Vooludünaamika laiendatud geomeetrias

Size: px
Start display at page:

Download "Vooludünaamika laiendatud geomeetrias"

Transcription

1 Vooludünaamika laiendatud geomeetrias Manuel Hohmann Teoreetilise Füüsika Labor Füüsika Instituut Tartu Ülikool 28. oktoober 2014 Manuel Hohmann (Tartu Ülikool) Vooludünaamika 28. oktoober / 25

2 Fluid dynamics on generalized geometric backgrounds Manuel Hohmann Teoreetilise Füüsika Labor Füüsika Instituut Tartu Ülikool 28. oktoober 2014 Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

3 Outline 1 Motivation 2 Finsler geometry and observer space 3 Fluids on observer space 4 Conclusion Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

4 Outline 1 Motivation 2 Finsler geometry and observer space 3 Fluids on observer space 4 Conclusion Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

5 Fluids are everywhere Perfect fluid: No shear stress, no friction. Characterized by density ρ and pressure p. Dust, dark matter: p = 0. Radiation: p = 1 3 ρ. Dark energy: p < 1 3 ρ. Used in cosmology, parameterized post-newtonian formalism... Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

6 Fluids are everywhere Perfect fluid: No shear stress, no friction. Characterized by density ρ and pressure p. Dust, dark matter: p = 0. Radiation: p = 1 3 ρ. Dark energy: p < 1 3 ρ. Used in cosmology, parameterized post-newtonian formalism... Collisionless fluid: Model for dark matter. Used in structure formation... Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

7 Fluids are everywhere Perfect fluid: No shear stress, no friction. Characterized by density ρ and pressure p. Dust, dark matter: p = 0. Radiation: p = 1 3 ρ. Dark energy: p < 1 3 ρ. Used in cosmology, parameterized post-newtonian formalism... Collisionless fluid: Model for dark matter. Used in structure formation... Maxwell-Boltzmann gas: Collisions described by Boltzmann equation. Used in structure formation, atmosphere dynamics... Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

8 Fluids are everywhere Perfect fluid: No shear stress, no friction. Characterized by density ρ and pressure p. Dust, dark matter: p = 0. Radiation: p = 1 3 ρ. Dark energy: p < 1 3 ρ. Used in cosmology, parameterized post-newtonian formalism... Collisionless fluid: Model for dark matter. Used in structure formation... Maxwell-Boltzmann gas: Collisions described by Boltzmann equation. Used in structure formation, atmosphere dynamics... Charged, multi-component gas: Plasma, interacting gas including recombination / ionization. Used in stellar dynamics, pre-cmb era models... Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

9 From spacetime to observer space Fluid dynamics naturally lift to tangent bundle: Fluids conveniently modeled by particle dynamics (SPH... ). Physical fluids constituted by particles. Particle trajectories lift to tangent bundle: γ (γ, γ). Dynamics on the tangent bundle described by first order ODE. Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

10 From spacetime to observer space Fluid dynamics naturally lift to tangent bundle: Fluids conveniently modeled by particle dynamics (SPH... ). Physical fluids constituted by particles. Particle trajectories lift to tangent bundle: γ (γ, γ). Dynamics on the tangent bundle described by first order ODE. Velocity dependence of physical measurements: Physical observables are tensor components. Measured tensor components depend on observer velocity. Physical observer velocities are future unit timelike vectors. Observer space is space of physical velocities. Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

11 From spacetime to observer space Fluid dynamics naturally lift to tangent bundle: Fluids conveniently modeled by particle dynamics (SPH... ). Physical fluids constituted by particles. Particle trajectories lift to tangent bundle: γ (γ, γ). Dynamics on the tangent bundle described by first order ODE. Velocity dependence of physical measurements: Physical observables are tensor components. Measured tensor components depend on observer velocity. Physical observer velocities are future unit timelike vectors. Observer space is space of physical velocities. Quantum gravity: possible non-tensorial observer dependence. Modified gravity theories may have more general observer spaces. Physical observables become functions on observer space! Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

12 From spacetime to observer space Fluid dynamics naturally lift to tangent bundle: Fluids conveniently modeled by particle dynamics (SPH... ). Physical fluids constituted by particles. Particle trajectories lift to tangent bundle: γ (γ, γ). Dynamics on the tangent bundle described by first order ODE. Velocity dependence of physical measurements: Physical observables are tensor components. Measured tensor components depend on observer velocity. Physical observer velocities are future unit timelike vectors. Observer space is space of physical velocities. Quantum gravity: possible non-tensorial observer dependence. Modified gravity theories may have more general observer spaces. Physical observables become functions on observer space! Space of observers corresponds to particle tangent vectors. Consider fluid dynamics on observer space! Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

13 Finsler spacetimes Finsler geometry of space widely used in physics: Approaches to quantum gravity Electrodynamics in anisotropic media Modeling of astronomical data Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

14 Finsler spacetimes Finsler geometry of space widely used in physics: Approaches to quantum gravity Electrodynamics in anisotropic media Modeling of astronomical data Finsler geometry generalizes Riemannian geometry: Geometry described by Finsler function on the tangent bundle. Finsler function measures length of tangent vectors. Well-defined notions of connections, curvature, parallel transport... Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

15 Finsler spacetimes Finsler geometry of space widely used in physics: Approaches to quantum gravity Electrodynamics in anisotropic media Modeling of astronomical data Finsler geometry generalizes Riemannian geometry: Geometry described by Finsler function on the tangent bundle. Finsler function measures length of tangent vectors. Well-defined notions of connections, curvature, parallel transport... Finsler spacetimes are suitable backgrounds for: Gravity Electrodynamics Other matter field theories Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

16 Finsler spacetimes Finsler geometry of space widely used in physics: Approaches to quantum gravity Electrodynamics in anisotropic media Modeling of astronomical data Finsler geometry generalizes Riemannian geometry: Geometry described by Finsler function on the tangent bundle. Finsler function measures length of tangent vectors. Well-defined notions of connections, curvature, parallel transport... Finsler spacetimes are suitable backgrounds for: Gravity Electrodynamics Other matter field theories Possible explanations of yet unexplained phenomena: Fly-by anomaly Galaxy rotation curves Accelerating expansion of the universe Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

17 Outline 1 Motivation 2 Finsler geometry and observer space 3 Fluids on observer space 4 Conclusion Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

18 The clock postulate Proper time along a curve in Lorentzian spacetime: τ = t2 t 1 g ab (x(t))ẋ a (t)ẋ b (t)dt. Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

19 The clock postulate Proper time along a curve in Lorentzian spacetime: τ = t2 t 1 g ab (x(t))ẋ a (t)ẋ b (t)dt. Finsler geometry: use a more general length functional: τ = t2 Finsler function F : TM R +. t 1 F(x(t), ẋ(t))dt. Parametrization invariance requires homogeneity: F(x, λy) = λf(x, y) λ > 0. Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

20 Finsler spacetimes Finsler geometries suitable for spacetimes exist. [C. Pfeifer, M. Wohlfarth 11] Finsler metric with Lorentz signature: gab F (x, y) = 1 2 y a y b F 2 (x, y). Notion of timelike, lightlike, spacelike tangent vectors. Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

21 Finsler spacetimes Finsler geometries suitable for spacetimes exist. [C. Pfeifer, M. Wohlfarth 11] Finsler metric with Lorentz signature: gab F (x, y) = 1 2 y a y b F 2 (x, y). Notion of timelike, lightlike, spacelike tangent vectors. Unit vectors y T x M defined by F 2 (x, y) = g F ab (x, y)y a y b = 1. Set Ω x T x M of unit timelike vectors at x M. Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

22 Finsler spacetimes Finsler geometries suitable for spacetimes exist. [C. Pfeifer, M. Wohlfarth 11] Finsler metric with Lorentz signature: gab F (x, y) = 1 2 y a y b F 2 (x, y). Notion of timelike, lightlike, spacelike tangent vectors. Unit vectors y T x M defined by F 2 (x, y) = g F ab (x, y)y a y b = 1. Set Ω x T x M of unit timelike vectors at x M. Ω x contains a closed connected component S x Ω x. Causality: S x corresponds to physical observers. Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

23 Geometry on the tangent bundle Cartan non-linear connection: N a b = 1 4 ] b [g F ac (y d d c F 2 c F 2 ) Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

24 Geometry on the tangent bundle Cartan non-linear connection: N a b = 1 4 ] b [g F ac (y d d c F 2 c F 2 ) Split of the tangent and cotangent bundles: Tangent bundle: TTM = HTM VTM δ a = a N b a b, a Cotangent bundle: T TM = H TM V TM dx a, δy a = dy a + N a bdx b Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

25 Geometry on the tangent bundle Cartan non-linear connection: N a b = 1 4 ] b [g F ac (y d d c F 2 c F 2 ) Split of the tangent and cotangent bundles: Tangent bundle: TTM = HTM VTM δ a = a N b a b, a Cotangent bundle: T TM = H TM V TM dx a, δy a = dy a + N a bdx b Sasaki metric: G = g F ab dx a dx b gf ab F 2 δy a δy b Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

26 Geometry on the tangent bundle Cartan non-linear connection: N a b = 1 4 ] b [g F ac (y d d c F 2 c F 2 ) Split of the tangent and cotangent bundles: Tangent bundle: TTM = HTM VTM δ a = a N b a b, a Cotangent bundle: T TM = H TM V TM dx a, δy a = dy a + N a bdx b Sasaki metric: G = g F ab dx a dx b gf ab F 2 δy a δy b Geodesic spray: S = y a δ a Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

27 Geometry on observer space Recall from the definition of Finsler spacetimes: Set Ω x T x M of unit timelike vectors at x M. Physical observers correspond to S x Ω x. Definition of observer space: O = x M S x TM. Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

28 Geometry on observer space Recall from the definition of Finsler spacetimes: Set Ω x T x M of unit timelike vectors at x M. Physical observers correspond to S x Ω x. Definition of observer space: O = x M S x TM. Sasaki metric G on O given by pullback of G to O. Volume form Σ of Sasaki metric G. Geodesic spray S restricts to Reeb vector field r on O. Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

29 Geometry on observer space Recall from the definition of Finsler spacetimes: Set Ω x T x M of unit timelike vectors at x M. Physical observers correspond to S x Ω x. Definition of observer space: O = x M S x TM. Sasaki metric G on O given by pullback of G to O. Volume form Σ of Sasaki metric G. Geodesic spray S restricts to Reeb vector field r on O. Geodesic hypersurface measure ω = ι r Σ. Note that L r Σ = 0 and dω = 0. Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

30 From metric to Finsler geometry Tangent bundle geometry: Finsler function: F (x, y) = g ab (x)y a y b Finsler metric: { gab(x, F g ab (x) y) = g ab (x) y timelike y spacelike Cartan non-linear connection: N a b(x, y) = Γ a bc(x)y c Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

31 From metric to Finsler geometry Tangent bundle geometry: Finsler function: F (x, y) = g ab (x)y a y b Finsler metric: { gab(x, F g ab (x) y) = g ab (x) y timelike y spacelike Cartan non-linear connection: N a b(x, y) = Γ a bc(x)y c Observer space: Space Ω x of unit timelike vectors at x M. Space S x of future unit timelike vectors at x M. Observer space O: union of shells S x. Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

32 Outline 1 Motivation 2 Finsler geometry and observer space 3 Fluids on observer space 4 Conclusion Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

33 Definition of fluids Single-component fluid: Constituted by classical, relativistic particles. Particles have equal properties (mass, charge,... ). Particles follow piecewise geodesic curves. Endpoints of geodesics are interactions with other particles. Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

34 Definition of fluids Single-component fluid: Constituted by classical, relativistic particles. Particles have equal properties (mass, charge,... ). Particles follow piecewise geodesic curves. Endpoints of geodesics are interactions with other particles. Collisionless fluid: Particles do not interact with other particles. Particles follow geodesics. Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

35 Definition of fluids Single-component fluid: Constituted by classical, relativistic particles. Particles have equal properties (mass, charge,... ). Particles follow piecewise geodesic curves. Endpoints of geodesics are interactions with other particles. Collisionless fluid: Particles do not interact with other particles. Particles follow geodesics. Multi-component fluid: multiple types of particles. Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

36 Geodesics on observer space Dynamics of fluids depends on geodesic equation. Geodesic equation for curve x(τ) on spacetime M: ẍ a + N a b(x, ẋ)ẋ b = 0. Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

37 Geodesics on observer space Dynamics of fluids depends on geodesic equation. Geodesic equation for curve x(τ) on spacetime M: ẍ a + N a b(x, ẋ)ẋ b = 0. Canonical lift of curve to tangent bundle TM: Lift of geodesic equation: x, y = ẋ. ẋ a = y a, ẏ a = N a b(x, y)y b. Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

38 Geodesics on observer space Dynamics of fluids depends on geodesic equation. Geodesic equation for curve x(τ) on spacetime M: ẍ a + N a b(x, ẋ)ẋ b = 0. Canonical lift of curve to tangent bundle TM: Lift of geodesic equation: x, y = ẋ. ẋ a = y a, ẏ a = N a b(x, y)y b. Solutions are integral curves of vector field: y a a y b N a b a = y a δ a = S. Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

39 Geodesics on observer space Dynamics of fluids depends on geodesic equation. Geodesic equation for curve x(τ) on spacetime M: ẍ a + N a b(x, ẋ)ẋ b = 0. Canonical lift of curve to tangent bundle TM: Lift of geodesic equation: x, y = ẋ. ẋ a = y a, ẏ a = N a b(x, y)y b. Solutions are integral curves of vector field: y a a y b N a b a = y a δ a = S. Tangent vectors are future unit timelike: (x, y) O. Particle trajectories are piecewise integral curves of r on O. Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

40 One-particle distribution function Recall: ω = ι r Σ Ω 6 (O) unique 6-form such that: ω non-degenerate on every hypersurface not tangent to r. dω = 0. Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

41 One-particle distribution function Recall: ω = ι r Σ Ω 6 (O) unique 6-form such that: ω non-degenerate on every hypersurface not tangent to r. dω = 0. Define one-particle distribution function φ : O R + such that: For every hypersurface σ O, N[σ] = φω # of particle trajectories through σ. σ Counting of particle trajectories respects hypersurface orientation. Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

42 One-particle distribution function Recall: ω = ι r Σ Ω 6 (O) unique 6-form such that: ω non-degenerate on every hypersurface not tangent to r. dω = 0. Define one-particle distribution function φ : O R + such that: For every hypersurface σ O, N[σ] = φω # of particle trajectories through σ. σ Counting of particle trajectories respects hypersurface orientation. For multi-component fluids: φ i for each component i. Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

43 Collisions & the Liouville equation Collision in spacetime interruption in observer space. Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

44 Collisions & the Liouville equation Collision in spacetime interruption in observer space. For any open set V O, φω = d(φω) = V V V L r φσ # of outbound trajectories - # of inbound trajectories. Collision density measured by L r φ. Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

45 Collisions & the Liouville equation Collision in spacetime interruption in observer space. For any open set V O, φω = d(φω) = V V V L r φσ # of outbound trajectories - # of inbound trajectories. Collision density measured by L r φ. Collisionless fluid: trajectories have no endpoints, L r φ = 0. Simple, first order equation of motion for collisionless fluid. φ is constant along integral curves of r. Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

46 Examples of fluids Geodesic dust fluid: φ(x, y) δ(y u(x)). Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

47 Examples of fluids Geodesic dust fluid: φ(x, y) δ(y u(x)). Jenkka Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

48 Examples of fluids Geodesic dust fluid: φ(x, y) δ(y u(x)). Collisionless fluid: L r φ = 0. Jenkka Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

49 Examples of fluids Geodesic dust fluid: φ(x, y) δ(y u(x)). Collisionless fluid: L r φ = 0. Jenkka Polkka Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

50 Examples of fluids Geodesic dust fluid: φ(x, y) δ(y u(x)). Collisionless fluid: L r φ = 0. Interacting fluid: L r φ 0. Jenkka Polkka Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

51 Examples of fluids Geodesic dust fluid: φ(x, y) δ(y u(x)). Collisionless fluid: L r φ = 0. Interacting fluid: L r φ 0. Jenkka Polkka Humppa Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

52 Averaged quantities Volume form Π x on unit timelike shells S x induced by G. Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

53 Averaged quantities Volume form Π x on unit timelike shells S x induced by G. How many particles pass hypersurface in spacetime? Averaged particle current density: J a (x) = φy a Π x S x Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

54 Averaged quantities Volume form Π x on unit timelike shells S x induced by G. How many particles pass hypersurface in spacetime? Averaged particle current density: J a (x) = φy a Π x S x How much energy-momentum passes hypersurface in spacetime? Averaged particle energy momentum tensor: T ab (x) = m φy a y b Π x S x Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

55 Averaged quantities Volume form Π x on unit timelike shells S x induced by G. How many particles pass hypersurface in spacetime? Averaged particle current density: J a (x) = φy a Π x S x How much energy-momentum passes hypersurface in spacetime? Averaged particle energy momentum tensor: T ab (x) = m φy a y b Π x S x Connection to well-known spacetime observables. Connection to measurements. Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

56 Symmetric solutions Infinitesimal diffeomorphism described by vector field ξ on M. Canonical lift of ξ to vector field on TM: ˆξ = ξ a a + y a a ξ b b Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

57 Symmetric solutions Infinitesimal diffeomorphism described by vector field ξ on M. Canonical lift of ξ to vector field on TM: ˆξ = ξ a a + y a a ξ b b Killing vector field ξ: Lˆξ F = 0 ˆξ is tangent to observer space O TM. Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

58 Symmetric solutions Infinitesimal diffeomorphism described by vector field ξ on M. Canonical lift of ξ to vector field on TM: ˆξ = ξ a a + y a a ξ b b Killing vector field ξ: Lˆξ F = 0 ˆξ is tangent to observer space O TM. Symmetric fluid solution: Lˆξ φ = 0 Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

59 Symmetric solutions Infinitesimal diffeomorphism described by vector field ξ on M. Canonical lift of ξ to vector field on TM: ˆξ = ξ a a + y a a ξ b b Killing vector field ξ: Lˆξ F = 0 ˆξ is tangent to observer space O TM. Symmetric fluid solution: Lˆξ φ = 0 Symmetry provides simplification of 7-dimensional O: Spherical symmetry: 4 dimensions remain. Static spherical symmetry: 3 dimensions remain. Cosmological symmetry: 2 dimensions remain. Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

60 Outline 1 Motivation 2 Finsler geometry and observer space 3 Fluids on observer space 4 Conclusion Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

61 Summary Basic idea: Model fluids by particle trajectories. Lift trajectories from spacetime to observer space. Describe geometry of observer space using Finsler geometry. Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

62 Summary Basic idea: Model fluids by particle trajectories. Lift trajectories from spacetime to observer space. Describe geometry of observer space using Finsler geometry. Finsler geometry suitable for generalized gravity theories. Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

63 Summary Basic idea: Model fluids by particle trajectories. Lift trajectories from spacetime to observer space. Describe geometry of observer space using Finsler geometry. Finsler geometry suitable for generalized gravity theories. Classical fluid variables obtained via averaging: Particle flux density. Energy-momentum tensor Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

64 Summary Basic idea: Model fluids by particle trajectories. Lift trajectories from spacetime to observer space. Describe geometry of observer space using Finsler geometry. Finsler geometry suitable for generalized gravity theories. Classical fluid variables obtained via averaging: Particle flux density. Energy-momentum tensor Symmetries defined as usual by Killing vector fields. Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

65 Outlook Coupling of fluids to non-metric gravity theories. Cosmological solutions with non-metric geometry. Extension of parameterized post-newtonian formalism.... Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

66 References Kinetic theory on the tangent bundle: J. Ehlers, in: General Relativity and Cosmology, pp 1 70, Academic Press, New York / London, O. Sarbach and T. Zannias, AIP Conf. Proc (2013) 134 [arxiv: [gr-qc]]. O. Sarbach and T. Zannias, Class. Quant. Grav. 31 (2014) [arxiv: [gr-qc]]. Finsler spacetimes: C. Pfeifer and M. N. R. Wohlfarth, Phys. Rev. D 84 (2011) [arxiv: [gr-qc]]. C. Pfeifer and M. N. R. Wohlfarth, Phys. Rev. D 85 (2012) [arxiv: [gr-qc]]. MH, in: Mathematical structures of the Universe, pp 13 55, Copernicus Center Press, Krakow, Manuel Hohmann (Tartu Ülikool) Fluid dynamics 28. oktoober / 25

Extensions of Lorentzian spacetime geometry

Extensions of Lorentzian spacetime geometry Extensions of Lorentzian spacetime geometry From Finsler to Cartan and vice versa Manuel Hohmann Teoreetilise Füüsika Labor Füüsika Instituut Tartu Ülikool LQP33 Workshop 15. November 2013 Manuel Hohmann

More information

Extensions of Lorentzian spacetime geometry

Extensions of Lorentzian spacetime geometry Extensions of Lorentzian spacetime geometry From Finsler to Cartan and vice versa Manuel Hohmann Teoreetilise Füüsika Labor Füüsika Instituut Tartu Ülikool 13. November 2013 Manuel Hohmann (Tartu Ülikool)

More information

Observer dependent background geometries arxiv:

Observer dependent background geometries arxiv: Observer dependent background geometries arxiv:1403.4005 Manuel Hohmann Laboratory of Theoretical Physics Physics Institute University of Tartu DPG-Tagung Berlin Session MP 4 18. März 2014 Manuel Hohmann

More information

Multimetric cosmology and structure formation

Multimetric cosmology and structure formation Multimetric cosmology and structure formation Manuel Hohmann Teoreetilise füüsika labor Füüsikainstituut Tartu Ülikool 3. oktoober 2012 Manuel Hohmann (Tartu Ülikool) Multimetric gravity 3. oktoober 2012

More information

Uniformity of the Universe

Uniformity of the Universe Outline Universe is homogenous and isotropic Spacetime metrics Friedmann-Walker-Robertson metric Number of numbers needed to specify a physical quantity. Energy-momentum tensor Energy-momentum tensor of

More information

arxiv: v2 [gr-qc] 27 Apr 2013

arxiv: v2 [gr-qc] 27 Apr 2013 Free of centrifugal acceleration spacetime - Geodesics arxiv:1303.7376v2 [gr-qc] 27 Apr 2013 Hristu Culetu Ovidius University, Dept.of Physics and Electronics, B-dul Mamaia 124, 900527 Constanta, Romania

More information

Einstein Toolkit Workshop. Joshua Faber Apr

Einstein Toolkit Workshop. Joshua Faber Apr Einstein Toolkit Workshop Joshua Faber Apr 05 2012 Outline Space, time, and special relativity The metric tensor and geometry Curvature Geodesics Einstein s equations The Stress-energy tensor 3+1 formalisms

More information

General relativity and the Einstein equations

General relativity and the Einstein equations April 23, 2013 Special relativity 1905 Let S and S be two observers moving with velocity v relative to each other along the x-axis and let (t, x) and (t, x ) be the coordinate systems used by these observers.

More information

Aspects of multimetric gravity

Aspects of multimetric gravity Aspects of multimetric gravity Manuel Hohmann Teoreetilise füüsika labor Füüsikainstituut Tartu Ülikool 4. september 2012 Manuel Hohmann (Tartu Ülikool) Multimetric gravity 4. september 2012 1 / 32 Outline

More information

Black Holes and Thermodynamics I: Classical Black Holes

Black Holes and Thermodynamics I: Classical Black Holes Black Holes and Thermodynamics I: Classical Black Holes Robert M. Wald General references: R.M. Wald General Relativity University of Chicago Press (Chicago, 1984); R.M. Wald Living Rev. Rel. 4, 6 (2001).

More information

arxiv: v1 [gr-qc] 22 Aug 2014

arxiv: v1 [gr-qc] 22 Aug 2014 Radar orthogonality and radar length in Finsler and metric spacetime geometry Christian Pfeifer Institute for Theoretical Physics, Universität Hannover, Appelstrasse 2, 30167 Hannover, Germany arxiv:1408.5306v1

More information

Lifting General Relativity to Observer Space

Lifting General Relativity to Observer Space Lifting General Relativity to Observer Space Derek Wise Institute for Quantum Gravity University of Erlangen Work with Steffen Gielen: 1111.7195 1206.0658 1210.0019 International Loop Quantum Gravity Seminar

More information

Gravitation: Tensor Calculus

Gravitation: Tensor Calculus An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013

More information

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3 Syllabus May 3, 2017 Contents 1 Special relativity 1 2 Differential geometry 3 3 General Relativity 13 3.1 Physical Principles.......................................... 13 3.2 Einstein s Equation..........................................

More information

Holographic Special Relativity:

Holographic Special Relativity: Holographic Special Relativity: Observer Space from Conformal Geometry Derek K. Wise University of Erlangen Based on 1305.3258 International Loop Quantum Gravity Seminar 15 October 2013 1 Holographic special

More information

Relativity, Gravitation, and Cosmology

Relativity, Gravitation, and Cosmology Relativity, Gravitation, and Cosmology A basic introduction TA-PEI CHENG University of Missouri St. Louis OXFORD UNIVERSITY PRESS Contents Parti RELATIVITY Metric Description of Spacetime 1 Introduction

More information

On the interplay between Lorentzian Causality and Finsler metrics of Randers type

On the interplay between Lorentzian Causality and Finsler metrics of Randers type On the interplay between Lorentzian Causality and Finsler metrics of Randers type Erasmo Caponio, Miguel Angel Javaloyes and Miguel Sánchez Universidad de Granada Spanish Relativity Meeting ERE2009 Bilbao,

More information

arxiv: v1 [gr-qc] 11 Sep 2014

arxiv: v1 [gr-qc] 11 Sep 2014 Frascati Physics Series Vol. 58 (2014) Frontier Objects in Astrophysics and Particle Physics May 18-24, 2014 arxiv:1409.3370v1 [gr-qc] 11 Sep 2014 OPEN PROBLEMS IN GRAVITATIONAL PHYSICS S. Capozziello

More information

Level sets of the lapse function in static GR

Level sets of the lapse function in static GR Level sets of the lapse function in static GR Carla Cederbaum Mathematisches Institut Universität Tübingen Auf der Morgenstelle 10 72076 Tübingen, Germany September 4, 2014 Abstract We present a novel

More information

Curved Spacetime I. Dr. Naylor

Curved Spacetime I. Dr. Naylor Curved Spacetime I Dr. Naylor Last Week Einstein's principle of equivalence We discussed how in the frame of reference of a freely falling object we can construct a locally inertial frame (LIF) Space tells

More information

A5682: Introduction to Cosmology Course Notes. 2. General Relativity

A5682: Introduction to Cosmology Course Notes. 2. General Relativity 2. General Relativity Reading: Chapter 3 (sections 3.1 and 3.2) Special Relativity Postulates of theory: 1. There is no state of absolute rest. 2. The speed of light in vacuum is constant, independent

More information

O O 4.4 PECULIAR VELOCITIES. Hubble law. The second observer will attribute to the particle the velocity

O O 4.4 PECULIAR VELOCITIES. Hubble law. The second observer will attribute to the particle the velocity 4.4 PECULIAR VELOCITIES (peculiar in the sense of not associated to the Hubble flow rather than odd) The expansion of the Universe also stretches the de Broglie wavelength of freely moving massive particles

More information

arxiv:gr-qc/ v2 17 Jan 2007

arxiv:gr-qc/ v2 17 Jan 2007 A covariant Quantum Geometry Model February 27, 2008 arxiv:gr-qc/0701091v2 17 Jan 2007 Ricardo Gallego Torrome Abstract Caianiello s fundamental derivation of Quantum Geometry through an isometric immersion

More information

16. Einstein and General Relativistic Spacetimes

16. Einstein and General Relativistic Spacetimes 16. Einstein and General Relativistic Spacetimes Problem: Special relativity does not account for the gravitational force. To include gravity... Geometricize it! Make it a feature of spacetime geometry.

More information

5.5 Energy-momentum tensor

5.5 Energy-momentum tensor 5.5 Energy-momentum tensor components of stress tensor force area of cross section normal to cross section 5 Special Relativity provides relation between the forces and the cross sections these are exerted

More information

Fundamental equations of relativistic fluid dynamics

Fundamental equations of relativistic fluid dynamics CHAPTER VI Fundamental equations of relativistic fluid dynamics When the energy density becomes large as may happen for instance in compact astrophysical objects, in the early Universe, or in high-energy

More information

Fundamental Theories of Physics in Flat and Curved Space-Time

Fundamental Theories of Physics in Flat and Curved Space-Time Fundamental Theories of Physics in Flat and Curved Space-Time Zdzislaw Musielak and John Fry Department of Physics The University of Texas at Arlington OUTLINE General Relativity Our Main Goals Basic Principles

More information

RELG - General Relativity

RELG - General Relativity Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2017 230 - ETSETB - Barcelona School of Telecommunications Engineering 749 - MAT - Department of Mathematics 748 - FIS - Department

More information

A brief introduction to Semi-Riemannian geometry and general relativity. Hans Ringström

A brief introduction to Semi-Riemannian geometry and general relativity. Hans Ringström A brief introduction to Semi-Riemannian geometry and general relativity Hans Ringström May 5, 2015 2 Contents 1 Scalar product spaces 1 1.1 Scalar products...................................... 1 1.2 Orthonormal

More information

Imperial College 4th Year Physics UG, General Relativity Revision lecture. Toby Wiseman; Huxley 507,

Imperial College 4th Year Physics UG, General Relativity Revision lecture. Toby Wiseman; Huxley 507, Imperial College 4th Year Physics UG, 2012-13 General Relativity Revision lecture Toby Wiseman; Huxley 507, email: t.wiseman@imperial.ac.uk 1 1 Exam This is 2 hours. There is one compulsory question (

More information

Relativistic Mechanics

Relativistic Mechanics Physics 411 Lecture 9 Relativistic Mechanics Lecture 9 Physics 411 Classical Mechanics II September 17th, 2007 We have developed some tensor language to describe familiar physics we reviewed orbital motion

More information

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M =

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = CALCULUS ON MANIFOLDS 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = a M T am, called the tangent bundle, is itself a smooth manifold, dim T M = 2n. Example 1.

More information

Stability of Stellar Filaments in Modified Gravity Speaker: Dr. Zeeshan Yousaf Assistant Professor Department of Mathematics University of the Punjab

Stability of Stellar Filaments in Modified Gravity Speaker: Dr. Zeeshan Yousaf Assistant Professor Department of Mathematics University of the Punjab Stability of Stellar Filaments in Modified Gravity Speaker: Dr. Zeeshan Yousaf Assistant Professor Department of Mathematics University of the Punjab Lahore-Pakistan Hot Topics in Modern Cosmology, XIIth

More information

A Brief Introduction to Mathematical Relativity

A Brief Introduction to Mathematical Relativity A Brief Introduction to Mathematical Relativity Arick Shao Imperial College London Arick Shao (Imperial College London) Mathematical Relativity 1 / 31 Special Relativity Postulates and Definitions Einstein

More information

CLASSICAL RELATIVITY THEORY

CLASSICAL RELATIVITY THEORY CLASSICAL RELATIVITY THEORY David B. Malament ABSTRACT: The essay that follows is divided into two parts. In the first (section 2), I give a brief account of the structure of classical relativity theory.

More information

A873: Cosmology Course Notes. II. General Relativity

A873: Cosmology Course Notes. II. General Relativity II. General Relativity Suggested Readings on this Section (All Optional) For a quick mathematical introduction to GR, try Chapter 1 of Peacock. For a brilliant historical treatment of relativity (special

More information

BACKGROUND IN SYMPLECTIC GEOMETRY

BACKGROUND IN SYMPLECTIC GEOMETRY BACKGROUND IN SYMPLECTIC GEOMETRY NILAY KUMAR Today I want to introduce some of the symplectic structure underlying classical mechanics. The key idea is actually quite old and in its various formulations

More information

Curved Spacetime III Einstein's field equations

Curved Spacetime III Einstein's field equations Curved Spacetime III Einstein's field equations Dr. Naylor Note that in this lecture we will work in SI units: namely c 1 Last Week s class: Curved spacetime II Riemann curvature tensor: This is a tensor

More information

4 Evolution of density perturbations

4 Evolution of density perturbations Spring term 2014: Dark Matter lecture 3/9 Torsten Bringmann (torsten.bringmann@fys.uio.no) reading: Weinberg, chapters 5-8 4 Evolution of density perturbations 4.1 Statistical description The cosmological

More information

The Erlangen Program and General Relativity

The Erlangen Program and General Relativity The Erlangen Program and General Relativity Derek K. Wise University of Erlangen Department of Mathematics & Institute for Quantum Gravity Colloquium, Utah State University January 2014 What is geometry?

More information

Emergent Universe by Tunneling. Pedro Labraña, ICC, Universidad de Barcelona and Facultad de Ciencias, Universidad del Bío-Bío, Chile.

Emergent Universe by Tunneling. Pedro Labraña, ICC, Universidad de Barcelona and Facultad de Ciencias, Universidad del Bío-Bío, Chile. Emergent Universe by Tunneling Pedro Labraña, ICC, Universidad de Barcelona and Facultad de Ciencias, Universidad del Bío-Bío, Chile. The Emergent Universe scenario Is Eternal Inflation, past eternal?

More information

Classical Field Theory

Classical Field Theory April 13, 2010 Field Theory : Introduction A classical field theory is a physical theory that describes the study of how one or more physical fields interact with matter. The word classical is used in

More information

Lecture: Lorentz Invariant Dynamics

Lecture: Lorentz Invariant Dynamics Chapter 5 Lecture: Lorentz Invariant Dynamics In the preceding chapter we introduced the Minkowski metric and covariance with respect to Lorentz transformations between inertial systems. This was shown

More information

Richard A. Mould. Basic Relativity. With 144 Figures. Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest

Richard A. Mould. Basic Relativity. With 144 Figures. Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest Richard A. Mould Basic Relativity With 144 Figures Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest Contents Preface vii PARTI 1. Principles of Relativity 3 1.1

More information

Comparison for infinitesimal automorphisms. of parabolic geometries

Comparison for infinitesimal automorphisms. of parabolic geometries Comparison techniques for infinitesimal automorphisms of parabolic geometries University of Vienna Faculty of Mathematics Srni, January 2012 This talk reports on joint work in progress with Karin Melnick

More information

κ = f (r 0 ) k µ µ k ν = κk ν (5)

κ = f (r 0 ) k µ µ k ν = κk ν (5) 1. Horizon regularity and surface gravity Consider a static, spherically symmetric metric of the form where f(r) vanishes at r = r 0 linearly, and g(r 0 ) 0. Show that near r = r 0 the metric is approximately

More information

Lorentzian elasticity arxiv:

Lorentzian elasticity arxiv: Lorentzian elasticity arxiv:1805.01303 Matteo Capoferri and Dmitri Vassiliev University College London 14 July 2018 Abstract formulation of elasticity theory Consider a manifold M equipped with non-degenerate

More information

New Non-Diagonal Singularity-Free Cosmological Perfect-Fluid Solution

New Non-Diagonal Singularity-Free Cosmological Perfect-Fluid Solution New Non-Diagonal Singularity-Free Cosmological Perfect-Fluid Solution arxiv:gr-qc/0201078v1 23 Jan 2002 Marc Mars Departament de Física Fonamental, Universitat de Barcelona, Diagonal 647, 08028 Barcelona,

More information

Introduction. Classical vs Modern Physics. Classical Physics: High speeds Small (or very large) distances

Introduction. Classical vs Modern Physics. Classical Physics: High speeds Small (or very large) distances Introduction Classical vs Modern Physics High speeds Small (or very large) distances Classical Physics: Conservation laws: energy, momentum (linear & angular), charge Mechanics Newton s laws Electromagnetism

More information

Quantum Field Theory Notes. Ryan D. Reece

Quantum Field Theory Notes. Ryan D. Reece Quantum Field Theory Notes Ryan D. Reece November 27, 2007 Chapter 1 Preliminaries 1.1 Overview of Special Relativity 1.1.1 Lorentz Boosts Searches in the later part 19th century for the coordinate transformation

More information

Gravitational wave memory and gauge invariance. David Garfinkle Solvay workshop, Brussels May 18, 2018

Gravitational wave memory and gauge invariance. David Garfinkle Solvay workshop, Brussels May 18, 2018 Gravitational wave memory and gauge invariance David Garfinkle Solvay workshop, Brussels May 18, 2018 Talk outline Gravitational wave memory Gauge invariance in perturbation theory Perturbative and gauge

More information

An introduction to gravitational waves. Enrico Barausse (Institut d'astrophysique de Paris/CNRS, France)

An introduction to gravitational waves. Enrico Barausse (Institut d'astrophysique de Paris/CNRS, France) An introduction to gravitational waves Enrico Barausse (Institut d'astrophysique de Paris/CNRS, France) Outline of lectures (1/2) The world's shortest introduction to General Relativity The linearized

More information

General relativistic attempts to explain flat galactic rotation curves

General relativistic attempts to explain flat galactic rotation curves General relativistic attempts to explain flat galactic rotation curves based upon: H. Balasin and D. Grumiller, astro-ph/0602519 Institute for Theoretical Physics University of Leipzig DFG project GR-3157-1/1

More information

Cosmological Nonlinear Density and Velocity Power Spectra. J. Hwang UFES Vitória November 11, 2015

Cosmological Nonlinear Density and Velocity Power Spectra. J. Hwang UFES Vitória November 11, 2015 Cosmological Nonlinear Density and Velocity Power Spectra J. Hwang UFES Vitória November 11, 2015 Perturbation method: Perturbation expansion All perturbation variables are small Weakly nonlinear Strong

More information

Death and resurrection of the zeroth principle of thermodynamics. Abstract

Death and resurrection of the zeroth principle of thermodynamics. Abstract Death and resurrection of the zeroth principle of thermodynamics Hal M. Haggard and Carlo Rovelli Centre de Physique Théorique de Luminy, Aix-Marseille Université, F-13288 Marseille, EU Abstract The zeroth

More information

2.1 Basics of the Relativistic Cosmology: Global Geometry and the Dynamics of the Universe Part I

2.1 Basics of the Relativistic Cosmology: Global Geometry and the Dynamics of the Universe Part I 1 2.1 Basics of the Relativistic Cosmology: Global Geometry and the Dynamics of the Universe Part I 2 Special Relativity (1905) A fundamental change in viewing the physical space and time, now unified

More information

1. Geometry of the unit tangent bundle

1. Geometry of the unit tangent bundle 1 1. Geometry of the unit tangent bundle The main reference for this section is [8]. In the following, we consider (M, g) an n-dimensional smooth manifold endowed with a Riemannian metric g. 1.1. Notations

More information

Classical Relativity Theory

Classical Relativity Theory To appear in: Handlbook of the Philosophy of Physics, eds. J. Butterfield and J. Earman, Elsevier Classical Relativity Theory Version 2.4 David B. Malament Department of Logic and Philosophy of Science

More information

A UNIFIED TREATMENT OF GRAVITATIONAL COLLAPSE IN GENERAL RELATIVITY

A UNIFIED TREATMENT OF GRAVITATIONAL COLLAPSE IN GENERAL RELATIVITY A UNIFIED TREATMENT OF GRAVITATIONAL COLLAPSE IN GENERAL RELATIVITY & Anthony Lun Fourth Aegean Summer School on Black Holes Mytilene, Island of Lesvos 17/9/2007 CONTENTS Junction Conditions Standard approach

More information

Relativistic simultaneity and causality

Relativistic simultaneity and causality Relativistic simultaneity and causality V. J. Bolós 1,, V. Liern 2, J. Olivert 3 1 Dpto. Matemática Aplicada, Facultad de Matemáticas, Universidad de Valencia. C/ Dr. Moliner 50. 46100, Burjassot Valencia),

More information

CS 468. Differential Geometry for Computer Science. Lecture 17 Surface Deformation

CS 468. Differential Geometry for Computer Science. Lecture 17 Surface Deformation CS 468 Differential Geometry for Computer Science Lecture 17 Surface Deformation Outline Fundamental theorem of surface geometry. Some terminology: embeddings, isometries, deformations. Curvature flows

More information

Classical Relativity Theory

Classical Relativity Theory To appear in: Handlbook of the Philosophy of Physics, eds. J. Butterfield and J. Earman, Elsevier Classical Relativity Theory Version 2.1 arxiv:gr-qc/0506065v1 10 Jun 2005 David B. Malament Department

More information

Astr 2320 Tues. May 2, 2017 Today s Topics Chapter 23: Cosmology: The Big Bang and Beyond Introduction Newtonian Cosmology Solutions to Einstein s

Astr 2320 Tues. May 2, 2017 Today s Topics Chapter 23: Cosmology: The Big Bang and Beyond Introduction Newtonian Cosmology Solutions to Einstein s Astr 0 Tues. May, 07 Today s Topics Chapter : Cosmology: The Big Bang and Beyond Introduction Newtonian Cosmology Solutions to Einstein s Field Equations The Primeval Fireball Standard Big Bang Model Chapter

More information

Bimetric Massive Gravity

Bimetric Massive Gravity Bimetric Massive Gravity Tomi Koivisto / Nordita (Stockholm) 21.11.2014 Outline Introduction Bimetric gravity Cosmology Matter coupling Conclusion Motivations Why should the graviton be massless? Large

More information

Stability and Instability of Black Holes

Stability and Instability of Black Holes Stability and Instability of Black Holes Stefanos Aretakis September 24, 2013 General relativity is a successful theory of gravitation. Objects of study: (4-dimensional) Lorentzian manifolds (M, g) which

More information

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor.

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor. Übungen zu RT2 SS 2010 (1) Show that the tensor field g µν (x) = η µν is invariant under Poincaré transformations, i.e. x µ x µ = L µ νx ν + c µ, where L µ ν is a constant matrix subject to L µ ρl ν ση

More information

WICK ROTATIONS AND HOLOMORPHIC RIEMANNIAN GEOMETRY

WICK ROTATIONS AND HOLOMORPHIC RIEMANNIAN GEOMETRY WICK ROTATIONS AND HOLOMORPHIC RIEMANNIAN GEOMETRY Geometry and Lie Theory, Eldar Strøme 70th birthday Sigbjørn Hervik, University of Stavanger Work sponsored by the RCN! (Toppforsk-Fellesløftet) REFERENCES

More information

Relativity SPECIAL, GENERAL, AND COSMOLOGICAL SECOND EDITION. Wolfgang Rindler. Professor of Physics The University of Texas at Dallas

Relativity SPECIAL, GENERAL, AND COSMOLOGICAL SECOND EDITION. Wolfgang Rindler. Professor of Physics The University of Texas at Dallas Relativity SPECIAL, GENERAL, AND COSMOLOGICAL SECOND EDITION Wolfgang Rindler Professor of Physics The University of Texas at Dallas OXPORD UNIVERSITY PRESS Contents Introduction l 1 From absolute space

More information

Curved spacetime and general covariance

Curved spacetime and general covariance Chapter 7 Curved spacetime and general covariance In this chapter we generalize the discussion of preceding chapters to extend covariance to more general curved spacetimes. 219 220 CHAPTER 7. CURVED SPACETIME

More information

Curved Spacetime... A brief introduction

Curved Spacetime... A brief introduction Curved Spacetime... A brief introduction May 5, 2009 Inertial Frames and Gravity In establishing GR, Einstein was influenced by Ernst Mach. Mach s ideas about the absolute space and time: Space is simply

More information

Cosmology: An Introduction. Eung Jin Chun

Cosmology: An Introduction. Eung Jin Chun Cosmology: An Introduction Eung Jin Chun Cosmology Hot Big Bang + Inflation. Theory of the evolution of the Universe described by General relativity (spacetime) Thermodynamics, Particle/nuclear physics

More information

From An Apple To Black Holes Gravity in General Relativity

From An Apple To Black Holes Gravity in General Relativity From An Apple To Black Holes Gravity in General Relativity Gravity as Geometry Central Idea of General Relativity Gravitational field vs magnetic field Uniqueness of trajectory in space and time Uniqueness

More information

arxiv: v2 [gr-qc] 10 Oct 2016

arxiv: v2 [gr-qc] 10 Oct 2016 The conformal transformation of the night sky arxiv:1606.07665v2 [gr-qc] 10 Oct 2016 1. Introduction E Minguzzi Dipartimento di Matematica e Informatica U. Dini, Università degli Studi di Firenze, Via

More information

From Gravitation Theories to a Theory of Gravitation

From Gravitation Theories to a Theory of Gravitation From Gravitation Theories to a Theory of Gravitation Thomas P. Sotiriou SISSA/ISAS, Trieste, Italy based on 0707.2748 [gr-qc] in collaboration with V. Faraoni and S. Liberati Sep 27th 2007 A theory of

More information

arxiv: v1 [gr-qc] 17 May 2008

arxiv: v1 [gr-qc] 17 May 2008 Gravitation equations, and space-time relativity arxiv:0805.2688v1 [gr-qc] 17 May 2008 L. V. VEROZUB Kharkov National University Kharkov, 61103 Ukraine Abstract In contrast to electrodynamics, Einstein

More information

Exact Solutions of the Einstein Equations

Exact Solutions of the Einstein Equations Notes from phz 6607, Special and General Relativity University of Florida, Fall 2004, Detweiler Exact Solutions of the Einstein Equations These notes are not a substitute in any manner for class lectures.

More information

2 General Relativity. 2.1 Curved 2D and 3D space

2 General Relativity. 2.1 Curved 2D and 3D space 22 2 General Relativity The general theory of relativity (Einstein 1915) is the theory of gravity. General relativity ( Einstein s theory ) replaced the previous theory of gravity, Newton s theory. The

More information

The uniformly accelerated motion in General Relativity from a geometric point of view. 1. Introduction. Daniel de la Fuente

The uniformly accelerated motion in General Relativity from a geometric point of view. 1. Introduction. Daniel de la Fuente XI Encuentro Andaluz de Geometría IMUS (Universidad de Sevilla), 15 de mayo de 2015, págs. 2934 The uniformly accelerated motion in General Relativity from a geometric point of view Daniel de la Fuente

More information

Experimental Tests and Alternative Theories of Gravity

Experimental Tests and Alternative Theories of Gravity Experimental Tests and Alternative Theories of Gravity Gonzalo J. Olmo Alba gonzalo.olmo@uv.es University of Valencia (Spain) & UW-Milwaukee Experimental Tests and Alternative Theories of Gravity p. 1/2

More information

Einstein Double Field Equations

Einstein Double Field Equations Einstein Double Field Equations Stephen Angus Ewha Woman s University based on arxiv:1804.00964 in collaboration with Kyoungho Cho and Jeong-Hyuck Park (Sogang Univ.) KIAS Workshop on Fields, Strings and

More information

Konstantin E. Osetrin. Tomsk State Pedagogical University

Konstantin E. Osetrin. Tomsk State Pedagogical University Space-time models with dust and cosmological constant, that allow integrating the Hamilton-Jacobi test particle equation by separation of variables method. Konstantin E. Osetrin Tomsk State Pedagogical

More information

Null Cones to Infinity, Curvature Flux, and Bondi Mass

Null Cones to Infinity, Curvature Flux, and Bondi Mass Null Cones to Infinity, Curvature Flux, and Bondi Mass Arick Shao (joint work with Spyros Alexakis) University of Toronto May 22, 2013 Arick Shao (University of Toronto) Null Cones to Infinity May 22,

More information

Number-Flux Vector and Stress-Energy Tensor

Number-Flux Vector and Stress-Energy Tensor Massachusetts Institute of Technology Department of Physics Physics 8.962 Spring 2002 Number-Flux Vector and Stress-Energy Tensor c 2000, 2002 Edmund Bertschinger. All rights reserved. 1 Introduction These

More information

8 Symmetries and the Hamiltonian

8 Symmetries and the Hamiltonian 8 Symmetries and the Hamiltonian Throughout the discussion of black hole thermodynamics, we have always assumed energy = M. Now we will introduce the Hamiltonian formulation of GR and show how to define

More information

Global classical solutions to the spherically symmetric Nordström-Vlasov system

Global classical solutions to the spherically symmetric Nordström-Vlasov system Global classical solutions to the spherically symmetric Nordström-Vlasov system Håkan Andréasson, Simone Calogero Department of Mathematics, Chalmers University of Technology, S-4196 Göteborg, Sweden Gerhard

More information

3 Parallel transport and geodesics

3 Parallel transport and geodesics 3 Parallel transport and geodesics 3.1 Differentiation along a curve As a prelude to parallel transport we consider another form of differentiation: differentiation along a curve. A curve is a parametrized

More information

CHAPTER 4. Basics of Fluid Dynamics

CHAPTER 4. Basics of Fluid Dynamics CHAPTER 4 Basics of Fluid Dynamics What is a fluid? A fluid is a substance that can flow, has no fixed shape, and offers little resistance to an external stress In a fluid the constituent particles (atoms,

More information

by M.W. Evans, British Civil List (

by M.W. Evans, British Civil List ( Derivation of relativity and the Sagnac Effect from the rotation of the Minkowski and other metrics of the ECE Orbital Theorem: the effect of rotation on spectra. by M.W. Evans, British Civil List (www.aias.us)

More information

Fundamental equations of relativistic fluid dynamics

Fundamental equations of relativistic fluid dynamics CHAPTER VII Fundamental equations of relativistic fluid dynamics Under a number of extreme conditions for instance inside compact astrophysical objects, in the early Universe, or in high-energy collisions

More information

Geometry of almost-product (pseudo-)riemannian manifold. manifolds and the dynamics of the observer. Aneta Wojnar

Geometry of almost-product (pseudo-)riemannian manifold. manifolds and the dynamics of the observer. Aneta Wojnar Geometry of almost-product (pseudo-)riemannian manifolds and the dynamics of the observer University of Wrocªaw Barcelona Postgrad Encounters on Fundamental Physics, October 2012 Outline 1 Motivation 2

More information

Anisotropic Interior Solutions in Hořava Gravity and Einstein-Æther Theory

Anisotropic Interior Solutions in Hořava Gravity and Einstein-Æther Theory Anisotropic Interior Solutions in and Einstein-Æther Theory CENTRA, Instituto Superior Técnico based on DV and S. Carloni, arxiv:1706.06608 [gr-qc] Gravity and Cosmology 2018 Yukawa Institute for Theoretical

More information

An Optimal Control Problem for Rigid Body Motions in Minkowski Space

An Optimal Control Problem for Rigid Body Motions in Minkowski Space Applied Mathematical Sciences, Vol. 5, 011, no. 5, 559-569 An Optimal Control Problem for Rigid Body Motions in Minkowski Space Nemat Abazari Department of Mathematics, Ardabil Branch Islamic Azad University,

More information

GENERALIZED NULL SCROLLS IN THE n-dimensional LORENTZIAN SPACE. 1. Introduction

GENERALIZED NULL SCROLLS IN THE n-dimensional LORENTZIAN SPACE. 1. Introduction ACTA MATHEMATICA VIETNAMICA 205 Volume 29, Number 2, 2004, pp. 205-216 GENERALIZED NULL SCROLLS IN THE n-dimensional LORENTZIAN SPACE HANDAN BALGETIR AND MAHMUT ERGÜT Abstract. In this paper, we define

More information

Modifications of Gravity vs. Dark Matter/Energy

Modifications of Gravity vs. Dark Matter/Energy Massachusetts Institute of Technology Marie-Curie Fellowship MC-OIF 021421 Finnish-Japanese Workshop on Particle Cosmology Helsinki, March 2007 Outline 1 Gravity Problems with General Relativity 2 Galactic

More information

GEOMETRY OF WARPED PRODUCTS

GEOMETRY OF WARPED PRODUCTS GEOMETRY OF WARPED PRODUCTS ABDELGHANI ZEGHIB ABSTRACT. This is a survey on the geometry of warped products, without, or essentially with only soft, calculation. Somewhere in the paper, the goal was to

More information

General Relativity (j µ and T µν for point particles) van Nieuwenhuizen, Spring 2018

General Relativity (j µ and T µν for point particles) van Nieuwenhuizen, Spring 2018 Consistency of conservation laws in SR and GR General Relativity j µ and for point particles van Nieuwenhuizen, Spring 2018 1 Introduction The Einstein equations for matter coupled to gravity read Einstein

More information

On the evolutionary form of the constraints in electrodynamics

On the evolutionary form of the constraints in electrodynamics On the evolutionary form of the constraints in electrodynamics István Rácz,1,2 arxiv:1811.06873v1 [gr-qc] 12 Nov 2018 1 Faculty of Physics, University of Warsaw, Ludwika Pasteura 5, 02-093 Warsaw, Poland

More information

Cartan Geometrodynamics

Cartan Geometrodynamics Cartan Geometrodynamics Derek Wise (joint work with Steffen Gielen) Universität Erlangen Nürnberg 27 February 2012 Geometrodynamics GR as evolving spatial geometry, rather than spacetime geometry. As Wheeler

More information

Kinematic Description of Ricci Solitons in Fluid Spacetimes

Kinematic Description of Ricci Solitons in Fluid Spacetimes arxiv:1709.0138v [gr-qc] 11 Jan 018 Kinematic Description of Ricci Solitons in Fluid Spacetimes Umber Sheikh Department of Applied Sciences, National Textile University, Faisalabad-37610, Pakistan. Abstract

More information

Class Notes Introduction to Relativity Physics 375R Under Construction

Class Notes Introduction to Relativity Physics 375R Under Construction Class Notes Introduction to Relativity Physics 375R Under Construction Austin M. Gleeson 1 Department of Physics University of Texas at Austin Austin, TX 78712 March 20, 2007 1 gleeson@physics.utexas.edu

More information