to Matrices and Matrix Approach to Simple Linear Regression Itroducto to Matrces ad Matrx Approach to Smple Lear Regresso Matrces Defto: A matrx s a rectagular array of umbers or symbolc elemets I may applcatos, the rows of a matrx wll represet dvduals cases (people,

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b CS 70 Dscrete Mathematcs ad Probablty Theory Fall 206 Sesha ad Walrad DIS 0b. Wll I Get My Package? Seaky delvery guy of some compay s out delverg packages to customers. Not oly does he had a radom package

More information

Transforms that are commonly used are separable

Transforms that are commonly used are separable Trasforms s Trasforms that are commoly used are separable Eamples: Two-dmesoal DFT DCT DST adamard We ca the use -D trasforms computg the D separable trasforms: Take -D trasform of the rows > rows ( )

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

Newton s Power Flow algorithm

Newton s Power Flow algorithm Power Egeerg - Egll Beedt Hresso ewto s Power Flow algorthm Power Egeerg - Egll Beedt Hresso The ewto s Method of Power Flow 2 Calculatos. For the referece bus #, we set : V = p.u. ad δ = 0 For all other

More information

Algorithms Theory, Solution for Assignment 2

Algorithms Theory, Solution for Assignment 2 Juor-Prof. Dr. Robert Elsässer, Marco Muñz, Phllp Hedegger WS 2009/200 Algorthms Theory, Soluto for Assgmet 2 http://lak.formatk.u-freburg.de/lak_teachg/ws09_0/algo090.php Exercse 2. - Fast Fourer Trasform

More information

Investigating Cellular Automata

Investigating Cellular Automata Researcher: Taylor Dupuy Advsor: Aaro Wootto Semester: Fall 4 Ivestgatg Cellular Automata A Overvew of Cellular Automata: Cellular Automata are smple computer programs that geerate rows of black ad whte

More information

Lecture 9: Tolerant Testing

Lecture 9: Tolerant Testing Lecture 9: Tolerat Testg Dael Kae Scrbe: Sakeerth Rao Aprl 4, 07 Abstract I ths lecture we prove a quas lear lower boud o the umber of samples eeded to do tolerat testg for L dstace. Tolerat Testg We have

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

Algorithms Design & Analysis. Hash Tables

Algorithms Design & Analysis. Hash Tables Algorthms Desg & Aalyss Hash Tables Recap Lower boud Order statstcs 2 Today s topcs Drect-accessble table Hash tables Hash fuctos Uversal hashg Perfect Hashg Ope addressg 3 Symbol-table problem Symbol

More information

Taylor s Series and Interpolation. Interpolation & Curve-fitting. CIS Interpolation. Basic Scenario. Taylor Series interpolates at a specific

Taylor s Series and Interpolation. Interpolation & Curve-fitting. CIS Interpolation. Basic Scenario. Taylor Series interpolates at a specific CIS 54 - Iterpolato Roger Crawfs Basc Scearo We are able to prod some fucto, but do ot kow what t really s. Ths gves us a lst of data pots: [x,f ] f(x) f f + x x + August 2, 25 OSU/CIS 54 3 Taylor s Seres

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best Error Aalyss Preamble Wheever a measuremet s made, the result followg from that measuremet s always subject to ucertaty The ucertaty ca be reduced by makg several measuremets of the same quatty or by mprovg

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

Lecture Notes 2. The ability to manipulate matrices is critical in economics.

Lecture Notes 2. The ability to manipulate matrices is critical in economics. Lecture Notes. Revew of Matrces he ablt to mapulate matrces s crtcal ecoomcs.. Matr a rectagular arra of umbers, parameters, or varables placed rows ad colums. Matrces are assocated wth lear equatos. lemets

More information

1 Mixed Quantum State. 2 Density Matrix. CS Density Matrices, von Neumann Entropy 3/7/07 Spring 2007 Lecture 13. ψ = α x x. ρ = p i ψ i ψ i.

1 Mixed Quantum State. 2 Density Matrix. CS Density Matrices, von Neumann Entropy 3/7/07 Spring 2007 Lecture 13. ψ = α x x. ρ = p i ψ i ψ i. CS 94- Desty Matrces, vo Neuma Etropy 3/7/07 Sprg 007 Lecture 3 I ths lecture, we wll dscuss the bascs of quatum formato theory I partcular, we wll dscuss mxed quatum states, desty matrces, vo Neuma etropy

More information

L5 Polynomial / Spline Curves

L5 Polynomial / Spline Curves L5 Polyomal / Sple Curves Cotets Coc sectos Polyomal Curves Hermte Curves Bezer Curves B-Sples No-Uform Ratoal B-Sples (NURBS) Mapulato ad Represetato of Curves Types of Curve Equatos Implct: Descrbe a

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET

AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET Abstract. The Permaet versus Determat problem s the followg: Gve a matrx X of determates over a feld of characterstc dfferet from

More information

Chapter 14 Logistic Regression Models

Chapter 14 Logistic Regression Models Chapter 4 Logstc Regresso Models I the lear regresso model X β + ε, there are two types of varables explaatory varables X, X,, X k ad study varable y These varables ca be measured o a cotuous scale as

More information

The internal structure of natural numbers, one method for the definition of large prime numbers, and a factorization test

The internal structure of natural numbers, one method for the definition of large prime numbers, and a factorization test Fal verso The teral structure of atural umbers oe method for the defto of large prme umbers ad a factorzato test Emmaul Maousos APM Isttute for the Advacemet of Physcs ad Mathematcs 3 Poulou str. 53 Athes

More information

Multiple Regression. More than 2 variables! Grade on Final. Multiple Regression 11/21/2012. Exam 2 Grades. Exam 2 Re-grades

Multiple Regression. More than 2 variables! Grade on Final. Multiple Regression 11/21/2012. Exam 2 Grades. Exam 2 Re-grades STAT 101 Dr. Kar Lock Morga 11/20/12 Exam 2 Grades Multple Regresso SECTIONS 9.2, 10.1, 10.2 Multple explaatory varables (10.1) Parttog varablty R 2, ANOVA (9.2) Codtos resdual plot (10.2) Trasformatos

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Marquette Uverst Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Coprght 08 b Marquette Uverst Maxmum Lkelhood Estmato We have bee sag that ~

More information

ENGI 4421 Propagation of Error Page 8-01

ENGI 4421 Propagation of Error Page 8-01 ENGI 441 Propagato of Error Page 8-01 Propagato of Error [Navd Chapter 3; ot Devore] Ay realstc measuremet procedure cotas error. Ay calculatos based o that measuremet wll therefore also cota a error.

More information

Recall MLR 5 Homskedasticity error u has the same variance given any values of the explanatory variables Var(u x1,...,xk) = 2 or E(UU ) = 2 I

Recall MLR 5 Homskedasticity error u has the same variance given any values of the explanatory variables Var(u x1,...,xk) = 2 or E(UU ) = 2 I Chapter 8 Heterosedastcty Recall MLR 5 Homsedastcty error u has the same varace gve ay values of the eplaatory varables Varu,..., = or EUU = I Suppose other GM assumptos hold but have heterosedastcty.

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

4 Inner Product Spaces

4 Inner Product Spaces 11.MH1 LINEAR ALGEBRA Summary Notes 4 Ier Product Spaces Ier product s the abstracto to geeral vector spaces of the famlar dea of the scalar product of two vectors or 3. I what follows, keep these key

More information

This lecture and the next. Why Sorting? Sorting Algorithms so far. Why Sorting? (2) Selection Sort. Heap Sort. Heapsort

This lecture and the next. Why Sorting? Sorting Algorithms so far. Why Sorting? (2) Selection Sort. Heap Sort. Heapsort Ths lecture ad the ext Heapsort Heap data structure ad prorty queue ADT Qucksort a popular algorthm, very fast o average Why Sortg? Whe doubt, sort oe of the prcples of algorthm desg. Sortg used as a subroute

More information

Wu-Hausman Test: But if X and ε are independent, βˆ. ECON 324 Page 1

Wu-Hausman Test: But if X and ε are independent, βˆ. ECON 324 Page 1 Wu-Hausma Test: Detectg Falure of E( ε X ) Caot drectly test ths assumpto because lack ubased estmator of ε ad the OLS resduals wll be orthogoal to X, by costructo as ca be see from the momet codto X'

More information

MA 524 Homework 6 Solutions

MA 524 Homework 6 Solutions MA 524 Homework 6 Solutos. Sce S(, s the umber of ways to partto [] to k oempty blocks, ad c(, s the umber of ways to partto to k oempty blocks ad also the arrage each block to a cycle, we must have S(,

More information

GG313 GEOLOGICAL DATA ANALYSIS

GG313 GEOLOGICAL DATA ANALYSIS GG33 GEOLOGICAL DATA ANALYSIS 3 GG33 GEOLOGICAL DATA ANALYSIS LECTURE NOTES PAUL WESSEL SECTION 3 LINEAR (MATRIX ALGEBRA OVERVIEW OF MATRIX ALGEBRA (or All you ever wated to kow about Lear Algebra but

More information

Lecture 07: Poles and Zeros

Lecture 07: Poles and Zeros Lecture 07: Poles ad Zeros Defto of poles ad zeros The trasfer fucto provdes a bass for determg mportat system respose characterstcs wthout solvg the complete dfferetal equato. As defed, the trasfer fucto

More information

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II CEE49b Chapter - Free Vbrato of Mult-Degree-of-Freedom Systems - II We ca obta a approxmate soluto to the fudametal atural frequecy through a approxmate formula developed usg eergy prcples by Lord Raylegh

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek Partally Codtoal Radom Permutato Model 7- vestgato of Partally Codtoal RP Model wth Respose Error TRODUCTO Ed Staek We explore the predctor that wll result a smple radom sample wth respose error whe a

More information

Example: Multiple linear regression. Least squares regression. Repetition: Simple linear regression. Tron Anders Moger

Example: Multiple linear regression. Least squares regression. Repetition: Simple linear regression. Tron Anders Moger Example: Multple lear regresso 5000,00 4000,00 Tro Aders Moger 0.0.007 brthweght 3000,00 000,00 000,00 0,00 50,00 00,00 50,00 00,00 50,00 weght pouds Repetto: Smple lear regresso We defe a model Y = β0

More information

ENGI 3423 Simple Linear Regression Page 12-01

ENGI 3423 Simple Linear Regression Page 12-01 ENGI 343 mple Lear Regresso Page - mple Lear Regresso ometmes a expermet s set up where the expermeter has cotrol over the values of oe or more varables X ad measures the resultg values of aother varable

More information

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines It J Cotemp Math Sceces, Vol 5, 2010, o 19, 921-929 Solvg Costraed Flow-Shop Schedulg Problems wth Three Maches P Pada ad P Rajedra Departmet of Mathematcs, School of Advaced Sceces, VIT Uversty, Vellore-632

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 THE ROYAL STATISTICAL SOCIETY 06 EAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 The Socety s provdg these solutos to assst cadtes preparg for the examatos 07. The solutos are teded as learg ads ad should

More information

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements Aoucemets No-Parametrc Desty Estmato Techques HW assged Most of ths lecture was o the blacboard. These sldes cover the same materal as preseted DHS Bometrcs CSE 90-a Lecture 7 CSE90a Fall 06 CSE90a Fall

More information

A tighter lower bound on the circuit size of the hardest Boolean functions

A tighter lower bound on the circuit size of the hardest Boolean functions Electroc Colloquum o Computatoal Complexty, Report No. 86 2011) A tghter lower boud o the crcut sze of the hardest Boolea fuctos Masak Yamamoto Abstract I [IPL2005], Fradse ad Mlterse mproved bouds o the

More information

III-16 G. Brief Review of Grand Orthogonality Theorem and impact on Representations (Γ i ) l i = h n = number of irreducible representations.

III-16 G. Brief Review of Grand Orthogonality Theorem and impact on Representations (Γ i ) l i = h n = number of irreducible representations. III- G. Bref evew of Grad Orthogoalty Theorem ad mpact o epresetatos ( ) GOT: h [ () m ] [ () m ] δδ δmm ll GOT puts great restrcto o form of rreducble represetato also o umber: l h umber of rreducble

More information

2. Independence and Bernoulli Trials

2. Independence and Bernoulli Trials . Ideedece ad Beroull Trals Ideedece: Evets ad B are deedet f B B. - It s easy to show that, B deedet mles, B;, B are all deedet ars. For examle, ad so that B or B B B B B φ,.e., ad B are deedet evets.,

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

10.1 Approximation Algorithms

10.1 Approximation Algorithms 290 0. Approxmato Algorthms Let us exame a problem, where we are gve A groud set U wth m elemets A collecto of subsets of the groud set = {,, } s.t. t s a cover of U: = U The am s to fd a subcover, = U,

More information

NP!= P. By Liu Ran. Table of Contents. The P versus NP problem is a major unsolved problem in computer

NP!= P. By Liu Ran. Table of Contents. The P versus NP problem is a major unsolved problem in computer NP!= P By Lu Ra Table of Cotets. Itroduce 2. Prelmary theorem 3. Proof 4. Expla 5. Cocluso. Itroduce The P versus NP problem s a major usolved problem computer scece. Iformally, t asks whether a computer

More information

Lecture 2: Linear Least Squares Regression

Lecture 2: Linear Least Squares Regression Lecture : Lear Least Squares Regresso Dave Armstrog UW Mlwaukee February 8, 016 Is the Relatoshp Lear? lbrary(car) data(davs) d 150) Davs$weght[d]

More information

MA/CSSE 473 Day 27. Dynamic programming

MA/CSSE 473 Day 27. Dynamic programming MA/CSSE 473 Day 7 Dyamc Programmg Bomal Coeffcets Warshall's algorthm (Optmal BSTs) Studet questos? Dyamc programmg Used for problems wth recursve solutos ad overlappg subproblems Typcally, we save (memoze)

More information

Analysis of Variance with Weibull Data

Analysis of Variance with Weibull Data Aalyss of Varace wth Webull Data Lahaa Watthaacheewaul Abstract I statstcal data aalyss by aalyss of varace, the usual basc assumptos are that the model s addtve ad the errors are radomly, depedetly, ad

More information

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions Iteratoal Joural of Computatoal Egeerg Research Vol, 0 Issue, Estmato of Stress- Stregth Relablty model usg fte mxture of expoetal dstrbutos K.Sadhya, T.S.Umamaheswar Departmet of Mathematcs, Lal Bhadur

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

For combinatorial problems we might need to generate all permutations, combinations, or subsets of a set.

For combinatorial problems we might need to generate all permutations, combinations, or subsets of a set. Addtoal Decrease ad Coquer Algorthms For combatoral problems we mght eed to geerate all permutatos, combatos, or subsets of a set. Geeratg Permutatos If we have a set f elemets: { a 1, a 2, a 3, a } the

More information

1. BLAST (Karlin Altschul) Statistics

1. BLAST (Karlin Altschul) Statistics Parwse seuece algmet global ad local Multple seuece algmet Substtuto matrces Database searchg global local BLAST Seuece statstcs Evolutoary tree recostructo Gee Fdg Prote structure predcto RNA structure

More information

Multiple Choice Test. Chapter Adequacy of Models for Regression

Multiple Choice Test. Chapter Adequacy of Models for Regression Multple Choce Test Chapter 06.0 Adequac of Models for Regresso. For a lear regresso model to be cosdered adequate, the percetage of scaled resduals that eed to be the rage [-,] s greater tha or equal to

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Entropy ISSN by MDPI

Entropy ISSN by MDPI Etropy 2003, 5, 233-238 Etropy ISSN 1099-4300 2003 by MDPI www.mdp.org/etropy O the Measure Etropy of Addtve Cellular Automata Hasa Aı Arts ad Sceces Faculty, Departmet of Mathematcs, Harra Uversty; 63100,

More information

Lecture Notes Types of economic variables

Lecture Notes Types of economic variables Lecture Notes 3 1. Types of ecoomc varables () Cotuous varable takes o a cotuum the sample space, such as all pots o a le or all real umbers Example: GDP, Polluto cocetrato, etc. () Dscrete varables fte

More information

THE COMPLETE ENUMERATION OF FINITE GROUPS OF THE FORM R 2 i ={R i R j ) k -i=i

THE COMPLETE ENUMERATION OF FINITE GROUPS OF THE FORM R 2 i ={R i R j ) k -i=i ENUMERATON OF FNTE GROUPS OF THE FORM R ( 2 = (RfR^'u =1. 21 THE COMPLETE ENUMERATON OF FNTE GROUPS OF THE FORM R 2 ={R R j ) k -= H. S. M. COXETER*. ths paper, we vestgate the abstract group defed by

More information

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever. 9.4 Sequeces ad Seres Pre Calculus 9.4 SEQUENCES AND SERIES Learg Targets:. Wrte the terms of a explctly defed sequece.. Wrte the terms of a recursvely defed sequece. 3. Determe whether a sequece s arthmetc,

More information

Measures of Dispersion

Measures of Dispersion Chapter 8 Measures of Dsperso Defto of Measures of Dsperso (page 31) A measure of dsperso s a descrptve summary measure that helps us characterze the data set terms of how vared the observatos are from

More information

Rademacher Complexity. Examples

Rademacher Complexity. Examples Algorthmc Foudatos of Learg Lecture 3 Rademacher Complexty. Examples Lecturer: Patrck Rebesch Verso: October 16th 018 3.1 Itroducto I the last lecture we troduced the oto of Rademacher complexty ad showed

More information

Exercises for Square-Congruence Modulo n ver 11

Exercises for Square-Congruence Modulo n ver 11 Exercses for Square-Cogruece Modulo ver Let ad ab,.. Mark True or False. a. 3S 30 b. 3S 90 c. 3S 3 d. 3S 4 e. 4S f. 5S g. 0S 55 h. 8S 57. 9S 58 j. S 76 k. 6S 304 l. 47S 5347. Fd the equvalece classes duced

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

Neville Robbins Mathematics Department, San Francisco State University, San Francisco, CA (Submitted August 2002-Final Revision December 2002)

Neville Robbins Mathematics Department, San Francisco State University, San Francisco, CA (Submitted August 2002-Final Revision December 2002) Nevlle Robbs Mathematcs Departmet, Sa Fracsco State Uversty, Sa Fracsco, CA 943 (Submtted August -Fal Revso December ) INTRODUCTION The Lucas tragle s a fte tragular array of atural umbers that s a varat

More information

Application of Legendre Bernstein basis transformations to degree elevation and degree reduction

Application of Legendre Bernstein basis transformations to degree elevation and degree reduction Computer Aded Geometrc Desg 9 79 78 www.elsever.com/locate/cagd Applcato of Legedre Berste bass trasformatos to degree elevato ad degree reducto Byug-Gook Lee a Yubeom Park b Jaechl Yoo c a Dvso of Iteret

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

The Selection Problem - Variable Size Decrease/Conquer (Practice with algorithm analysis)

The Selection Problem - Variable Size Decrease/Conquer (Practice with algorithm analysis) We have covered: Selecto, Iserto, Mergesort, Bubblesort, Heapsort Next: Selecto the Qucksort The Selecto Problem - Varable Sze Decrease/Coquer (Practce wth algorthm aalyss) Cosder the problem of fdg the

More information

Maps on Triangular Matrix Algebras

Maps on Triangular Matrix Algebras Maps o ragular Matrx lgebras HMED RMZI SOUROUR Departmet of Mathematcs ad Statstcs Uversty of Vctora Vctora, BC V8W 3P4 CND sourour@mathuvcca bstract We surveys results about somorphsms, Jorda somorphsms,

More information

Simple Linear Regression

Simple Linear Regression Statstcal Methods I (EST 75) Page 139 Smple Lear Regresso Smple regresso applcatos are used to ft a model descrbg a lear relatoshp betwee two varables. The aspects of least squares regresso ad correlato

More information

Lattices. Mathematical background

Lattices. Mathematical background Lattces Mathematcal backgroud Lattces : -dmesoal Eucldea space. That s, { T x } x x = (,, ) :,. T T If x= ( x,, x), y = ( y,, y), the xy, = xy (er product of xad y) x = /2 xx, (Eucldea legth or orm of

More information

n -dimensional vectors follow naturally from the one

n -dimensional vectors follow naturally from the one B. Vectors ad sets B. Vectors Ecoomsts study ecoomc pheomea by buldg hghly stylzed models. Uderstadg ad makg use of almost all such models requres a hgh comfort level wth some key mathematcal sklls. I

More information

Mean is only appropriate for interval or ratio scales, not ordinal or nominal.

Mean is only appropriate for interval or ratio scales, not ordinal or nominal. Mea Same as ordary average Sum all the data values ad dvde by the sample sze. x = ( x + x +... + x Usg summato otato, we wrte ths as x = x = x = = ) x Mea s oly approprate for terval or rato scales, ot

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK Far East Joural of Appled Mathematcs Volume, Number, 2008, Pages Ths paper s avalable ole at http://www.pphm.com 2008 Pushpa Publshg House ANALYSIS ON THE NATURE OF THE ASI EQUATIONS IN SYNERGETI INTER-REPRESENTATION

More information

Third handout: On the Gini Index

Third handout: On the Gini Index Thrd hadout: O the dex Corrado, a tala statstca, proposed (, 9, 96) to measure absolute equalt va the mea dfferece whch s defed as ( / ) where refers to the total umber of dvduals socet. Assume that. The

More information

KLT Tracker. Alignment. 1. Detect Harris corners in the first frame. 2. For each Harris corner compute motion between consecutive frames

KLT Tracker. Alignment. 1. Detect Harris corners in the first frame. 2. For each Harris corner compute motion between consecutive frames KLT Tracker Tracker. Detect Harrs corers the frst frame 2. For each Harrs corer compute moto betwee cosecutve frames (Algmet). 3. Lk moto vectors successve frames to get a track 4. Itroduce ew Harrs pots

More information

D. VQ WITH 1ST-ORDER LOSSLESS CODING

D. VQ WITH 1ST-ORDER LOSSLESS CODING VARIABLE-RATE VQ (AKA VQ WITH ENTROPY CODING) Varable-Rate VQ = Quatzato + Lossless Varable-Legth Bary Codg A rage of optos -- from smple to complex A. Uform scalar quatzato wth varable-legth codg, oe

More information

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem CS86. Lecture 4: Dur s Proof of the PCP Theorem Scrbe: Thom Bohdaowcz Prevously, we have prove a weak verso of the PCP theorem: NP PCP 1,1/ (r = poly, q = O(1)). Wth ths result we have the desred costat

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

A Multiplier-Free Residue to Weighted Converter. for the Moduli Set {3 n 2, 3 n 1, 3 n }

A Multiplier-Free Residue to Weighted Converter. for the Moduli Set {3 n 2, 3 n 1, 3 n } Cotemporary Egeerg Sceces, Vol., 8, o., 7-8 A Multpler-Free Resdue to Weghted Coverter for the Modul Set {,, } Amr Sabbagh Molahosse ad Mehd Hossezadeh Islamc Azad Uversty, Scece ad Research Brach, Tehra,

More information

( q Modal Analysis. Eigenvectors = Mode Shapes? Eigenproblem (cont) = x x 2 u 2. u 1. x 1 (4.55) vector and M and K are matrices.

( q Modal Analysis. Eigenvectors = Mode Shapes? Eigenproblem (cont) = x x 2 u 2. u 1. x 1 (4.55) vector and M and K are matrices. 4.3 - Modal Aalyss Physcal coordates are ot always the easest to work Egevectors provde a coveet trasformato to modal coordates Modal coordates are lear combato of physcal coordates Say we have physcal

More information

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations Dervato of -Pot Block Method Formula for Solvg Frst Order Stff Ordary Dfferetal Equatos Kharul Hamd Kharul Auar, Kharl Iskadar Othma, Zara Bb Ibrahm Abstract Dervato of pot block method formula wth costat

More information

ε. Therefore, the estimate

ε. Therefore, the estimate Suggested Aswers, Problem Set 3 ECON 333 Da Hugerma. Ths s ot a very good dea. We kow from the secod FOC problem b) that ( ) SSE / = y x x = ( ) Whch ca be reduced to read y x x = ε x = ( ) The OLS model

More information

QR Factorization and Singular Value Decomposition COS 323

QR Factorization and Singular Value Decomposition COS 323 QR Factorzato ad Sgular Value Decomposto COS 33 Why Yet Aother Method? How do we solve least-squares wthout currg codto-squarg effect of ormal equatos (A T A A T b) whe A s sgular, fat, or otherwse poorly-specfed?

More information

Lecture 2 - What are component and system reliability and how it can be improved?

Lecture 2 - What are component and system reliability and how it can be improved? Lecture 2 - What are compoet ad system relablty ad how t ca be mproved? Relablty s a measure of the qualty of the product over the log ru. The cocept of relablty s a exteded tme perod over whch the expected

More information