FYSP106/K3 GEIGER & MÜLLER TUBE. 1 Introduction. 2 The equipment

Size: px
Start display at page:

Download "FYSP106/K3 GEIGER & MÜLLER TUBE. 1 Introduction. 2 The equipment"

Transcription

1 FYSP106/K3 GEIGER & MÜLLER TUE 1 Introduction In this measurement you get familiar with Geiger-Müller tube. The dead time, the range of beta-radiation in medium and the activity of the radiation source are measured. Literature related: - K. Krane, Introductory Nuclear Physics, Chapter 7.2 Gas-filled counters 2 The equipment The Geiger-Müller detector (Geiger counter) is a simple device without complex electronics. It is mostly used in activity measurements and meters used in controlling the radiation. From each detected event the tube supply the same pulse to the counter thus the only supplied information is the number of events. The energy of the radiation can t be measured. The tube itself is filled with noble gas (neon) and has the shape of a cylinder, a thin anode string in the middle. The cathode is on the outer shell (stainless steel). On the end of the cylinder there is a radiation permeable window (in this case beryllium, surface 2 density 2 mg cm ). The radiation (, or ) hitting the tube ionises (neon-) atoms. ecause of an electric field, the electrons are thrown towards the anode and ions the cathode. These charges ionise more atoms on their way and so an avalanche of ions and thus measurable current is born. Ions are neutralised when they get a missing electron back but remain in excited state. To absorbe this energy and to stop the avalanches there is also some halogen gas in the tube as a quenching gas. During the avalanches the electric field is weakened and the tube is incapable to measure new events. This time is called the dead time. In this Laboratory work a Geiger-Müller tube and counter / HV source made by Spectech is used.

2 The setup is shown in Fig. 1. ccording to the manufacturer, dead time of this setup is 200 μs. Figure 1: Photograph of the equipment. 3 The dead time When an impulse hits the detector, it is for a while incapable to measure new impulses. This time is called the dead time. ecause of this dead time, the measured number of pulses N is smaller than the real number N 0. The connection between these two can be written as N N 0 1 N, (1) t where t is the total time of the measurement. The implication of the dead time is emphasized when the number of events is big. This is the reason why the distance between the source and the detector must be big enough. 3.1 Measuring the dead time 204 In measuring the dead time, two pieces of crescent shaped Tl (thallium) sources are used. First the numbers of pulses are measured from both pieces separately N and N.

3 The the measurement is repeated, sources side by side N, when the result is smaller than the sum of previous measurements N N. This difference tells something about the magnitude of the dead time. The measurements of both pieces ( and ) obey the equation (1) N N t N t 0 1 N and N0 1 N, (2) and so does the simultaneous measurement of pieces N 0. (3) t N N 0 1 N y solving from these equations (homework) we obtain N N N N t N N N N (4) N N N 4 eta radiation There are two ways of beta emission: M D Z N Z 1 N1 M D Z N Z 1 N1 e e The energy released from emission is converted to the kinetic energy of the -particle a.k.a an electron, e (positron, e ) and the antineutrino, (neutrino, ). This is the reason why there are no sharp peaks as in gamma spectroscopy, but a continuous

4 distribution of particles with different energies. n absorbtion law doesn t hold for beta radiation and it is not relevant to talk about the absorption coefficients or half-value layers. Instead, natural for beta emission are the maximum energy of -particle and the range in a certain medium. The range is the thickness of a medium, which stop s all of the -particles. The absobtion of -particles happens in collisions with the atoms of the medium. ecause electrons are very lightweighted, they change their direction violently in each collision. So the real length of the electrons trajectory is much longer than the range. 4.1 Determining the range of the beta radiation and the maximum energy In the measurements a Sr strontium Y yttrium -source is used, which decays as in Fig. 2. The way of decay is written on each transition, (maximum) energy and the relative probability of the decaying brach. Notice, that the source emits almost only - particles. Figure 2: The decay scheme of the beta-source.

5 In the measurements, aluminum discs (with known surface density) are placed between the source and the detector. The radiation, which goes through the discs is measured. y plotting the results in half-logarithm co-ordinates, you get a graph as in Fig. 3. The measured number of the pulses decreases until it reaches the level of gamma radiation which is caused by the background radiation and the radiation from the source. The slight decrease in gamma level is caused by the absorption of the gamma radiation in aluminium. The electrons emitted from the source are also absorbed in the l casing of the source (surface density 130 mg 2 cm ). When determining the maximum energy, the surface density of the shell must be added to the surface densities of the absorbers. In addition, -particles are absorbed into the air and the window of the Geiger-Müller tube. This, however, is insignificant and can be ignored. Figure 3: The absorbtion curve of the beta radiation In order to determine the range, the extrapolations are drawn to the descending and horizontal parts of the absorbtion curve, whose intersectional point is the practical range R. The maximum range R k max, from which the maximum energy of the -particle can

6 be calculated, cannot be determined as precisely. The determining is done by finding out the position, where the -particles can no longer be distinguished from background (point b in fig. 3). The relation between the range and the maximum energy of the -particles is shown with moderate accuracy by the equation Rmax Emax, (5) where energy is in the unit of MeV and R max of mg/cm 2. Constants and are experimental parameters which are typical for a certain medium. For aluminium =540 and = Determining the activity of the beta source The activity of the source tells how many events of decay occur in a unit of time. The most common unit is ecquerel q (1/s). The activity is determined from the absorption curve above. First, the number of pulses corresponding to the zero-absorption thickness is read from the curve. Perform the following corrections: 1. Dead-time correction. The counter only counts part of the impulses hitting the detector, because part of the time it is not functioning. Corrected number of pulses can be obtained from eq Correction of the gamma background. The increase in the number of the pulses N G, can be obtained by extrapolating the background to zero-absorption width, as in fig Solid-angle correction. The source emits electrons in every direction at the same probability. That is why the total amount of emissions can be obtained by

7 multiplying the number of the pulses with the relation of the areas of the sphere 2 and the Geiger tube window. The area of the window is 4,9 cm. In addition, a safety net covers 23 % of the window, so the effective area of the window is 4,0 2 cm. ccording to the manufacturer s notification, the nominal activity of approximately 74 kq on Sr -source was Some technical details are given in Table instructions below.

8 Table instructions 1. Device: Check that G&M tube is connected with a NS cable to the counter. Turn the SPECTECH ST360 COUNTER on. Press DISPLY SELECT -button until it shows TIME. Set the PRESET TIME to 60 seconds. Next press DISPLY SELECT button until red led moves to HIGH VOLTGE. Increase the voltage with UP button to 900 V. Press DISPLY SELECT button until red light goes to COUNTS. Now the COUNT button starts a measurement lasting for 60 seconds. 2. Determination of dead time: Place the disc halves (green side towards the counter) always to the same position. djust the distance between the counter and source such that number of counts is about per minute with one radiation source. 3. Measurement of absorption curve of beta radiation Measure the surface thicknesses of aluminum absorbers [mg/cm 2 ]. Same value can be used for all absorbers as the diameter. Place the source above the GH tube so that there is enough space for all the absorbers. Don t move the source during the measurements. Measure the distance between the outer point of the source and the edge of the plastic box, and add 15 mm (additional distances in the source and counter) to that. The effective area of the window in the GM tube is 4,0 cm 2.

Absorption and Backscattering ofβrays

Absorption and Backscattering ofβrays Experiment #54 Absorption and Backscattering ofβrays References 1. B. Brown, Experimental Nucleonics 2. I. Kaplan, Nuclear Physics 3. E. Segre, Experimental Nuclear Physics 4. R.D. Evans, The Atomic Nucleus

More information

Absorption and Backscattering of β-rays

Absorption and Backscattering of β-rays Experiment #54 Absorption and Backscattering of β-rays References 1. B. Brown, Experimental Nucleonics 2. I. Kaplan, Nuclear Physics 3. E. Segre, Experimental Nuclear Physics 4. R.D. Evans, The Atomic

More information

Statistics of Radioactive Decay

Statistics of Radioactive Decay Statistics of Radioactive Decay Introduction The purpose of this experiment is to analyze a set of data that contains natural variability from sample to sample, but for which the probability distribution

More information

PHYS 3650L - Modern Physics Laboratory

PHYS 3650L - Modern Physics Laboratory PHYS 3650L - Modern Physics Laboratory Laboratory Advanced Sheet Photon Attenuation 1. Objectives. The objectives of this laboratory exercise are: a. To measure the mass attenuation coefficient at a gamma

More information

Jazan University College of Science Physics Department. Lab Manual. Nuclear Physics (2) 462 Phys. 8 th Level. Academic Year: 1439/1440

Jazan University College of Science Physics Department. Lab Manual. Nuclear Physics (2) 462 Phys. 8 th Level. Academic Year: 1439/1440 Jazan University College of Science Physics Department جاهعة جازان كلية العل وم قسن الفيزياء Lab Manual Nuclear Physics (2) 462 Phys 8 th Level Academic Year: 1439/1440 1 Contents No. Name of the Experiment

More information

Radioactivity. PC1144 Physics IV. 1 Objectives. 2 Equipment List. 3 Theory

Radioactivity. PC1144 Physics IV. 1 Objectives. 2 Equipment List. 3 Theory PC1144 Physics IV Radioactivity 1 Objectives Investigate the analogy between the decay of dice nuclei and radioactive nuclei. Determine experimental and theoretical values of the decay constant λ and the

More information

NUCLEAR SPECTROMETRY

NUCLEAR SPECTROMETRY INTRODUCTION RADIOACTIVITY (Revised:1-24-93) The nuclei of certain atoms are stable and under ordinary circumstances, stable nuclei do not undergo change. The nuclei of other atoms are unstable. These

More information

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Module - 2 Radioisotopes Techniques Lecture - 3 GM Counting and

More information

Introduction. Principle of Operation

Introduction. Principle of Operation Introduction Ionizing radiation that is associated with radioactivity cannot be directly detected by our senses. Ionization is the process whereby the radiation has sufficient energy to strip electrons

More information

EXPERIMENT 11: NUCLEAR RADIATION

EXPERIMENT 11: NUCLEAR RADIATION Introduction: radioactive nuclei. third is electromagnetic radiation. EXPERIMENT 11: NUCLEAR RADIATION In this lab, you will be investigating three types of emissions from Two types of these emissions

More information

Radioactivity APPARATUS INTRODUCTION PROCEDURE

Radioactivity APPARATUS INTRODUCTION PROCEDURE Radioactivity APPARATUS. Geiger Counter / Scaler. Cesium-7 sealed radioactive source. 0 pieces of paper. 8 aluminum plates. 0 lead plates 6. Graph paper - log-log and semi-log 7. Survey Meter ( unit for

More information

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous?

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous? Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous? 2. Briefly discuss dead time in a detector. What factors are important

More information

RADIOACTIVITY MATERIALS: PURPOSE: LEARNING OBJECTIVES: DISCUSSION:

RADIOACTIVITY MATERIALS: PURPOSE: LEARNING OBJECTIVES: DISCUSSION: RADIOACTIVITY This laboratory experiment was largely adapted from an experiment from the United States Naval Academy Chemistry Department MATERIALS: (total amounts per lab) small bottle of KCl; isogenerator

More information

Scintillation Detector

Scintillation Detector Scintillation Detector Introduction The detection of ionizing radiation by the scintillation light produced in certain materials is one of the oldest techniques on record. In Geiger and Marsden s famous

More information

EEE4106Z Radiation Interactions & Detection

EEE4106Z Radiation Interactions & Detection EEE4106Z Radiation Interactions & Detection 2. Radiation Detection Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za May 06, 2015 EEE4106Z :: Radiation

More information

Nuclear Physics Lab I: Geiger-Müller Counter and Nuclear Counting Statistics

Nuclear Physics Lab I: Geiger-Müller Counter and Nuclear Counting Statistics Nuclear Physics Lab I: Geiger-Müller Counter and Nuclear Counting Statistics PART I Geiger Tube: Optimal Operating Voltage and Resolving Time Objective: To become acquainted with the operation and characteristics

More information

THE GEIGER-MULLER TUBE AND THE STATISTICS OF RADIOACTIVITY

THE GEIGER-MULLER TUBE AND THE STATISTICS OF RADIOACTIVITY GMstats. THE GEIGER-MULLER TUBE AN THE STATISTICS OF RAIOACTIVITY This experiment examines the Geiger-Muller counter, a device commonly used for detecting and counting ionizing radiation. Various properties

More information

Physics 1000 Half Life Lab

Physics 1000 Half Life Lab Physics 1000 Half Life Lab Determination of Half-Life with a Geiger-Müller Counter Object: Apparatus: To understand the concept of half-life; to become familiar with the use of a Geiger-Müller counter;

More information

Radioactivity III: Measurement of Half Life.

Radioactivity III: Measurement of Half Life. PHY 192 Half Life Spring 2010 1 Radioactivity III: Measurement of Half Life. Introduction This experiment will once again use the apparatus of the first experiment, this time to measure radiation intensity

More information

Radioactivity Outcomes. Radioactivity Outcomes. Radiation

Radioactivity Outcomes. Radioactivity Outcomes. Radiation 1 Radioactivity Outcomes Describe the experimental evidence for there being three types of radiation. Discuss the nature and properties of each type. Solve problems about mass and atomic numbers in radioactive

More information

Determining the Efficiency of a Geiger Müller Tube

Determining the Efficiency of a Geiger Müller Tube Determining the Efficiency of a Geiger Müller Tube Introduction Richard Born Northern Illinois University Operations Management and Information Systems The percent efficiency (ɛ of a Geiger Müller (G M)

More information

Overview: In this experiment we will study the decay of a radioactive nucleus, Cesium. Figure 1: The Decay Modes of Cesium 137

Overview: In this experiment we will study the decay of a radioactive nucleus, Cesium. Figure 1: The Decay Modes of Cesium 137 Radioactivity (Part I and Part II) Objectives: To measure the absorption of beta and gamma rays To understand the concept of half life and to measure the half life of Ba 137* Apparatus: Radioactive source,

More information

Absorption of Gamma Rays

Absorption of Gamma Rays Introduction Absorption of Gamma Rays In this experiment, the absorption coefficient of gamma rays passing through several materials is studied. The materials will be compared to one another on their efficacy

More information

PhysicsAndMathsTutor.com. Question Answer Notes Marks number 1 (a) (i) number of protons = 1; number of neutrons = 2;

PhysicsAndMathsTutor.com. Question Answer Notes Marks number 1 (a) (i) number of protons = 1; number of neutrons = 2; (a) (i) of protons = ; of neutrons = ; (ii) any three of the following comparisons: MP. beta particle is negatively charged and alpha is positively charged; MP. beta particle has lower/less mass ORA; MP3.

More information

EQUIPMENT Beta spectrometer, vacuum pump, Cs-137 source, Geiger-Muller (G-M) tube, scalar

EQUIPMENT Beta spectrometer, vacuum pump, Cs-137 source, Geiger-Muller (G-M) tube, scalar Modern Physics Laboratory Beta Spectroscopy Experiment In this experiment, electrons emitted as a result of the radioactive beta decay of Cs-137 are measured as a function of their momentum by deflecting

More information

What do we know from GCSE?

What do we know from GCSE? Radioactivity jessica.wade08@imperial.ac.uk www.makingphysicsfun.com Department of Physics & Centre for Plastic Electronics, Imperial College London Faculty of Natural & Mathematical Sciences, King s College

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-30 Dr. E. Rizvi Lecture 4 - Detectors Binding Energy Nuclear mass MN less than sum of nucleon masses Shows nucleus is a bound (lower energy) state for this configuration

More information

Ph 3504 Radioactive Decay

Ph 3504 Radioactive Decay Ph 3504 Radioactive Decay Required background reading Attached are several pages from an appendix on the web for Tipler. You do not have to read them all (unless you want to), but make sure you read the

More information

BETA-RAY SPECTROMETER

BETA-RAY SPECTROMETER 14 Sep 07 β-ray.1 BETA-RAY SPECTROMETER In this experiment, a 180, constant-radius magnetic spectrometer consisting of an electromagnet with a Geiger-Muller detector, will be used to detect and analyze

More information

SCINTILLATION DETECTORS AND PM TUBES

SCINTILLATION DETECTORS AND PM TUBES SCINTILLATION DETECTORS AND PM TUBES General Characteristics Introduction Luminescence Light emission without heat generation Scintillation Luminescence by radiation Scintillation detector Radiation detector

More information

EXPERIMENT FOUR - RADIOACTIVITY This experiment has been largely adapted from an experiment from the United States Naval Academy, Annapolis MD

EXPERIMENT FOUR - RADIOACTIVITY This experiment has been largely adapted from an experiment from the United States Naval Academy, Annapolis MD EXPERIMENT FOUR - RADIOACTIVITY This experiment has been largely adapted from an experiment from the United States Naval Academy, Annapolis MD MATERIALS: (total amounts per lab) small bottle of KCl; isogenerator

More information

Radiation and Radioactivity. PHYS 0219 Radiation and Radioactivity

Radiation and Radioactivity. PHYS 0219 Radiation and Radioactivity Radiation and Radioactivity 1 Radiation and Radioactivity This experiment has four parts: 1. Counting Statistics 2. Gamma (g) Ray Absorption Half-length and shielding 3. 137 Ba Decay Half-life 4. Dosimetry

More information

Lab NUC. Determination of Half-Life with a Geiger-Müller Counter

Lab NUC. Determination of Half-Life with a Geiger-Müller Counter Lab NUC Determination of Half-Life with a Geiger-Müller Counter Object: Apparatus: To understand the concept of half-life; to become familiar with the use of a Geiger-Müller counter; to determine the half-lives

More information

EXAMINATION QUESTIONS (6)

EXAMINATION QUESTIONS (6) 1. What is a beta-particle? A a helium nucleus B a high-energy electron C four protons D two neutrons EXAMINATION QUESTIONS (6) 2. The diagram shows part of a circuit used to switch street lamps on and

More information

Overview: In this experiment we study the decay of a radioactive nucleus, Cesium 137. Figure 1: The Decay Modes of Cesium 137

Overview: In this experiment we study the decay of a radioactive nucleus, Cesium 137. Figure 1: The Decay Modes of Cesium 137 Radioactivity (Part I and Part II) 7-MAC Objectives: To measure the absorption of beta and gamma rays To understand the concept of half life and to measure the half life of Ba 137* Apparatus: Radioactive

More information

Application Note. Understanding Performance Specifications for Low Background Alpha Beta Counters. FOM What Is It and Is It Useful?

Application Note. Understanding Performance Specifications for Low Background Alpha Beta Counters. FOM What Is It and Is It Useful? Application Note Understanding Performance Specifications for Low Background Alpha Beta Counters Comparisons between vendors systems, often a tedious task, can lead to frustration and confusion. This application

More information

Physics 30: Chapter 8 Exam Nuclear

Physics 30: Chapter 8 Exam Nuclear Physics 30: Chapter 8 Exam Nuclear Name: Date: Mark: /34 Numeric Response. Place your answers to the numeric response questions, with units, in the blanks at the side of the page. (1 mark each) 1. A 100

More information

MASS ATTENUATION COEFFICIENT OF LEAD

MASS ATTENUATION COEFFICIENT OF LEAD OBJECTIVE MASS ATTENUATION COEFFICIENT OF LEAD The objective of this experiment is to measure the mass attenuation coefficient of lead by manipulating Beer-Lambert s law of attenuation. INTRODUCTION Background

More information

Lab 14. RADIOACTIVITY

Lab 14. RADIOACTIVITY Lab 14. RADIOACTIVITY 14.1. Guiding Question What are the properties of different types of nuclear radiation? How does nucelar decay proceed over time? 14.2. Equipment 1. ST360 Radiation Counter, G-M probe

More information

DETECTORS. I. Charged Particle Detectors

DETECTORS. I. Charged Particle Detectors DETECTORS I. Charged Particle Detectors A. Scintillators B. Gas Detectors 1. Ionization Chambers 2. Proportional Counters 3. Avalanche detectors 4. Geiger-Muller counters 5. Spark detectors C. Solid State

More information

Figure 1. Time in days. Use information from Figure 1 to calculate the half-life of the radioactive isotope.

Figure 1. Time in days. Use information from Figure 1 to calculate the half-life of the radioactive isotope. Radioactivity Past Exam Questions Q. Different radioactive isotopes have different values of half-life. (a) What is meant by the half-life of a radioactive isotope?......... (b) Figure shows how the count

More information

Radionuclide Imaging MII Detection of Nuclear Emission

Radionuclide Imaging MII Detection of Nuclear Emission Radionuclide Imaging MII 3073 Detection of Nuclear Emission Nuclear radiation detectors Detectors that are commonly used in nuclear medicine: 1. Gas-filled detectors 2. Scintillation detectors 3. Semiconductor

More information

Radioactivity. is related to de/dx. The range, R, is defined by the integral of de/dx:

Radioactivity. is related to de/dx. The range, R, is defined by the integral of de/dx: Advanced Physics Labs 9/11/08 Radioactivity Modern physics began with the study of radioactivity by Becquerel in 1895. Subsequent investigations by the Curies, Rutherford, and others quickly revealed that

More information

Modern Physics Laboratory Beta Spectroscopy Experiment

Modern Physics Laboratory Beta Spectroscopy Experiment Modern Physics Laboratory Beta Spectroscopy Experiment Josh Diamond and John Cummings Fall 2009 Abstract In this experiment, electrons emitted as a result of the radioactive beta decay of 137 55 Cs are

More information

Physics 23 Fall 1989 Lab 5 - The Interaction of Gamma Rays with Matter

Physics 23 Fall 1989 Lab 5 - The Interaction of Gamma Rays with Matter Physics 23 Fall 1989 Lab 5 - The Interaction of Gamma Rays with Matter Theory The nuclei of radioactive atoms spontaneously decay in three ways known as alpha, beta, and gamma decay. Alpha decay occurs

More information

General Overview of Gas Filled Detectors

General Overview of Gas Filled Detectors GAS-FILLED DETECTOR General Overview of Gas Filled Detectors Gas-Filled Detectors Ion chamber Proportional counter G-M (Geiger-Miller) counter Diagram of a Generic Gas-Filled Detector A Anode High-voltage

More information

Chemical Engineering 412

Chemical Engineering 412 Chemical Engineering 412 Introductory Nuclear Engineering Lecture 26 Radiation Detection & Measurement II Spiritual Thought 2 I would not hold the position in the Church I hold today had I not followed

More information

38 Which statement explains the meaning of the half-life of a radioactive substance? 10 mm of aluminium

38 Which statement explains the meaning of the half-life of a radioactive substance? 10 mm of aluminium 38 Which statement explains the meaning of the half-life of a radioactive substance? half the time taken for half the substance to decay half the time taken for the substance to decay completely the time

More information

RADIATION DETECTION OF ALFA, BETA, AND GAMMA RAYS WITH GEIGER MULLER DETECTOR

RADIATION DETECTION OF ALFA, BETA, AND GAMMA RAYS WITH GEIGER MULLER DETECTOR International Journal Mechanical Engineering and Technology (IJMET) Volume 9, Issue 11, November 2018, pp. 21 27, Article ID: IJMET_09_11_003 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=11

More information

5 Atomic Physics. 1 of the isotope remains. 1 minute, 4. Atomic Physics. 1. Radioactivity 2. The nuclear atom

5 Atomic Physics. 1 of the isotope remains. 1 minute, 4. Atomic Physics. 1. Radioactivity 2. The nuclear atom 5 Atomic Physics 1. Radioactivity 2. The nuclear atom 1. In a fission reactor, which particle causes a Uranium-235 nucleus to split? A. alpha-particle B. gamma ray C. neutron D. proton 2. A radioactive

More information

Ionization Detectors. Mostly Gaseous Detectors

Ionization Detectors. Mostly Gaseous Detectors Ionization Detectors Mostly Gaseous Detectors Introduction Ionization detectors were the first electrical devices developed for radiation detection During the first half of the century: 3 basic types of

More information

MockTime.com. Ans: (b) Q6. Curie is a unit of [1989] (a) energy of gamma-rays (b) half-life (c) radioactivity (d) intensity of gamma-rays Ans: (c)

MockTime.com. Ans: (b) Q6. Curie is a unit of [1989] (a) energy of gamma-rays (b) half-life (c) radioactivity (d) intensity of gamma-rays Ans: (c) Chapter Nuclei Q1. A radioactive sample with a half life of 1 month has the label: Activity = 2 micro curies on 1 8 1991. What would be its activity two months earlier? [1988] 1.0 micro curie 0.5 micro

More information

PHYSICS 176 UNIVERSITY PHYSICS LAB II. Experiment 13. Radioactivity, Radiation and Isotopes

PHYSICS 176 UNIVERSITY PHYSICS LAB II. Experiment 13. Radioactivity, Radiation and Isotopes PHYSICS 176 UNIVERSITY PHYSICS LAB II Experiment 13 Radioactivity, Radiation and Isotopes Equipment: ST-360 Counter with GM Tube and stand, shelf stand, and a source holder with isotopes. Historical overview:

More information

Thursday, April 23, 15. Nuclear Physics

Thursday, April 23, 15. Nuclear Physics Nuclear Physics Some Properties of Nuclei! All nuclei are composed of protons and neutrons! Exception is ordinary hydrogen with just a proton! The atomic number, Z, equals the number of protons in the

More information

M1. (a) (i) cannot penetrate aluminium allow can only pass through air / paper too weak is neutral 1

M1. (a) (i) cannot penetrate aluminium allow can only pass through air / paper too weak is neutral 1 M. (a) (i) cannot penetrate aluminium allow can only pass through air / paper too weak is neutral gamma rays not affected (by aluminium) allow all / most (gamma rays) to pass through too strong is neutral

More information

9 Nuclear decay Answers to exam practice questions

9 Nuclear decay Answers to exam practice questions Pages 173 178 Exam practice questions 1 X-rays are quanta of energy emitted when electrons fall to a lower energy level, and so do not emanate from the nucleus Answer D. 2 Alpha particles, being the most

More information

A Study of Radioactivity and Determination of Half-Life

A Study of Radioactivity and Determination of Half-Life A Study of Radioactivity and Determination of Half-Life Purpose: To examine different types of radioactivity and their properties, and measure the half-life of a radioisotope Introduction A radioactive

More information

Cosmic Rays Detector. Use of Coincidence Detector for Measures of Cosmic Rays. Lodovico Lappetito. RivelatoreRaggiCosmici_ENG - 6/22/2015 Page 1

Cosmic Rays Detector. Use of Coincidence Detector for Measures of Cosmic Rays. Lodovico Lappetito. RivelatoreRaggiCosmici_ENG - 6/22/2015 Page 1 Cosmic Rays Detector Use of Coincidence Detector for Measures of Cosmic Rays Lodovico Lappetito RivelatoreRaggiCosmici_ENG - 6/22/2015 Page 1 Table of Contents Design and Components... 3 Detector Design...

More information

6. Atomic and Nuclear Physics

6. Atomic and Nuclear Physics 6. Atomic and Nuclear Physics Chapter 6.2 Radioactivity From IB OCC, prepared by J. Domingues based on Tsokos Physics book Warm Up Define: nucleon atomic number mass number isotope. Radioactivity In 1896,

More information

Chapter 30 Nuclear Physics and Radioactivity

Chapter 30 Nuclear Physics and Radioactivity Chapter 30 Nuclear Physics and Radioactivity 30.1 Structure and Properties of the Nucleus Nucleus is made of protons and neutrons Proton has positive charge: Neutron is electrically neutral: 30.1 Structure

More information

RADIOACTIVITY IN THE AIR

RADIOACTIVITY IN THE AIR RADIOACTIVITY IN THE AIR REFERENCES M. Sternheim and J. Kane, General Physics (See the discussion on Half Life) Evans, The Atomic Nucleus, pp. 518-522 Segre, Nuclei and Particles, p. 156 See HEALTH AND

More information

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes St Ninian s High School Chemistry Department National 5 Chemistry Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes Name Learning Outcomes After completing this topic you should be able to :

More information

PRODUCTS FOR EDUCATION AND TRAINING

PRODUCTS FOR EDUCATION AND TRAINING PRODUCTS FOR EDUCATION AND TRAINING This section gives detailed information about products to support training in radiation protection, applications of radioactivity and handling radioactive materials.

More information

CHEMISTRY 170. Radioisotopes

CHEMISTRY 170. Radioisotopes CHEMISTRY 170 Radioisotopes Positron Emission Tomography or PET scans use the radioisotope 18 F to create an image of the brain. DEPARTMENT OF CHEMISTRY UNIVERSITY OF KANSAS Radioisotopes Introduction

More information

CHEMISTRY 130 General Chemistry I. Radioisotopes

CHEMISTRY 130 General Chemistry I. Radioisotopes CHEMISTRY 130 General Chemistry I Radioisotopes Positron Emission Tomography or PET scans use the radioisotope 18 F to create an image of the brain. DEPARTMENT OF CHEMISTRY UNIVERSITY OF KANSAS Radioisotopes

More information

GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY

GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY ABSORBED DOSE: The amount of energy absorbed, as a result of radiation passing through a material, per unit mass of material. Measured in rads (1 rad

More information

He-3 Neutron Detectors

He-3 Neutron Detectors Application He-3 Neutron Detectors General Considerations, Applications: He-3 filled proportional counters are standard neutron detectors and are most suitable for the detection of thermal neutrons. Larger

More information

Core Questions Physics unit 4 - Atomic Structure

Core Questions Physics unit 4 - Atomic Structure Core Questions Physics unit 4 - Atomic Structure No. Question Answer 1 What did scientists think about atoms before the discovery of the They were tiny spheres that could not be broken up electron? 2 Which

More information

Strand J. Atomic Structure. Unit 2. Radioactivity. Text

Strand J. Atomic Structure. Unit 2. Radioactivity. Text Strand J. Atomic Structure Unit 2. Radioactivity Contents Page Unstable Nuclei 2 Alpha, Beta and Gamma Radiation 5 Balancing Equations for Radioactive Decay 10 Half Life 12 J.2.1. Unstable Nuclei. The

More information

Contents. Charged Particles. Coulomb Interactions Elastic Scattering. Coulomb Interactions - Inelastic Scattering. Bremsstrahlung

Contents. Charged Particles. Coulomb Interactions Elastic Scattering. Coulomb Interactions - Inelastic Scattering. Bremsstrahlung Contents Marcel MiGLiERiNi Nuclear Medicine, Radiology and Their Metrological Aspects. Radiation in Medicine. Dosimetry 4. Diagnostics & Therapy 5. Accelerators in Medicine 6. Therapy Planning 7. Nuclear

More information

PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY

PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY THE ATOMIC NUCLEUS / NUCLEAR RADIUS & DENSITY / PROPERTIES OF NUCLEAR RADIATION / INTENSITY & BACKGROUND RADIATION / EXPONENTIAL LAW OF DECAY

More information

PHYS 3446 Lecture #12

PHYS 3446 Lecture #12 PHYS 3446 Lecture #12 Wednesday, Oct. 18, 2006 Dr. 1. Particle Detection Ionization Detectors MWPC Scintillation Counters Time of Flight 1 Announcements Next LPCC Workshop Preparation work Each group to

More information

PLK VICWOOD K.T. CHONG SIXTH FORM COLLEGE Form Seven AL Physics Radioactivity

PLK VICWOOD K.T. CHONG SIXTH FORM COLLEGE Form Seven AL Physics Radioactivity AL Physics/Radioactivity/P.1 PLK VICWOOD K.T. CHONG SIXTH FORM COLLEGE Form Seven AL Physics Radioactivity Radioactivity Properties of α, β and γ radiations Detectors Random nature of decay Natural nuclear

More information

Part 12- Physics Paper 1 Atomic Structure Knowledge Questions

Part 12- Physics Paper 1 Atomic Structure Knowledge Questions Part 12- Physics Paper 1 Atomic Structure Knowledge Questions Internal energy and energy transfers Internal energy and energy transfers Changes of state and the particle model Particle Model of Matter

More information

electrons out of, or ionize, material in their paths as they pass. Such radiation is known as

electrons out of, or ionize, material in their paths as they pass. Such radiation is known as Detecting radiation It is always possible to detect charged particles moving through matter because they rip electrons out of, or ionize, material in their paths as they pass. Such radiation is known as

More information

Measurement of Muon Lifetime

Measurement of Muon Lifetime Measurement of Muon Lifetime Noah Scandrette Physics and Astronomy Department, San Francisco State University, San Francisco, California (Dated: December 16, 2016) The average lifetime of the muon has

More information

This experiment is included in the XRP 4.0 X-ray solid state, XRS 4.0 X-ray structural analysis, and XRC 4.0 X-ray characteristics upgrade sets.

This experiment is included in the XRP 4.0 X-ray solid state, XRS 4.0 X-ray structural analysis, and XRC 4.0 X-ray characteristics upgrade sets. The intensity of characteristic X-rays as a TEP Related topics Characteristic X-radiation, energy levels, Bragg s law, and intensity of characteristic X-rays Principle The X-ray spectrum of an X-ray tube

More information

RANGE OF ALPHA PARTICLES

RANGE OF ALPHA PARTICLES 23 Sep 08 Alpha.1 RANGE OF ALPHA PARTICLES The range of a charged particle in an absorber provides a measure of its energy. In this experiment, the range in air, and energy, of the alpha particles emitted

More information

Radioactivity an introduction

Radioactivity an introduction January Number Radioactivity an introduction This Factsheet will explain the nature, properties and effects of radioactive emissions, the concept of half-life and the hazards and benefits of radioactivity.

More information

What is Radiation? Historical Background

What is Radiation? Historical Background What is Radiation? This section will give you some of the basic information from a quick guide of the history of radiation to some basic information to ease your mind about working with radioactive sources.

More information

Radiation Detection and Measurement

Radiation Detection and Measurement Radiation Detection and Measurement June 2008 Tom Lewellen Tkldog@u.washington.edu Types of radiation relevant to Nuclear Medicine Particle Symbol Mass (MeV/c 2 ) Charge Electron e-,! - 0.511-1 Positron

More information

Radioactivity. Lecture 6 Detectors and Instrumentation

Radioactivity. Lecture 6 Detectors and Instrumentation Radioactivity Lecture 6 Detectors and Instrumentation The human organs Neither humans nor animals have an organ for detecting radiation from radioactive decay! We can not hear it, smell it, feel it or

More information

Unit 2. Instrumentation. Experts Teaching from Practical Experience

Unit 2. Instrumentation. Experts Teaching from Practical Experience Unit 2 Instrumentation Experts Teaching from Practical Experience Gas-Filled Detectors Gas-filled detectors measure the charge released when radiation interacts with the gas Three types: Ion Chambers,

More information

Revision checklist. Step Learning outcome Had a look Nearly there Nailed it!

Revision checklist. Step Learning outcome Had a look Nearly there Nailed it! Radioactivity a Atomic models Describe the structure of an atom (in terms of nucleus and electrons). State where most of the mass of an atom is found. State the sizes of atoms and small molecules. Describe

More information

Physics 3204 UNIT 3 Test Matter Energy Interface

Physics 3204 UNIT 3 Test Matter Energy Interface Physics 3204 UNIT 3 Test Matter Energy Interface 2005 2006 Time: 60 minutes Total Value: 33 Marks Formulae and Constants v = f λ E = hf h f = E k + W 0 E = m c 2 p = h λ 1 A= A T 0 2 t 1 2 E k = ½ mv 2

More information

Physics 248, Spring 2009 Lab 6: Radiation and its Interaction with Matter

Physics 248, Spring 2009 Lab 6: Radiation and its Interaction with Matter Name Section Physics 48, Spring 009 Lab 6: Radiation and its Interaction with Matter Your TA will use this sheet to score your lab. It is to be turned in at the end of lab. To receive full credit you must

More information

Gamma and X-Ray Detection

Gamma and X-Ray Detection Gamma and X-Ray Detection DETECTOR OVERVIEW The kinds of detectors commonly used can be categorized as: a. Gas-filled Detectors b. Scintillation Detectors c. Semiconductor Detectors The choice of a particular

More information

Radiation Detection. 15 th Annual OSC Readiness Training Program.

Radiation Detection. 15 th Annual OSC Readiness Training Program. Radiation Detection 15 th Annual OSC Readiness Training Program www.oscreadiness.org GM Detectors 15 th Annual OSC Readiness Training Program www.oscreadiness.org 1 A closer look 15 th Annual OSC Readiness

More information

Copyright 2008, University of Chicago, Department of Physics. Gamma Cross-sections. NaI crystal (~2" dia) mounted on photo-multiplier tube

Copyright 2008, University of Chicago, Department of Physics. Gamma Cross-sections. NaI crystal (~2 dia) mounted on photo-multiplier tube Gamma Cross-sections 1. Goal We wish to measure absorption cross-sections for γ-rays for a range of gamma energies and absorber atomic number. 2. Equipment Pulse height analyzer Oscilloscope NaI crystal

More information

Copyright 2008, University of Chicago, Department of Physics. Experiment VI. Gamma Ray Spectroscopy

Copyright 2008, University of Chicago, Department of Physics. Experiment VI. Gamma Ray Spectroscopy Experiment VI Gamma Ray Spectroscopy 1. GAMMA RAY INTERACTIONS WITH MATTER In order for gammas to be detected, they must lose energy in the detector. Since gammas are electromagnetic radiation, we must

More information

RADIOACTIVITY Q32 P1 A radioactive carbon 14 decay to Nitrogen by beta emission as below 14 x 0

RADIOACTIVITY Q32 P1 A radioactive carbon 14 decay to Nitrogen by beta emission as below 14 x 0 NAME SCHOOL INDEX NUMBER DATE RADIOACTIVITY 1. 1995 Q32 P1 A radioactive carbon 14 decay to Nitrogen by beta emission as below 14 x 0 C N + e 6 7 y Determine the values of x and y in the equation (2 marks)

More information

GAMMA RAY SPECTROSCOPY

GAMMA RAY SPECTROSCOPY GAMMA RAY SPECTROSCOPY Gamma Ray Spectroscopy 1 In this experiment you will use a sodium iodide (NaI) detector along with a multichannel analyzer (MCA) to measure gamma ray energies from energy level transitions

More information

Princeton University, Physics 311/312 Beta Decay, Page 1 BETA DECAY

Princeton University, Physics 311/312 Beta Decay, Page 1 BETA DECAY Princeton University, Physics 311/312 Beta Decay, Page 1 BETA DECAY Introduction Beta particles are positrons and electrons released in a weak nuclear decays. The study of beta-decay spectra led to discovery

More information

GM Pancake Probe Victoreen Model D

GM Pancake Probe Victoreen Model D Radiation Safety RS GM Pancake Probe Victoreen Model 489-110D All purpose GM Pancake Probe detects alpha, beta, gamma, and x-ray radiations Used in nuclear medicine, diagnostic x-ray, and geological and

More information

Ground What is the change in the passenger s velocity when he travels from point B to point D? (2)

Ground What is the change in the passenger s velocity when he travels from point B to point D? (2) 1. The London Eye is a large wheel which rotates at a slow steady speed in a vertical plane about a fixed horizontal axis. A total of 800 passengers can ride in 32 capsules equally spaced around the rim.

More information

GM Pancake Probe Victoreen Model D

GM Pancake Probe Victoreen Model D Radiation Safety RS GM Pancake Probe Victoreen Model 489-110D! All purpose GM Pancake Probe detects alpha, beta, gamma, and x-ray radiations! Used in nuclear medicine, diagnostic x-ray, and geological

More information

RADIOACTIVITY IN THE AIR

RADIOACTIVITY IN THE AIR RDIOTIVITY IN THE IR REFERENES hart of the Nuclides, Knolls tomic Power Laboratory, (Schenectady, NY), 1984. W. R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer 1994 E. Segre,

More information

Radioactivity INTRODUCTION. Natural Radiation in the Background. Radioactive Decay

Radioactivity INTRODUCTION. Natural Radiation in the Background. Radioactive Decay Radioactivity INTRODUCTION The most common form of radiation is the electromagnetic wave. These waves include low energy radio waves, microwaves, visible light, x-rays, and high-energy gamma rays. Electromagnetic

More information

Particle Physics. Question Paper 1. Save My Exams! The Home of Revision. International A Level. Exam Board Particle & Nuclear Physics

Particle Physics. Question Paper 1. Save My Exams! The Home of Revision. International A Level. Exam Board Particle & Nuclear Physics For more awesome GSE and level resources, visit us at www.savemyexams.co.uk/ Particle Physics Question Paper 1 Level International Level Subject Physics Exam oard IE Topic Particle & Nuclear Physics Sub

More information

Atomic Structure Practice Questions

Atomic Structure Practice Questions Atomic Structure Practice Questions 1. Experiments performed to reveal the structure of atoms led scientists to conclude that an atom s (1) positive charge is evenly distributed throughout its volume (2)

More information