Monodromy and Hénon mappings

Size: px
Start display at page:

Download "Monodromy and Hénon mappings"

Transcription

1

2 Monodromy and Hénon mappings

3 Monodromy and Hénon mappings John Hubbard joint work with Sarah Koch Chris Lipa

4 Acknowledgements John Smillie Eric Bedford Ralph Oberste-Vorth Ricardo Oliva Suzanne Hruska Zin Arai

5 Acknowledgements John Smillie Eric Bedford Ralph Oberste-Vorth Ricardo Oliva Suzanne Hruska Zin Arai The pictures are due to Ben Hinkle,

6 Acknowledgements John Smillie Eric Bedford Ralph Oberste-Vorth Ricardo Oliva Suzanne Hruska Zin Arai The pictures are due to Ben Hinkle, and especially Karl Papadantonakis

7 The formula for Hénon mappings H a,c : C 2 C 2 )) (( x 2 + c ay ) H a,c ( x y = x ( ) ( Note that when a = 0, this reduces to x x 2 + c. When a 0, the map H a,c is invertible. ( ) ( ( )

8 How do we investigate a family of mappings depending on a parameter? We try to draw the parameter space, so that when we click at a specific parameter, a new window comes up showing the corresponding dynamical space.

9 Let us illustrate this for the family x x 2 + c.

10 Let us illustrate this for the family x x 2 + c. In the parameter space, we see the

11 Let us illustrate this for the family x x 2 + c. In the parameter space, we see the Mandelbrot set.

12 Let us illustrate this for the family x x 2 + c. In the parameter space, we see the Mandelbrot set. In the dynamical plane, for each parameter c, we see the corresponding

13 Let us illustrate this for the family x x 2 + c. In the parameter space, we see the Mandelbrot set. In the dynamical plane, for each parameter c, we see the corresponding filled-in Julia set Kc.

14 What makes this exploration work so well is the dichotomy:

15 What makes this exploration work so well is the dichotomy: 0 K c if and only if K c is connected.

16 What makes this exploration work so well is the dichotomy: 0 K c if and only if K c is connected. 0 / K c if and only if K c is a Cantor set.

17 What makes this exploration work so well is the dichotomy: { 0 K c if and only if K c is connected. 0 / Kc if and only if K c is a Cantor set.

18 What makes this exploration work so well is the dichotomy: { 0 K c if and only if K c is connected. 0 / K c if and only if K c is a Cantor set. The set M is the set

19 What makes this exploration work so well is the dichotomy: { 0 K c if and only if K c is connected. 0 / K c if and only if K c is a Cantor set. The set M is the set {c C K c is connected } = {c C 0 K c } ( ) ( )

20 What makes this exploration work so well is the dichotomy: { 0 K c if and only if K c is connected. 0 / K c if and only if K c is a Cantor set. The set M is the set {c C K c is connected } = {c C 0 K c } ( ) ( ) This interesting because of the first characterization, and easy to compute because of the second.

21 Sadly, we do not have the same dichotomy for Hénon mappings: There are Hénon mappings where K is connected and others for which K is a Cantor set and many other things in between. In addition, there is no clear criterion for determining which alternative occurs. Still, the program SaddleDrop does its best.

22 What is being drawn in the dynamical space? If H(p) = p, [DH(p)] has eigenvalues λ, µ with λ > 1, µ < 1, [ ( )] has ei [DH(p)]v = λv, then ( γ(z) = lim n H n p + z ) ( λ n v exists, and the is a unstable parametrization manifold of the of unstable, sa manifold of p, satisfying γ(λz) = H(γ(z)).

23 SaddleDrop draws in the domain C the level curves of the rate of escape function ( ) G + ( x y = lim n 1 2 n log+ ( y) x H n Thus the black is the intersection of the unstable manifold with K.

24 The map γ : C C 2 folds C in some very complicated way into ) ( C 2 (

25 What are we seeing in parameter space Let us look at a movie, Each frame is a picture of the c -plane for fixed a. The parameter a (the Jacobian) describes leaves 0 spiraling

26

27 What are we seeing in parameter space This is harder to answer For one thing, there are two setttings: --fastest escaping, which tries to draw the locus where K is connected, and --slowest escaping, which tries to draw the locus where H is a horseshoe mapping, and hence K is a Cantor set on which the dynamics is conjugate to the full shift on two symbols

28

29 What are we seeing?

30 What are we seeing? Most points on the boundary of M are the the vertex of a

31 What are we seeing? Most points on the boundary of M are the the vertex of a Cone on the product of a circle with a Cantor set

32 What are we seeing? Most points on the boundary of M are the the vertex of a Cone on the product of a circle with a Cantor set This locus intersects every complex line in a Cantor set

33 What are we seeing? Most points on the boundary of M are the the vertex of a Cone on the product of a circle with a Cantor set This locus intersects every complex line in a Cantor set At points of this locus, there is a tangency of and

34 What are we seeing? Most points on the boundary of M are the the vertex of a Cone on the product of a circle with a Cantor set This locus intersects every complex line in a Cantor set At points of this locus, there is a tangency of J + ( and

35 What are we seeing? Most points on the boundary of M are the the vertex of a Cone on the product of a circle with a Cantor set This locus intersects every complex line in a Cantor set At points of this locus, there is a tangency of J + ( and J 2 +

36

37

38 But there are other points: Those for which there is a periodic cycle with one multiplier of absolute value 1.

39 But there are other points: Those for which there is a periodic cycle with one multiplier of absolute value 1. These form algebraic curves, which will intersect a complex line in parameter space in finitely many points.

40 But there are other points: Those for which there is a periodic cycle with one multiplier of absolute value 1. These form algebraic curves, which will intersect a complex line in parameter space in finitely many points. The little Mandelbrot sets live in only one sheet of the cone over Cantor set cross circle, leaving gaps in the others.

41 Hénon Horseshoes If you pick c outside the Mandelbrot set so that Kc is a Cantor set, then for a sufficiently small, the Hénon map will be a horseshoe. For c real and < -2, and a real and small, it is an ordinary horseshoe.

42

43

44

45

46

47

48

49

50

51

52

53

54

55 ( Define Π : K {A, B} by Π(x) = { A B x in A-region x in B-region ) Define Φ : K {A, B} Z by ) ( Φ(x) = (..., Π ( H 1 (x) ), Π(x), Π(H(x)),... ))

56 Kneading Sequences If H is a horseshoe map, then Every bounded point of K has a bi-infinite itinerary of A s and B s

57 Kneading Sequences If H is a horseshoe map, then Every bounded point of K has a bi-infinite itinerary of A s and B s Every itinerary corresponds to exactly one point, so

58 Kneading Sequences If H is a horseshoe map, then Every bounded point of K has a bi-infinite itinerary of A s and B s Every itinerary corresponds to exactly one point, so We have a homeomorphism between K and {A,B} Z

59 Kneading Sequences K H a,c K Φ Φ {A, B} Z σ {A, B} Z

60 Horseshoe Locus The complex horseshoe locus L is the open region of parameter space where the action of the Hénon map on K set is conjugate to the horseshoe map.

61 Horseshoe Locus The complex horseshoe locus L is the open region of parameter space where the action of the Hénon map on K set is conjugate to the horseshoe map. The set

62 Horseshoe Locus The complex horseshoe locus L is the open region of parameter space where the action of the Hénon map on K set is conjugate to the horseshoe map. The set {( c) a ( x y) ( x y) K a,c }, C 2 C 2 ( ) (

63 Horseshoe Locus The complex horseshoe locus L is the open region of parameter space where the action of the Hénon map on K set is conjugate to the horseshoe map. The set {( c) a ( x y) ( x y) K a,c }, C 2 C 2 ( ) ( is a locally trivial bundle of Cantor sets over L.

64 Therefore A loop in the horseshoe locus L gives an automorphism of {A,B} Z. Π 1 (L) Aut(Σ 2, σ) Let us consider the analog for quadratic polynomials

65

66

67

68 Kneading Sequences K f c K Φ Φ {A, B} N σ {A, B} N

69 Monodromy in C-M Loops in C-M give a monodromy action on Kc π 1 (C M, c 0 ) Aut(Σ +, σ + )

70

71

72 Monodromy Actions π 1 (C M, c 0 ) Aut(Σ +, σ + ) C π 1 (L, (a 0, c 0 )) Aut(Σ, σ)

73 Automorphism of the shift

74 Automorphism of the shift Automorphisms of the one-sided shift are simple: there is only the exchange of 0 and 1

75 Automorphism of the shift Automorphisms of the one-sided shift are simple: there is only the exchange of 0 and 1 Automorphisms of the full shift are quite a different matter:

76 Automorphism of the shift Automorphisms of the one-sided shift are simple: there is only the exchange of 0 and 1 Automorphisms of the full shift are quite a different matter: The group is enormous, it contains all finite groups, and a countable sum of Z s

77 Automorphism of the shift Automorphisms of the one-sided shift are simple: there is only the exchange of 0 and 1 Automorphisms of the full shift are quite a different matter: The group is enormous, it contains all finite groups, and a countable sum of Z s No system of generators is known.

78

79

80

81

82

83

84

85

86

87

88

89

90

91 What automorphism are we seeing?

92 What automorphism It is AAB*BABAA are we seeing?

93 What automorphism are we seeing? It is AAB*BABAA This means that any time you see such a sequence, you exchange whatever symbol * is for the opposite symbol.

94 What automorphism are we seeing? It is AAB*BABAA This means that any time you see such a sequence, you exchange whatever symbol * is for the opposite symbol. The formula is obtained from the kneading sequence *BABAA of all points of M beyond the *BABA polynomial.

95 What automorphism are we seeing? It is AAB*BABAA This means that any time you see such a sequence, you exchange whatever symbol * is for the opposite symbol. The formula is obtained from the kneading sequence *BABAA of all points of M beyond the *BABA polynomial. AAB the name of the sheet of cone over Cantor x Circle that the loop surrounds.

96 Chris Lipa has checked that about 30 other loops constructed in a similar way have monodromies given by similar formulas. Questions: Are there loops in L corresponding to all the automorphisms of the shift? Why are they automorphisms? Do such automorphisms, together with the shift itself, generate the full group of automorphisms.

97 Pictures and movies made with PlanarIterations by Ben Hinkle and FractalAsm and SaddleDrop by Karl Papadantonakis, all available at

98 Pictures and movies made with PlanarIterations by Ben Hinkle and FractalAsm and SaddleDrop by Karl Papadantonakis, all available at That s all folks

Zin ARAI Hokkaido University

Zin ARAI Hokkaido University 荒井迅 Zin ARAI Hokkaido University Yutaka Ishii (Kyushu University) Background and Main Results The Hénon Map The Hénon family on R 2 : f a,b : R 2 3 (x, y) 7! (x 2 a by, x) 2 R 2, where (a, b) 2 R R. 1

More information

Limiting Dynamics of quadratic polynomials and Parabolic Blowups

Limiting Dynamics of quadratic polynomials and Parabolic Blowups Limiting Dynamics of quadratic polynomials and Parabolic Blowups John Hubbard Joint work with Ismael Bachy MUCH inspired by work of Adam Epstein and helped by discussions with Xavier Buff and Sarah Koch

More information

No Smooth Julia Sets for Complex Hénon Maps

No Smooth Julia Sets for Complex Hénon Maps No Smooth Julia Sets for Complex Hénon Maps Eric Bedford Stony Brook U. Dynamics of invertible polynomial maps of C 2 If we want invertible polynomial maps, we must move to dimension 2. One approach: Develop

More information

Second Julia sets of complex dynamical systems in C 2 computer visualization

Second Julia sets of complex dynamical systems in C 2 computer visualization Second Julia sets of complex dynamical systems in C 2 computer visualization Shigehiro Ushiki Graduate School of Human and Environmental Studies Kyoto University 0. Introduction As most researchers in

More information

Julia Sets and the Mandelbrot Set

Julia Sets and the Mandelbrot Set Julia Sets and the Mandelbrot Set Julia sets are certain fractal sets in the complex plane that arise from the dynamics of complex polynomials. These notes give a brief introduction to Julia sets and explore

More information

On Hyperbolic Plateaus of the Hénon Map

On Hyperbolic Plateaus of the Hénon Map On Hyperbolic Plateaus of the Hénon Map Zin ARAI Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan (email: arai@math.kyoto-u.ac.jp) Abstract We propose a rigorous computational method

More information

Minicourse on Complex Hénon Maps

Minicourse on Complex Hénon Maps Minicourse on Complex Hénon Maps (joint with Misha Lyubich) Lecture 2: Currents and their applications Lecture 3: Currents cont d.; Two words about parabolic implosion Lecture 5.5: Quasi-hyperbolicity

More information

1. In this problem, if the statement is always true, circle T; otherwise, circle F.

1. In this problem, if the statement is always true, circle T; otherwise, circle F. Math 1553, Extra Practice for Midterm 3 (sections 45-65) Solutions 1 In this problem, if the statement is always true, circle T; otherwise, circle F a) T F If A is a square matrix and the homogeneous equation

More information

APPLIED SYMBOLIC DYNAMICS AND CHAOS

APPLIED SYMBOLIC DYNAMICS AND CHAOS DIRECTIONS IN CHAOS VOL. 7 APPLIED SYMBOLIC DYNAMICS AND CHAOS Bai-Lin Hao Wei-Mou Zheng The Institute of Theoretical Physics Academia Sinica, China Vfö World Scientific wl Singapore Sinaaoore NewJersev

More information

Connectedness loci of complex polynomials: beyond the Mandelbrot set

Connectedness loci of complex polynomials: beyond the Mandelbrot set Connectedness loci of complex polynomials: beyond the Mandelbrot set Sabyasachi Mukherjee Stony Brook University TIFR, June 2016 Contents 1 Background 2 Antiholomorphic Dynamics 3 Main Theorems (joint

More information

Symbolic dynamics for Lozi maps

Symbolic dynamics for Lozi maps Symbolic dynamics for Lozi maps M. Misiurewicz, S. Štimac Abstract We study the family of the Lozi maps L a,b : R 2 R 2, L a,b (x, y) = (1+y a x, bx), and their strange attractors Λ a,b. We introduce the

More information

Solving Equations Quick Reference

Solving Equations Quick Reference Solving Equations Quick Reference Integer Rules Addition: If the signs are the same, add the numbers and keep the sign. If the signs are different, subtract the numbers and keep the sign of the number

More information

Section 4.1: Polynomial Functions and Models

Section 4.1: Polynomial Functions and Models Section 4.1: Polynomial Functions and Models Learning Objectives: 1. Identify Polynomial Functions and Their Degree 2. Graph Polynomial Functions Using Transformations 3. Identify the Real Zeros of a Polynomial

More information

11 Chaos in Continuous Dynamical Systems.

11 Chaos in Continuous Dynamical Systems. 11 CHAOS IN CONTINUOUS DYNAMICAL SYSTEMS. 47 11 Chaos in Continuous Dynamical Systems. Let s consider a system of differential equations given by where x(t) : R R and f : R R. ẋ = f(x), The linearization

More information

8.1 Bifurcations of Equilibria

8.1 Bifurcations of Equilibria 1 81 Bifurcations of Equilibria Bifurcation theory studies qualitative changes in solutions as a parameter varies In general one could study the bifurcation theory of ODEs PDEs integro-differential equations

More information

A Two-dimensional Mapping with a Strange Attractor

A Two-dimensional Mapping with a Strange Attractor Commun. math. Phys. 50, 69 77 (1976) Communications in Mathematical Physics by Springer-Verlag 1976 A Two-dimensional Mapping with a Strange Attractor M. Henon Observatoire de Nice, F-06300 Nice, France

More information

0. Introduction 1 0. INTRODUCTION

0. Introduction 1 0. INTRODUCTION 0. Introduction 1 0. INTRODUCTION In a very rough sketch we explain what algebraic geometry is about and what it can be used for. We stress the many correlations with other fields of research, such as

More information

Solving Quadratic Equations by Formula

Solving Quadratic Equations by Formula Algebra Unit: 05 Lesson: 0 Complex Numbers All the quadratic equations solved to this point have had two real solutions or roots. In some cases, solutions involved a double root, but there were always

More information

What is a core and its entropy for a polynomial?

What is a core and its entropy for a polynomial? e core-entropy := d dim(bi-acc(f )) What is a core and its entropy for a polynomial? Core(z 2 + c, c R) := K fc R Core(a polynomial f )=? Def.1. If exists, Core(f ) := Hubbard tree H, core-entropy:= h

More information

Chapter 23. Predicting Chaos The Shift Map and Symbolic Dynamics

Chapter 23. Predicting Chaos The Shift Map and Symbolic Dynamics Chapter 23 Predicting Chaos We have discussed methods for diagnosing chaos, but what about predicting the existence of chaos in a dynamical system. This is a much harder problem, and it seems that the

More information

Combinatorial equivalence of topological polynomials and group theory

Combinatorial equivalence of topological polynomials and group theory Combinatorial equivalence of topological polynomials and group theory Volodymyr Nekrashevych (joint work with L. Bartholdi) March 11, 2006, Toronto V. Nekrashevych (Texas A&M) Topological Polynomials March

More information

Lecture 17: The Alexander Module II

Lecture 17: The Alexander Module II Lecture 17: The Alexander Module II Notes by Jonier Amaral Antunes March 22, 2016 Introduction In previous lectures we obtained knot invariants for a given knot K by studying the homology of the infinite

More information

Non Locally-Connected Julia Sets constructed by iterated tuning

Non Locally-Connected Julia Sets constructed by iterated tuning Non Locally-Connected Julia Sets constructed by iterated tuning John Milnor Stony Brook University Revised May 26, 2006 Notations: Every quadratic map f c (z) = z 2 + c has two fixed points, α and β, where

More information

Solving Polynomial and Rational Inequalities Algebraically. Approximating Solutions to Inequalities Graphically

Solving Polynomial and Rational Inequalities Algebraically. Approximating Solutions to Inequalities Graphically 10 Inequalities Concepts: Equivalent Inequalities Solving Polynomial and Rational Inequalities Algebraically Approximating Solutions to Inequalities Graphically (Section 4.6) 10.1 Equivalent Inequalities

More information

Linear Algebra Practice Problems

Linear Algebra Practice Problems Math 7, Professor Ramras Linear Algebra Practice Problems () Consider the following system of linear equations in the variables x, y, and z, in which the constants a and b are real numbers. x y + z = a

More information

Solving Linear and Rational Inequalities Algebraically. Definition 22.1 Two inequalities are equivalent if they have the same solution set.

Solving Linear and Rational Inequalities Algebraically. Definition 22.1 Two inequalities are equivalent if they have the same solution set. Inequalities Concepts: Equivalent Inequalities Solving Linear and Rational Inequalities Algebraically Approximating Solutions to Inequalities Graphically (Section 4.4).1 Equivalent Inequalities Definition.1

More information

Definition We say that a topological manifold X is C p if there is an atlas such that the transition functions are C p.

Definition We say that a topological manifold X is C p if there is an atlas such that the transition functions are C p. 13. Riemann surfaces Definition 13.1. Let X be a topological space. We say that X is a topological manifold, if (1) X is Hausdorff, (2) X is 2nd countable (that is, there is a base for the topology which

More information

Let s Do Algebra Tiles

Let s Do Algebra Tiles Let s Do Algebra Tiles Algebra Tiles Algebra tiles can be used to model operations involving integers. Let the small green square represent +1 and the small pink square represent -1. The green and pink

More information

The core entropy of polynomials of higher degree

The core entropy of polynomials of higher degree The core entropy of polynomials of higher degree Giulio Tiozzo University of Toronto In memory of Tan Lei Angers, October 23, 2017 First email: March 4, 2012 Hi Mr. Giulio Tiozzo, My name is Tan Lei.

More information

Equidistribution of hyperbolic centers using Arakelov geometry

Equidistribution of hyperbolic centers using Arakelov geometry Equidistribution of hyperbolic centers using Arakelov geometry favre@math.polytechnique.fr July 8, 203 Number theory and dynamics Additive number theory: proof of Szemeredi s theorem by Furstenberg Diophantine

More information

The topological differences between the Mandelbrot set and the tricorn

The topological differences between the Mandelbrot set and the tricorn The topological differences between the Mandelbrot set and the tricorn Sabyasachi Mukherjee Jacobs University Bremen Warwick, November 2014 Basic definitions We consider the iteration of quadratic anti-polynomials

More information

The Geometry of Cubic Maps

The Geometry of Cubic Maps The Geometry of Cubic Maps John Milnor Stony Brook University (www.math.sunysb.edu) work with Araceli Bonifant and Jan Kiwi Conformal Dynamics and Hyperbolic Geometry CUNY Graduate Center, October 23,

More information

Quadratic and Polynomial Inequalities in one variable have look like the example below.

Quadratic and Polynomial Inequalities in one variable have look like the example below. Section 8 4: Polynomial Inequalities in One Variable Quadratic and Polynomial Inequalities in one variable have look like the example below. x 2 5x 6 0 (x 2) (x + 4) > 0 x 2 (x 3) > 0 (x 2) 2 (x + 4) 0

More information

Coach Stones Expanded Standard Pre-Calculus Algorithm Packet Page 1 Section: P.1 Algebraic Expressions, Mathematical Models and Real Numbers

Coach Stones Expanded Standard Pre-Calculus Algorithm Packet Page 1 Section: P.1 Algebraic Expressions, Mathematical Models and Real Numbers Coach Stones Expanded Standard Pre-Calculus Algorithm Packet Page 1 Section: P.1 Algebraic Expressions, Mathematical Models and Real Numbers CLASSIFICATIONS OF NUMBERS NATURAL NUMBERS = N = {1,2,3,4,...}

More information

Periodic Sinks and Observable Chaos

Periodic Sinks and Observable Chaos Periodic Sinks and Observable Chaos Systems of Study: Let M = S 1 R. T a,b,l : M M is a three-parameter family of maps defined by where θ S 1, r R. θ 1 = a+θ +Lsin2πθ +r r 1 = br +blsin2πθ Outline of Contents:

More information

Is the Hénon map chaotic

Is the Hénon map chaotic Is the Hénon map chaotic Zbigniew Galias Department of Electrical Engineering AGH University of Science and Technology, Poland, galias@agh.edu.pl International Workshop on Complex Networks and Applications

More information

Chapter 1 Review of Equations and Inequalities

Chapter 1 Review of Equations and Inequalities Chapter 1 Review of Equations and Inequalities Part I Review of Basic Equations Recall that an equation is an expression with an equal sign in the middle. Also recall that, if a question asks you to solve

More information

Pre-Calculus: Functions and Their Properties (Solving equations algebraically and graphically, matching graphs, tables, and equations, and

Pre-Calculus: Functions and Their Properties (Solving equations algebraically and graphically, matching graphs, tables, and equations, and Pre-Calculus: 1.1 1.2 Functions and Their Properties (Solving equations algebraically and graphically, matching graphs, tables, and equations, and finding the domain, range, VA, HA, etc.). Name: Date:

More information

2x + 5 = x = x = 4

2x + 5 = x = x = 4 98 CHAPTER 3 Algebra Textbook Reference Section 5.1 3.3 LINEAR EQUATIONS AND INEQUALITIES Student CD Section.5 CLAST OBJECTIVES Solve linear equations and inequalities Solve a system of two linear equations

More information

Study Guide for Math 095

Study Guide for Math 095 Study Guide for Math 095 David G. Radcliffe November 7, 1994 1 The Real Number System Writing a fraction in lowest terms. 1. Find the largest number that will divide into both the numerator and the denominator.

More information

A constant is a value that is always the same. (This means that the value is constant / unchanging). o

A constant is a value that is always the same. (This means that the value is constant / unchanging). o Math 8 Unit 7 Algebra and Graphing Relations Solving Equations Using Models We will be using algebra tiles to help us solve equations. We will practice showing work appropriately symbolically and pictorially

More information

Graphs of Polynomial Functions

Graphs of Polynomial Functions Graphs of Polynomial Functions By: OpenStaxCollege The revenue in millions of dollars for a fictional cable company from 2006 through 2013 is shown in [link]. Year 2006 2007 2008 2009 2010 2011 2012 2013

More information

Quadratic equations: complex solutions

Quadratic equations: complex solutions October 28 (H), November 1 (A), 2016 Complex number system page 1 Quadratic equations: complex solutions An issue that can arise when solving a quadratic equation by the Quadratic Formula is the need to

More information

Lozi-like maps. M. Misiurewicz and S. Štimac. May 13, 2017

Lozi-like maps. M. Misiurewicz and S. Štimac. May 13, 2017 Lozi-like maps M. Misiurewicz and S. Štimac May 13, 017 Abstract We define a broad class of piecewise smooth plane homeomorphisms which have properties similar to the properties of Lozi maps, including

More information

NATIONAL BOARD FOR HIGHER MATHEMATICS. M. A. and M.Sc. Scholarship Test. September 24, Time Allowed: 150 Minutes Maximum Marks: 30

NATIONAL BOARD FOR HIGHER MATHEMATICS. M. A. and M.Sc. Scholarship Test. September 24, Time Allowed: 150 Minutes Maximum Marks: 30 NATIONAL BOARD FOR HIGHER MATHEMATICS M. A. and M.Sc. Scholarship Test September 24, 2011 Time Allowed: 150 Minutes Maximum Marks: 30 Please read, carefully, the instructions on the following page 1 INSTRUCTIONS

More information

2017 Michigan Mathematics Prize Competition Solutions

2017 Michigan Mathematics Prize Competition Solutions 017 Michigan Mathematics Prize Competition Solutions 1. Consider a normal 8 8 chessboard, where each square is labelled with either 1 or 1. Let a k be the product of the numbers in the kth row, and let

More information

Julia Sets and the Mandelbrot Set

Julia Sets and the Mandelbrot Set December 14, 2007 : Dynamical System s Example Dynamical System In general, a dynamical system is a rule or function that describes a point s position in space over time, where time can be modeled as a

More information

Math 213br HW 3 solutions

Math 213br HW 3 solutions Math 13br HW 3 solutions February 6, 014 Problem 1 Show that for each d 1, there exists a complex torus X = C/Λ and an analytic map f : X X of degree d. Let Λ be the lattice Z Z d. It is stable under multiplication

More information

The Simple Harmonic Oscillator

The Simple Harmonic Oscillator The Simple Harmonic Oscillator Your introductory physics textbook probably had a chapter or two discussing properties of Simple Harmonic Motion (SHM for short). Your modern physics textbook mentions SHM,

More information

Mathematische Annalen

Mathematische Annalen Math. Ann. 334, 457 464 (2006) Mathematische Annalen DOI: 10.1007/s00208-005-0743-2 The Julia Set of Hénon Maps John Erik Fornæss Received:6 July 2005 / Published online: 9 January 2006 Springer-Verlag

More information

Fractals, complex equations, and polynomiographs.

Fractals, complex equations, and polynomiographs. Fractals, complex equations, and polynomiographs. Summary: The generation of Mandelbrot and Julia fractals will be revisited in this article. Emphasis will be placed on the way this fractals are created.

More information

ZEROS OF POLYNOMIAL FUNCTIONS ALL I HAVE TO KNOW ABOUT POLYNOMIAL FUNCTIONS

ZEROS OF POLYNOMIAL FUNCTIONS ALL I HAVE TO KNOW ABOUT POLYNOMIAL FUNCTIONS ZEROS OF POLYNOMIAL FUNCTIONS ALL I HAVE TO KNOW ABOUT POLYNOMIAL FUNCTIONS TOOLS IN FINDING ZEROS OF POLYNOMIAL FUNCTIONS Synthetic Division and Remainder Theorem (Compressed Synthetic Division) Fundamental

More information

On accessibility of hyperbolic components of the tricorn

On accessibility of hyperbolic components of the tricorn 1 / 30 On accessibility of hyperbolic components of the tricorn Hiroyuki Inou (Joint work in progress with Sabyasachi Mukherjee) Department of Mathematics, Kyoto University Inperial College London Parameter

More information

4.4: Optimization. Problem 2 Find the radius of a cylindrical container with a volume of 2π m 3 that minimizes the surface area.

4.4: Optimization. Problem 2 Find the radius of a cylindrical container with a volume of 2π m 3 that minimizes the surface area. 4.4: Optimization Problem 1 Suppose you want to maximize a continuous function on a closed interval, but you find that it only has one local extremum on the interval which happens to be a local minimum.

More information

Software Engineering 3DX3. Slides 8: Root Locus Techniques

Software Engineering 3DX3. Slides 8: Root Locus Techniques Software Engineering 3DX3 Slides 8: Root Locus Techniques Dr. Ryan Leduc Department of Computing and Software McMaster University Material based on Control Systems Engineering by N. Nise. c 2006, 2007

More information

Algebra Revision Guide

Algebra Revision Guide Algebra Revision Guide Stage 4 S J Cooper 1st Edition Collection of like terms... Solving simple equations... Factorisation... 6 Inequalities... 7 Graphs... 9 1. The straight line... 9. The quadratic curve...

More information

SHADOWING AND ω-limit SETS OF CIRCULAR JULIA SETS

SHADOWING AND ω-limit SETS OF CIRCULAR JULIA SETS SHADOWING AND ω-limit SETS OF CIRCULAR JULIA SETS ANDREW D. BARWELL, JONATHAN MEDDAUGH, AND BRIAN E. RAINES Abstract. In this paper we consider quadratic polynomials on the complex plane f c(z) = z 2 +

More information

Introduction: Pythagorean Triplets

Introduction: Pythagorean Triplets Introduction: Pythagorean Triplets On this first day I want to give you an idea of what sorts of things we talk about in number theory. In number theory we want to study the natural numbers, and in particular

More information

Topic 7: Polynomials. Introduction to Polynomials. Table of Contents. Vocab. Degree of a Polynomial. Vocab. A. 11x 7 + 3x 3

Topic 7: Polynomials. Introduction to Polynomials. Table of Contents. Vocab. Degree of a Polynomial. Vocab. A. 11x 7 + 3x 3 Topic 7: Polynomials Table of Contents 1. Introduction to Polynomials. Adding & Subtracting Polynomials 3. Multiplying Polynomials 4. Special Products of Binomials 5. Factoring Polynomials 6. Factoring

More information

Algebra II Standards of Learning Curriculum Guide

Algebra II Standards of Learning Curriculum Guide Expressions Operations AII.1 identify field properties, axioms of equality inequality, properties of order that are valid for the set of real numbers its subsets, complex numbers, matrices. be able to:

More information

Topology Hmwk 5 All problems are from Allen Hatcher Algebraic Topology (online) ch 1

Topology Hmwk 5 All problems are from Allen Hatcher Algebraic Topology (online) ch 1 Topology Hmwk 5 All problems are from Allen Hatcher Algebraic Topology (online) ch Andrew Ma November 22, 203.3.8 Claim: A nice space X has a unique universal abelian covering space X ab Proof. Given a

More information

Roots of equations, minimization, numerical integration

Roots of equations, minimization, numerical integration Roots of equations, minimization, numerical integration Alexander Khanov PHYS6260: Experimental Methods is HEP Oklahoma State University November 1, 2017 Roots of equations Find the roots solve equation

More information

Announcements Wednesday, November 7

Announcements Wednesday, November 7 Announcements Wednesday, November 7 The third midterm is on Friday, November 6 That is one week from this Friday The exam covers 45, 5, 52 53, 6, 62, 64, 65 (through today s material) WeBWorK 6, 62 are

More information

2017 OHMIO Individual Competition

2017 OHMIO Individual Competition 2017 OHMIO Individual Competition 1. On a winter hike with friends (all of whom were wearing either a scarlet or gray hat), I saw twice as many scarlet hats as gray. That s silly, said a friend. I see

More information

MATH 1553-C MIDTERM EXAMINATION 3

MATH 1553-C MIDTERM EXAMINATION 3 MATH 553-C MIDTERM EXAMINATION 3 Name GT Email @gatech.edu Please read all instructions carefully before beginning. Please leave your GT ID card on your desk until your TA scans your exam. Each problem

More information

2-7 Solving Quadratic Inequalities. ax 2 + bx + c > 0 (a 0)

2-7 Solving Quadratic Inequalities. ax 2 + bx + c > 0 (a 0) Quadratic Inequalities In One Variable LOOKS LIKE a quadratic equation but Doesn t have an equal sign (=) Has an inequality sign (>,

More information

Problems in Linear Algebra and Representation Theory

Problems in Linear Algebra and Representation Theory Problems in Linear Algebra and Representation Theory (Most of these were provided by Victor Ginzburg) The problems appearing below have varying level of difficulty. They are not listed in any specific

More information

( ) 0. Section 3.3 Graphs of Polynomial Functions. Chapter 3

( ) 0. Section 3.3 Graphs of Polynomial Functions. Chapter 3 76 Chapter 3 Section 3.3 Graphs of Polynomial Functions In the previous section we explored the short run behavior of quadratics, a special case of polynomials. In this section we will explore the short

More information

11. Periodicity of Klein polyhedra (28 June 2011) Algebraic irrationalities and periodicity of sails. Let A GL(n + 1, R) be an operator all of

11. Periodicity of Klein polyhedra (28 June 2011) Algebraic irrationalities and periodicity of sails. Let A GL(n + 1, R) be an operator all of 11. Periodicity of Klein polyhedra (28 June 2011) 11.1. lgebraic irrationalities and periodicity of sails. Let GL(n + 1, R) be an operator all of whose eigenvalues are real and distinct. Let us take the

More information

YOU CAN BACK SUBSTITUTE TO ANY OF THE PREVIOUS EQUATIONS

YOU CAN BACK SUBSTITUTE TO ANY OF THE PREVIOUS EQUATIONS The two methods we will use to solve systems are substitution and elimination. Substitution was covered in the last lesson and elimination is covered in this lesson. Method of Elimination: 1. multiply

More information

Solving and Graphing Inequalities

Solving and Graphing Inequalities Solving and Graphing Inequalities Graphing Simple Inequalities: x > 3 When finding the solution for an equation we get one answer for x. (There is only one number that satisfies the equation.) For 3x 5

More information

Section 3.6 Complex Zeros

Section 3.6 Complex Zeros 04 Chapter Section 6 Complex Zeros When finding the zeros of polynomials, at some point you're faced with the problem x = While there are clearly no real numbers that are solutions to this equation, leaving

More information

THE CREMONA GROUP: LECTURE 1

THE CREMONA GROUP: LECTURE 1 THE CREMONA GROUP: LECTURE 1 Birational maps of P n. A birational map from P n to P n is specified by an (n + 1)-tuple (f 0,..., f n ) of homogeneous polynomials of the same degree, which can be assumed

More information

On W. Thurston s core-entropy theory

On W. Thurston s core-entropy theory On W. Thurston s core-entropy theory Bill in Jackfest, Feb. 2011 It started out... in 1975 or so. My first job after graduate school was, I was the assistant of Milnor... At one point, I d gotten a programmable

More information

Renormalization for Lorenz maps

Renormalization for Lorenz maps Renormalization for Lorenz maps Denis Gaidashev, Matematiska Institutionen, Uppsala Universitet Tieste, June 5, 2012 D. Gaidashev, Uppsala Universitet () Renormalization for Lorenz maps Tieste, June 5,

More information

FINAL PROJECT TOPICS MATH 399, SPRING αx 0 x < α(1 x)

FINAL PROJECT TOPICS MATH 399, SPRING αx 0 x < α(1 x) FINAL PROJECT TOPICS MATH 399, SPRING 2011 MARIUS IONESCU If you pick any of the following topics feel free to discuss with me if you need any further background that we did not discuss in class. 1. Iterations

More information

Analysis III Complex Analysis Hints for solution for the 1. Exercise Sheet

Analysis III Complex Analysis Hints for solution for the 1. Exercise Sheet Analysis III Complex Analysis Hints for solution for the 1 Exercise Sheet Department of Mathematics WS 11/12 Prof Dr Burkhard Kümmerer October 18, 2011 Andreas Gärtner Walter Reußwig Groupwork Exercise

More information

Finding numerically Newhouse sinks near a homoclinic tangency and investigation of their chaotic transients. Takayuki Yamaguchi

Finding numerically Newhouse sinks near a homoclinic tangency and investigation of their chaotic transients. Takayuki Yamaguchi Hokkaido Mathematical Journal Vol. 44 (2015) p. 277 312 Finding numerically Newhouse sinks near a homoclinic tangency and investigation of their chaotic transients Takayuki Yamaguchi (Received March 13,

More information

Math 354 Transition graphs and subshifts November 26, 2014

Math 354 Transition graphs and subshifts November 26, 2014 Math 54 Transition graphs and subshifts November 6, 04. Transition graphs Let I be a closed interval in the real line. Suppose F : I I is function. Let I 0, I,..., I N be N closed subintervals in I with

More information

Zoology of Fatou sets

Zoology of Fatou sets Math 207 - Spring 17 - François Monard 1 Lecture 20 - Introduction to complex dynamics - 3/3: Mandelbrot and friends Outline: Recall critical points and behavior of functions nearby. Motivate the proof

More information

Equilibrium of rigid bodies Mehrdad Negahban (1999)

Equilibrium of rigid bodies Mehrdad Negahban (1999) Equilibrium of rigid bodies Mehrdad Negahban (1999) Static equilibrium for a rigid body: A body (or any part of it) which is currently stationary will remain stationary if the resultant force and resultant

More information

Distances in R 3. Last time we figured out the (parametric) equation of a line and the (scalar) equation of a plane:

Distances in R 3. Last time we figured out the (parametric) equation of a line and the (scalar) equation of a plane: Distances in R 3 Last time we figured out the (parametric) equation of a line and the (scalar) equation of a plane: Definition: The equation of a line through point P(x 0, y 0, z 0 ) with directional vector

More information

The Homoclinic Tangle and Smale s Horseshoe Map

The Homoclinic Tangle and Smale s Horseshoe Map The Homoclinic Tangle and Smale s Horseshoe Map Matt I. Introduction The homoclinic tangle is an interesting property of the manifolds of certain maps. In order to give more formal meaning to some intuitive

More information

MATH 162. Midterm 2 ANSWERS November 18, 2005

MATH 162. Midterm 2 ANSWERS November 18, 2005 MATH 62 Midterm 2 ANSWERS November 8, 2005. (0 points) Does the following integral converge or diverge? To get full credit, you must justify your answer. 3x 2 x 3 + 4x 2 + 2x + 4 dx You may not be able

More information

Chapter One: Pre-Geometry

Chapter One: Pre-Geometry Chapter One: Pre-Geometry Index: A: Solving Equations B: Factoring (GCF/DOTS) C: Factoring (Case Two leading into Case One) D: Factoring (Case One) E: Solving Quadratics F: Parallel and Perpendicular Lines

More information

Numerical Local Irreducible Decomposition

Numerical Local Irreducible Decomposition Numerical Local Irreducible Decomposition Daniel Brake, with Jonathan Hauenstein Andrew Sommese November 12, 2015 Numerical Algebraic Geometry I would describe Numerical Algebraic Geometry as the use of

More information

Symbolic extensions for partially hyperbolic diffeomorphisms

Symbolic extensions for partially hyperbolic diffeomorphisms for partially hyperbolic diffeomorphisms Todd Fisher tfisher@math.byu.edu Department of Mathematics Brigham Young University International Workshop on Global Dynamics Beyond Uniform Hyperbolicity Joint

More information

DYNAMICAL SYSTEMS PROBLEMS. asgor/ (1) Which of the following maps are topologically transitive (minimal,

DYNAMICAL SYSTEMS PROBLEMS.  asgor/ (1) Which of the following maps are topologically transitive (minimal, DYNAMICAL SYSTEMS PROBLEMS http://www.math.uci.edu/ asgor/ (1) Which of the following maps are topologically transitive (minimal, topologically mixing)? identity map on a circle; irrational rotation of

More information

Announcements Wednesday, November 7

Announcements Wednesday, November 7 Announcements Wednesday, November 7 The third midterm is on Friday, November 16 That is one week from this Friday The exam covers 45, 51, 52 53, 61, 62, 64, 65 (through today s material) WeBWorK 61, 62

More information

Chapter 2. Polynomial and Rational Functions. 2.5 Zeros of Polynomial Functions

Chapter 2. Polynomial and Rational Functions. 2.5 Zeros of Polynomial Functions Chapter 2 Polynomial and Rational Functions 2.5 Zeros of Polynomial Functions 1 / 33 23 Chapter 2 Homework 2.5 p335 6, 8, 10, 12, 16, 20, 24, 28, 32, 34, 38, 42, 46, 50, 52 2 / 33 23 3 / 33 23 Objectives:

More information

Tennessee s State Mathematics Standards Precalculus

Tennessee s State Mathematics Standards Precalculus Tennessee s State Mathematics Standards Precalculus Domain Cluster Standard Number Expressions (N-NE) Represent, interpret, compare, and simplify number expressions 1. Use the laws of exponents and logarithms

More information

Fall River Joint Unified School District

Fall River Joint Unified School District 1 Fall River Joint Unified School District McDougal Littell Math Algebra 2 Pacing Guide Begin First Semester Use the state released STAR test questions as warm-ups 1.1, 1.2, 1.3 1.4, 1.5, 1.6 3 Chapter

More information

4.Let A be a matrix such that A. is a scalar matrix and Then equals :

4.Let A be a matrix such that A. is a scalar matrix and Then equals : 1.Consider the following two binary relations on the set A={a, b, c} : R1={(c, a), (b, b), (a, c), (c, c), (b, c), (a, a)} and R2={(a, b), (b, a), (c, c), (c, a), (a, a), (b, b), (a, c)}. Then : both R1

More information

MITOCW MIT8_01F16_w02s07v03_1_360p

MITOCW MIT8_01F16_w02s07v03_1_360p MITOCW MIT8_01F16_w02s07v03_1_360p Let's consider what we call the window washer problem. What we have is suspended from some ceiling. We have a pulley. And the pulley is suspended by a rope, which we're

More information

*****DO NOT WRITE ON THIS PAPER***** Answer these questions in your SPIRAL NOTEBOOK. # 9 BUILD AN ATOM: Post-lab questions

*****DO NOT WRITE ON THIS PAPER***** Answer these questions in your SPIRAL NOTEBOOK. # 9 BUILD AN ATOM: Post-lab questions *****DO NOT WRITE ON THIS PAPER***** Answer these questions in your SPIRAL NOTEBOOK # 9 BUILD AN ATOM: Post-lab questions MAS = 8 ADV = 7 MTS = 6 APP = 4-5 BEG = 0-3 For questions 1-5: You build an atom

More information

CALC 3 CONCEPT PACKET Complete

CALC 3 CONCEPT PACKET Complete CALC 3 CONCEPT PACKET Complete Written by Jeremy Robinson, Head Instructor Find Out More +Private Instruction +Review Sessions WWW.GRADEPEAK.COM Need Help? Online Private Instruction Anytime, Anywhere

More information

Unit 2 Quadratics. Mrs. Valentine Math 3

Unit 2 Quadratics. Mrs. Valentine Math 3 Unit 2 Quadratics Mrs. Valentine Math 3 2.1 Factoring and the Quadratic Formula Factoring ax 2 + bx + c when a = ±1 Reverse FOIL method Find factors of c that add up to b. Using the factors, write the

More information

MATH Spring 2010 Topics per Section

MATH Spring 2010 Topics per Section MATH 101 - Spring 2010 Topics per Section Chapter 1 : These are the topics in ALEKS covered by each Section of the book. Section 1.1 : Section 1.2 : Ordering integers Plotting integers on a number line

More information

Since x + we get x² + 2x = 4, or simplifying it, x² = 4. Therefore, x² + = 4 2 = 2. Ans. (C)

Since x + we get x² + 2x = 4, or simplifying it, x² = 4. Therefore, x² + = 4 2 = 2. Ans. (C) SAT II - Math Level 2 Test #01 Solution 1. x + = 2, then x² + = Since x + = 2, by squaring both side of the equation, (A) - (B) 0 (C) 2 (D) 4 (E) -2 we get x² + 2x 1 + 1 = 4, or simplifying it, x² + 2

More information

Complex Numbers: Definition: A complex number is a number of the form: z = a + bi where a, b are real numbers and i is a symbol with the property: i

Complex Numbers: Definition: A complex number is a number of the form: z = a + bi where a, b are real numbers and i is a symbol with the property: i Complex Numbers: Definition: A complex number is a number of the form: z = a + bi where a, b are real numbers and i is a symbol with the property: i 2 = 1 Sometimes we like to think of i = 1 We can treat

More information